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W H E N  a species occupies a very large territory, local differentiation is usually 
noticeable in the form of geographical races. Each race may in turn consist 

of numerous colonies which are differentiated to a less noticeable extent. The 
underlying differentiation in genetic constitution may reflect the local differences 
of selective pattern or may be the results of chance occurrence of different mutant 
genes, but these factors cannot act effectively unless some sort of isolation ensures 
the accumulation of genetic differences. 

It is well known that existence of geographical barriers greatly favors the for- 
mation of races and new species. However, even if such barriers do not exist, the 
large size of the whole area as compared with the migration distance of an indi- 
vidual may prevent the species from forming a single panmictic unit, and this 
will produce a sort of isolation which WRIGHT called “isolation by distance” 
(WRIGHT 1943). He proposed a model of population structure in which a popula- 
tion is distributed uniformly over a large territory, but the parents of any given 
individual are drawn from a small surrounding region. He studied, by his method 
of path coefficients, the pattern of change in the inbreeding coefficient of sub- 
groups relative to a larger population in which they are contained (WRIGHT 
1940, 1943, 1946, 195 1 ) . The problem of local differentiation may also be studied 
in terms of change in correlation with distance as considered by MAL~COT (1948, 
1955, 1959) ; individuals living nearby tend to be more alike than those living 
far apart. In the mathematical theory of population genetics, the problem of local 
differentiation of gene frequencies in a structured population is one of the most 
intricate, and so far the main results are due to these two authors. 

In  natural populations, individuals often are distributed more or less discon- 
tinuously to form numerous colonies, and individuals may be exchanged between 
adjacent or nearby colonies. To analyze such a situation, one of us proposed a 
model which he termed “stepping stone model” of population structure ( KIMURA 
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1953). The purpose of the present paper is to present a solution of this model and 
to discuss its biological implications. 

O N E  D I M E N S I O N A L  CASE 

Let US consider an infinite array of colonies with their position represented by 
integers on a line (Figure 1 ) . The simplest situation for this one dimensional 
stepping stone model is that in each generation an individual can migrate at most 
one step” in either direction between colonies. In other words, exchange of in- 

dividuals is restricted to be between adjacent colonies. 

L L  

i - i  i i + i  
FIGURE 1 .-One dimensional stepping stone model. 

Consider a single locus with a pair of alleles A and A’. The frequency of A in 
each colony may change from generation to generation and to simplify the treat- 
ment we will assume discrete generation time. Also we assume that the gene fre- 
quency changes systematically by linear evolutionary pressures (mutation, mi- 
gration but not selection, which will be considered later) and fortuitously by 
random sampling of gametes (small population number). If we denote by p z  the 
(relative) frequency of A in the ith colony in the present generation, then its 
value in the next generation may be given by 

ml 
p’% = ( 1  - ml - m,) pz + - ( p t - ,  + P $ + ~ )  + m, p + tz 2 (1.1) 

In the above expression, ml stands for the rate of migration per generation to 
neighboring colonies such that m,/2 is the proportion of individuals exchanged 
each generation between a pair of adjacent colonies. Also m, stands for the rate 
of long range dispersal per generation, namely the rate by which a colony ex- 
changes individuals in each generation with a random sample taken from the en- 
tire population in which the frequency of A is p .  The effect of the long range 
dispersal is formally equivalent to mutation; if there is mutation between A and 
A’ in addition to long range dispersal of gametes, then m, should be replaced by 
p + v -t mm and m & j  by v + m& where p is the mutation rate from A to A’ and 
v is the mutation rate in the reverse direction. Furthermore, [ %  stands for the 
change in pz due to random sampling of gametes in reproduction, namely, due to 
the relatively small number of gametes being randomly chosen to form the next 
generation out of the very large number of gametes produced by the parents. 
Thus, if N e  is the effective size (cf. WRIGHT 1940; KIMURA and CROW 1963) of 
the colony, [i follows the binomial distribution with mean and variance given by 
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where E ,  stands for an operator of taking expectation with respect to this random 
change. 

