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250 Mathematical Theory of Continuum Mechanics

)

7.4 Permanence of Irrotational ‘Motion

g fluid once becomes irrotational,
provided that the external

function of density alone.

Thedrem: If any portion of the movin
thén it-will remain_so for all subsequent times
body forces are conservatlve and pressure is a

he fluid and draw a closed

der a simply-connected reglon int
e COHSI G W face S with curve C as

curve C in that region. We can always draw a sur
rim lying entirely in the fluid (Fig. 45). L

AR R e LA L

Fig. 45

'The c1rculatlon I" § 0 -drF, where dr is the dlrected clement at any

pomt of C, and v the fluid velocnty

Now by Stoke’s theorem - ,
r= § = A-rotvdS EaR()
where dS is the element of the surface S and 7 is unit normal to ds.

X Suppose that at initial instant of time fluid motion is lrrmanonal So
that

rot'i)'. =0 at all points of § | - (2)
It follows from (1) |

AP GBIl o 1

I'= 0 at the initial instant of time (3)

By Kelvine’s theorem on the constancy of circulation of a perfect fluid,
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Perfect Fluid 251

the circulation round a closed curve remains constant for all time [f)r(;)\ndcd
the external forces are conservative and pressure is a function ot density

alone. | |
 Since initially circulation I'=0, it will be equal to zer

time. It follows from (1)

o for all subsequent

j 7. rot s dS = 0 at any subsequent time (4)
s

This can be true if it turns out that 7i - rot 0 = 0 at every point of § and for
any direction n at any subsequent time.

In other words, at any subsequent time we must have rot U =0 at every
point of S. Thus motion stays 1rr0tauonal.

7.5 Kelvin’s Mlmmum Energy Theorem

\/Tﬁzorem: The irrotational izetion of an incompressible fluid occupying a

simply connected region has less kineti=.energy than any other motion of

the fluid for which fluid has on the bouﬁﬁ?y\s\a\mc normal velocity as
irrotational motion. T

Proof: Consider an incompressible fluid occupying a simply-connected
region Vbounded by the closed surface S. Let p be the density of the fluid,
and _# the kinetic energy of the fluid moving irrotationally in which v,
v-. v; are components of fluid velocity. Then

ﬁ’——pJ‘(v,+uz+vg)dV (1)
Since fiuid motion is irrotational with velocity potential ¢,
- d¢ : .
), = o)
v, % everywhere (2)

' The velocity components v, must satisfy the eq'l;iation of continuity of
incompressible fluid
C?U| 3!)2 . 8U1
8 aX2 ax-;

=0 (3)

at every interior point
Let %7 be the kinetic energy of any other possible state of motion of
rhe fluid in which velocity components are vj, v3, vi. Then

Jf'=—;—p'|‘(u|2+u§+v_%)dv (4)
14
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" 52 Mathematical Theory of Continuum Mechanics
4 : .

where velocity components satisfy the equation of continuity

vy
e O

at every interior pomt

Let ny, n,, ny be direction cosines of the normal at any point on

the boundary surface S. Since two motions have the same normal velocity
_onS 2= e ; : L e

nlvi+n2v2+n3b3 =nll_}|' 'l"fleé"'i" fljvéﬁ'. P (6) e
Now == £ | (02 —v?) + (052 —v}) + (52 —02)]dV
. JV _ : s : B : - - E
=L | [0 - v)? + 0,01 - v) + v - v’
v ‘ '

+ 2v2(u§ —Up)+ (03"— v:;)2 + 2U';(U'; o v3)] dV

iy j [(ulr—v,) +(Uz —Uz) - @ —vx)zldV

+ PJ. v, vy - Ul) +vy(v; — Uz) + U?(Uz o Uz)] dV
=1+ I say b Tt m,f-s

where /; = PJ‘ L1 = v) +Vy(v2 - V) +U3(Vi - v)]dV and [ is a N
Vv - ‘
posi'tichuantitygivenby -’23 J (o] —v)? +(v5 —vy) + (v} ;, v3)21dV

’ a(p ’ a(p ’ ) :
Now [, = - p l:—ax—l(m "Ux)**"é}‘z'(vz —Uz)+TY3(U3 -Us)]d‘

(using (2))

= PJ- [— {p @i —v}+ _ ((0 (v2 - Uz)} + {‘P (v - "?)}] dV

+ pJ. I:a (Ul UI) + (Uz U2) + aih (U; - U:()] dv (S)

[t follows from (3) and (5)
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Perfect Fluid 253

Dt 65 e 0o 5 3
ox, (V) - v) + e (v = vy + o, (vy —v3) =0 )

Subsﬁluling (9) into (8)

-

’ ’ ‘ & ’ . :
[ = _pjv [‘9%{(!’(01 = Ul)}+£—2{fp(vz — Uy} + T3{¢(U3 - Uz} jdV

= - PI Mm@ —v) +ne; —vy) + 1305 —v3)]dS
R)

using Gauss's divergence theorem.