Let us denote by @i the deviation of gene frequency from its mean, i.e. 
pi  = pi -p ,  

then (1 .1 ) becomes 
(1.2) 
where a = 1 -m,-m, and /3 = m1/2 .  

frequency among colonies, 

and by rk the correlation coefficient of the gene frequencies between two colonies 
which are k steps apart, 

where E stands for an operator for taking expectation with respect to gene fre- 

quency distribution among colonies. 
In order, to obtain the formula for the variance, we square both sides of (1.2) 

and take expectations. Noting that the product terms between j i ' s  and ti  have 
expectation zero and that 

jj; = api + p ( p i - l +  p i + d  + ti, 
We will denote by V ,  the variance in the probability distribution of the gene 

Vp = E +  ( p i ' ) ,  

rk = E* ( p i p i + k ) / V p ,  

@ 

- v, p ( 1 - 7 )  V,' = a2v, + 4apvpr, + 2 p v p  (1  + r*) - - + 
2N, 2 N p  

where the prime indicates that it is the value in the next generation. At equilib- 
rium in which V', = V,, the above reduces to 

In order to obtain the formula for the correlation coefficients, we will consider the 
expectation of product p'i p ' i + k  (k # 0). Noting that terms like /5i+&i as well as 
titi +k have zero expectations, we obtain 

r'k = a2rk + %/3(rk+1 + rk-1) + / 3 * ( r k + z  f 2rk-krk-z) 

At equilibrium in which r'k=rk,  this reduces to 

(1 .4)  (2 + 2p2 - 1 )  rk + 2 ~ ~ / 3 ( ~ + 1 +  rk-1) + / 3 ' ( r k + z  + ~ k - 2 )  = 0. (k # 0) 
Equation (1 .4)  holds for k 2 1 .  However, for k = 1, r-, should be replaced by rl 
to give 

(1 .5)  (a* + 2 / 3 2  - 1 )  r, + 2a/3(r2 + 1 )  + /3*(r3 + r,) = 0. 
In order to solve (1.4), let r k  = hk and substitute in (1z.4). This leads to a 4th 
order equation in h with the following four roots; 
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rh,r+{ (1 - a )  +d(l - a ) , -  (28)2} 

A,=-{ 1 (1 - a )  + ( l  - a ) , -  (2P)g) 

X,=-{( l  -1 + a )  +d(l + a ) , -  (2p)Z)  

2P I 2P 

(1.6) 

where hl > 1, 1 > h, > 0, h, < - 1, and - 1 < h, < 0. 

The required solution should then be expressed in the form 
4 

(1.7) 

where the Ci’s are constants, which may be determined through the following 
consideration: First, in order that r k  vanishes at k = 0 0 ,  we must have C, = C, = 0, 
since both hl and h, are larger than unity in absolute value. Secondedly, r, = 1 
by definition and also r k  has to satisfy relation (1.5). From these requirements, 
C, and C, are determined; 

where 

and 
R, =d(1 +cy)’- (2p)*  

R, = d(1 - a)’- (2P)’, 
in which a = 1 - m, - m, and 2p = ml. 

Therefore, writing r ( k )  instead of r k ,  we obtain 

(1.9) r ( k )  = C,h,’ f C4hlk 

as the correlation of gene frequencies between two colonies which are k steps 
apart, with h, and h, given by (1.6) and C, and C, given by ( 1.8). 

Substituting the values of rl and r,  into (1.3), we get 

(1.10) F (1 -7) 
- 1 + 2N,C, v -- 

where CO = 2R,R,/( R1 +R,). 
In the special case m, = 0, the above formula reduces to 

(1.11) 

This case should correspond to WRIGHTS “island model” (WRIGHT 1943) and in- 
deed (1.11) agrees with his formula except for the negligible term mrz in the 
denominator. 
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For our purpose, however, a really interesting case is one in which ml )) m,. In 
this case, we have approximately 

and (1.10) reduces to 

(1.12) 

Furthermore, (1.9) may be approximated by 

R 1 = 2 d 1 - m 1 ,  R, = d 2 m l  m, 

vp = P(1 -a 
1 4- 4N, d2m1m, 

(1.13) 
with sufficient accuracy. 

GENERAL TREATMENT INCLUDING TWO A N D  THREE DIMENSIONS 

Since the detailed account of the general treatment will be published elsewhere 

In the one dimensional case, the correlation of gene frequencies between colo- 
( WEISS and KIMURA 1964+), only the main results will be presented here. 

nies which are k steps apart may be given by 

CO 
27 i”l - H2 (cos 0)  

cos k 0 d 6 r(k) 

d 0  

and 
(2.3) H(cos 0 )  = 1 -me - ml(l-cos e ) .  
Then the variance of gene frequencies between colonies is expressed in the form: 

F(1-F) 
1 +2N,C0 . (2.4) v, = 

It is possible to show that the above results agree with those given in the previ- 
ous section; formula (2.1 ) and (2.4) respectively reduce to ( 1.9) and ( 1.10). 

For numerical calculations, the following expressions turn out to be useful: 

1 1 r coske d 0  - 1 cosk0 d B  
2 2n O 1 -H(cosO) 47 O m,+ml (1 -cos e) (2.7) Al(k) =-.- -- 

and 

For small values of ml and m, which we are interested in, the contribution of 
A, (k) is negligible in comparison with that of A, (k) . 
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FIGURE 2.-Two dimensional stepping stone model. 

In the two dimensional case (Figure 2), we assume that the entire population 
consists of a rectangular array of colonies, each of which occupies a point denoted 
by a pair of integers ( k l , k e ) .  We will also assume that in each generation, an 
individual colony exchanges migrants with four surrounding colonies, but the 
effective population number in each colony remains the same (Ne) . The rate of 
migration may be different in X and Y directions: let mlA be the rate (taking one 
generation as a unit) of migration along the X-axis or horizontal direction, such 
that mlA/2 is the proportion of individuals exchanged between a pair of adjacent 
colonies in this direction. Similarly let mle be the rate of migration per generation 
along the Y-axis. The proportion of individuals which migrates to four neighbor- 
ing colonies per generation is m, = mlA + mlB. 

We will denote by m, the rate of long range dispersal as defined in the one 
dimensional case. 

At equilibrium, the correlation of gene frequencies between colonies which are 
k ,  steps apart in the X direction and k2 steps apart in the Y direction may be 
writ ten 

where 

and 

The variance of gene frequencies between colonies is given by 
F(1-F) (2.12) v, = 

1 +2N,C, 



S T E P P I N G  S T O N E  MODEL 

where N e  is the effective population number of a colony and 
(2.13) 
The last formula can be expressed in terms of a complete elliptic integral: 

C;'= Al(O, 0) -k A,(O, 0). 

567 

where 

and K (.) stands for the complete elliptic integral of the first kind defined by 

(2.15) 

The following approximations are useful to evaluate C;l when m, is much smaller 
than mld and mlB, and also mlA and mlB themselves are small: 

(2.16) 

(2.17) 

(0  < & < 1) 4 
K(l  -&)=log,- d.% 

K(E) c- 
2 

In order to obtain an accurate figure for the correlation from (2.9) for given 
values of kl and k,, numerical integration has to be employed to evaluate (2.10) 
and (2.1 1 ) . However, if the distance between colonies is large, simpler expres- 
sions are available. Namely, if we put 

(2.18) 

then, we obtain as an approximation for large 5' 
(2.19) Ai(ki, kz) = KO(d/2m,5) 

1 

2 = d K z G  
and 

(2.20) A,(ki, k,) = K0(d2(2--n,-2 (mlAfmle) )5) 
(-l)k1+ k2 

2 = d G  
where KO (.) is the modified Bessel function of zeroth order. 

If m, is much smaller than mlA and mlB, which are themselves small as com- 
pared with unity, A, (k,, k,) is neglible as compared with A, (kl, k,) . Then we get 

- 
(2.21 ) r (k l ,  k,) = , KO(d2m, 5)  

2 d m l A  mle 
Furthermore, if the rate of migration is equal in X and 
mlA = mle = m,/2, the above formula reduces to 

(2.22) 

Y directions, so that 
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where p 
Since asymptotically 

dk,' + k22 is the distance between two colonies, and mi = ml.l 4 mIB. 

- 

the correlation at long distance is proportional to 

which shows that the correlation falls off more quickly than in the one dimen- 
sional case. 

The variance in gene frequency between colonies is 

(2.23) 

where C, is given by (e.  14). 
We will now turn to the three dimensional case. Let us assume that the cubic 

array of colonies extends to infinity in all directions. In the present case, each 
colony has six adjacent colonies to exchange individuals in each generation. The 
rates of migration in three perpendicular directions may be different and we will 
denote by mlZl, mlB and m,c the respective rates per generation in the X ,  Y and Z 
directions. Thus the amount of individuals exchanged per generation between 
two adjacent colonies parallel to the X direction is mla/2, between those parallel 
to the Y direction is mIn/2, etc. As before m, stands for the rate of long range dis- 
persal per generation. The position of each colony may be designated by a triplet 
of integers ( k l ,  k,, k 3 ) ,  and we assume that each colony has the effective popula- 
tion number of N,, which is constant in each generation. 