I = - PJ. @@l —v) +ny(vy = V) + 33 — V)] dS
s

= 0 using (6)
It follows from (7) ¥~ — = I, = a positive quantity ,
K -x>0
or ' .z}’>ﬁ’or~%’<ﬁ’”

7.6 Extremum Value of the Velocity Potential

Thegrém: The maximum or minimum value of the velocity potenziz® for. -
. irrotational flow of an incompressible fluid can occur only. or ‘thai= ¥
s boundary of the fluid. i
Let § be any arbitrary closed surface enclosing a volume V lying enuz=lyv -
~ within the fluid. Let ¢ denote the velocity potential of irrotational moLION
of an incompressible fluid. Now ' :

. a(p < 1 e 7.1

by Gauss’s Divergence theorem.
Since ¢ satisfies Laplace’s equation

Vip=0 )
which is the equation of continuity. Equation (1) reduces to
dp <
s —aTI- dS=0 R

Let P be any interior point in the fluid, Let us assume that @is maximom
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254 Mathematical Theory of Continuum Mechanics

at P. Let us surround this point P by sufficiently small closed sur_facc § so
that value of @ at P would be greater than the value of ¢ at all points of S.

Thercfore at every point of S, 9—% > 0. Hence

J‘@-d5>0 (4,
Ky aﬂ

Result (4) contradicts (3). Therefore, @ cannot have a max?m}lm value. atz
point within the fluid. Similariy, there cannot be a point within thc_ﬂm_d a:

which ¢ has a minimum value.

7.7 Maximum Value of the Speed -

Theorem: In irrotational motion of an incompressible fluid, the maximum

value of the speed occur on the boundary of the fluid.
Let P be any point within the fluid. We choose the coordinate axes such

that axis of x; is in the direction of the motion of the fluid at P. If @ is thz

- velocity potential and v, is the speed at P(x}, x, x3) then

do 2
2 _
and | Vip=0 o (2:
dp
2 dp b R
V3, =V L |=2 (V2 = 1,
P (axl) axl (V ¢)—0 (_,
using (2).

Siqce .1 satisfies Laplace’s equation, it can be regarded as the possible
velocity potential of some fluid motion. Therefore velocity potential ©
can not ﬁavc a maximum value at P, Consequently there must be another-
point ( in the neighbourhood of P for which

(@1)o > (@))p

B (2] >(2)
. a'rl 0 axl p
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' .\ 2 2
) (dp) (3‘1’) (3_“’) ot 4
N (E)Q+(9x2)9+ Fs)g \F)p " &

If vy is the speed at Q, then it follows flfor'n 4) vg_, > U;'. Hence v, cannot

be a maximum. The maximum value of fluid speed, if any must occur on
the boundary. ‘

7.8 Kinetic Energy of the Incompressible Fluid

Moving Irrotationally : |
In order to prove the uniqueness of the solution of an irrotational motion

of a Tiuid with a given set of boundary condition we have to determine on

expression for kinetic energy of the fluid in irrotational motion.
Consider an incompressible fluid of density p occupying some simply-

connected region V bounded by closed surface S. If ¢ be the velocity of 7

the fluid, then kinetic energy % of the fluid is given by

.}I’=lp"-5--6dv R (1)
, 2 v’ , :
__S_incc motion is irrotational, there exists a velocity potential ¢ such that
U= - ﬁtp when V3p=0 (2)
a=Lp j (Vo) - (Vo)) dV 3)
’ |74 i
Now V- (oVp) = (Vo) - (Vo) + oV 20 (4)

Substituting (4) in (3)

ff=%pj‘ (V- (¢Vp) - oV2p]dV
v

prj V-(@Vp)dV, using (2)
< Jy

-ol-p'J. ii - (pV) dS by Gauss’s theorem
< Js

where 17 is unit normal to surface element dS drawn inward.

= 8(,0
s .

e

e ———
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74 Uniqueness Theorem

Theorem. There cannot be two different forms of irrotational motion fora
given confined mass of liquid whose boundaries have prescribed velocities.

Suppose that two such different irrotational motions are possible. Let
¢ and @, denote two different velocity potentials corresponding to two
difterent irrotational motions. Each of them must satisty the equation of

continuity
V2, =0. V2@, = 0 at every interior point PR ).
Since in two motions, boundaries have the same prescribed normal velocities
%(fz—l = -%% at every point on boundary - (2)
~ Letus take O=¢ - ¢ (3)
(@)

V2= V3@, - V¢, = 0 using (1) at every interior point.

Theretore ¢ will represent a possible velocity potential of an irrotational
motion in which kinetic energy is '

1 do
.%——ZPJ.S(D-g'—"dS (5

dp _ dp, 9P _ _ ) ;
. on 311' ~ on = 0 at every point on boundary  (6)

Using (6) in (5), #= 0. Hence

pj vl dvV =0

S RE N

op op d
> =0, e =.0, a—z = 0 everywhere

9=

+

¢ = Constant everywhere
@) = ¢, + Constant

S:S::,i:mg thaf ¢, and ¢, can differ only by a constant. Therefore the velocity
ution given by ¢, and ¢, are identical and two motions are identical.
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