The correlation of gene frequencies at equilibrium between two colonies which 
are respectively k,, k2 and k,  steps apart in the X ,  Y and Z directions is 

A, (k l ,  k,, k3) + A, (ki, 
Ai (O,O,  0,) + A2 ( O , O , O >  

k3) (2.24) (ki, k2, k3) = 

where 

and 
(2.26) A2 (k,,k, ,k,)  = 

-~ cos k,B, cos k202 cos k,B, do, do, do, 

Generally, numerical integration has to be employed to evaluate these inte- 
grals. Fortunately, however, tables are available for the important case of mln  = 
ml,+ This represents an isotropic migration in a plane but a different amount of 
migration in the third dimension. In  this case, the integrals can be expressed in 
terms of the Green's functions for monatomic simple cubic lattices which are de- 
fined by 

7 r x  7r 1 
(2.27) I (a,b,c;a$) = - 

x 3  

cos ax cos bx cos cz dx  d y  dz J 0 5  ( 2 1 - N ) p - C O S  x - cos y -ff cos z 
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This function is extensively tabulated by MARADUDIN et al. (1960). In terms of 
this function, A's are expressed as follows: 

The variance of gene frequencies between colonies is given by 

(2.30) 
where 
(2.31) 
If 

P ( 1  - PI v -  '- 1 +2N,Co 

C,-l= A ,  (O,O,O) + A,  (O,O,O). 

.. 

is much larger than unity, a simple approximation formula is available for the 
correlation: 

(2.32) 

In addition, if mla = mlc i.e. migration is completely isotropic and if m, is much 
smaller than mlA and also mla is at most of the order of a few percent, we have 
approximately 

CO = 4mlA. 
In this case, the correlation of gene frequencies between two colonies which are 
distance p apart may be given by the following simple approximation formula 

(2.33) 

- 
r ( p )  = T-l e 

where 
p = (k,' + k,' + k32) 1" 

and 
ml = mlA + m l B  + mlc 

Thus, at long distance, the correlation falls off more quickly in the three dimen- 
sional case than in the two dimensional one, which in turn falls off more rapidly 
than the one dimensional case. 

In Figure 3, the relation between the correlation coefficient r (p )  and distance 
p is plotted for the one, two and three dimensional cases, taking m, = 4 x 
ml = 0.1 and assuming complete isotropic migration, namely, mlA = mlB = 0.05 
for two dimensions and mlA = mlB = mlc = 0.0333 for three dimensions. It can 
be seen that a distinct difference exists between the three cases. 

DISCUSSION 

(i) More general forms of migration: In the foregoing treatments, we have as- 
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FIGURE 3.-Graphs showing the decrease of genetic correlation with distance for one, two 
and three dimensions taking m, = 4 x 10-5, m, = 0.1 and assuming complete isotropic migra- 
tion. Abscissa: distance between two colonies ( p ) .  Ordinate: correlation coefficient of gene fre- 
quencies between colonies, r ( p )  , 

sumed that the migration is restricted to one step per generation. However, the 
results can be extended to the situation where there is more than one step migra- 
tion per generation. For most purposes this can be done simply by substituting 
for m, the variance of migration distance per generation. For example, in the 
one dimensional case, if mjJ2 is the proportion of individuals exchanged per gen- 
eration between two colonies which are j steps apart, then 

cm2 = 5 j2mj 
i=1 

should be replaced for ml in ( 1.13) , to give 

(3.1 1 
In  the two dimensional case, let mij/2 be the proportion of individuals exchanged 
in each generation between two colonies, one at (0,O) and the other at ( i j ) .  If we 
define by 

and 
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the two variances, then the variance uzmA should be used instead of mlA, and 
similarly the variance dm8 should be used instead of mlB, to calculate the correla- 
tion coefficient and the variance. 

More detailed discussion together with the mathematical justification will be 
given in WEISS and KIMURA ( 1964). 

(ii) Relationship between the stepping stone model and the “continuum 
model”: The latter model may be obtained as a limiting case of the former by 
letting the actual distance between the adjacent subgroups approach zero. The 
various results obtained for the stepping-stone model may easily be adapted to the 
continuum case by substituting for m, and ( N J N )  8 for Ne,  where U? is the 
variance of the migration distance of individual per generation, N e / N  is the ratio 
between the effective number and the actual number of individuals per sub- 
group and 8 is the density of individuals or the number of inhabitants per unit 
size of the habitat (e.g. per unit area in the case of two dimensional habitat). 

We may note here that the correlation of gene frequencies does not depend 
on the number of individuals or density, while the variance is clearly dependent 
on it. The latter, namely V,, in the stepping stone model may be translated into 
the inbreeding coefficient of an individual in the continuum by the relation: 

T I  
“ P  

f o  = - P ( 1  -3  
This relation is derived easily by considering the expected frequency of hetero- 
zygotes, i.e. 

which yields 

or  

E P P ( 1  - P I )  = 2 x 1  -a  ( 1  - f o )  

2 { F -  ( V , + p 2 ) ) = 2 ; i i ( l - 3 ( 1  - f o )  

v, = p(1 - ?I f0  

(iii) Effect of selection: In our original treatment, only mutation and migration 
are assumed as factors which cause systematic change in gene frequency. How- 
ever, we can incorporate selection to the extent that its effect on the change of 
gene frequency can be expressed linearly. There are two important cases where 
this can be done as a good approximation. 

Firstly, in a polymorphic locus, if deviation of gene frequency p i  from its 
equilibrium frequency p^ is small, the amount of change in gene frequency per 
generation may be expressed in the form 
(3.3) - K ( p i  - 6) 
where K depends on the selection intensity and p^ may be substituted by is. For 
example, if A and A’ are heterotic and if sl, and s2 are respectively the selection 
coefficients against both homozygotes AA and A’A’ as compared with hetero- 
zygote AA’, then we may take K = s1s2/(s1 + s,) and 6 = sz/(sl + s,). There- 
fore expression (1 .1 ) is unchanged, except that m, now include K.  In such cir- 
cumstance, the mutation rates may be negligible as compared with K and if mm 
is also negligible, then we may take m, = K in all the subsequent formulae. 

Secondly, if gene A is unconditionally deleterious, kept in low frequency by 
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the balance between recurrent mutation and selective elimination, then the selec- 
tion coefficient against gene A may be included in m,. With no long range dis- 
persal we may put mac = s and m,Tp = v since p + v may be neglected as compared 
with s. Here s is equal to the reciprocal of the average number of generations 
through which a gene A persists in a population. The incidence of mutant homo- 
zygotes among the offspring of marriages within a colony is 2 (p‘ + V,) , while 
that of marriages between two neighboring colonies is (7 + V,r ( 1 ) ) where 
the summation is over all relevant loci. 

(iv) Probability distribution of gene frequencies and the amount of random 
locd differentiation: In WRIGHT’S island model, immigrants represent a random 
sample from the entire population and the probability distribution of gene fre- 
quency among colonies is given by 

where m corresponds to our m,. WRIGHT (1940) states that “if there is a correla- 
tion, r, between immigrants and receiving group, the m of the formula must be 
replaced by m ( 1  - r )  if m is to continue to be the actual amount of replacement 
by immigration.” Thus in our stepping stone model, we may take 

m=m,+m,( l - r ( l ) )  
to obtain the approximate gene frequency distribution from (3.4). This means 
that in the typical case of m, < m,, 1-r( 1 )  is an important quantity relating to 
the amount of local differentiation of gene frequencies due to random sampling 
of gametes. If 4N,m1 (1-r( 1 )  ) is less than l f i  and 1 / (  1 -F) ,  the curve giving 
gene frequency distribution is U-shaped and strong local differentiation will be 
expected. More generally, the variance in gene frequency distribution may be 
given approximately by 

( 3 . 5 )  

if mac <m, < 1.  
In the one dimensional case, the exact value of 1 - r ( 1 ) may be obtained from 

{ R I &  - 
1 1 - r ( 1 )  = - 

4aP 
If m, is much smaller than m,, which in turn is much smaller than unity, 

(3.7) 
1 - r ( l ) =  pc  - 

ml 

approximately. In the two dimensional case, assuming isotropy ( mlA=mIB=m1/2) 
the exact expression for 1 -r ( 1 ) is 

If mm < m, < 1 ,  we have roughly 
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(3.9) 

Again if we assume isotropy, the corresponding expression for the three dimen- 
sional case is 

where m, = 3mla = 3mlB = 3mla. If in addition m, Q m, Q 1 ,  this quantity be- 
comes almost independent of mm and m,, and we have roughly 

(3.11) 1 - r ( 1 , O ; O )  = 2/3. 

These results clearly show that the tendency toward local differentiation is 
very much dependent on the number of dimensions. 

In the one dimensional case, 4Neml ( 1 -r ( 1 ) ) is approximately 4N,d2mlm,  
and it can easily be less than unity if mm is very small: with m, = 0.1 and 
mm = ~ x I O - ~ ,  a considerable local differentiation will be expected if N ,  is less 
than 100. On the other hand, in two dimensions, a tendency toward local differ- 
entiation due to random sampling will generally be rather weak. For example, 
with m, = 0.1 and m, = 2~ I 0-5, 4Neml ( 1 --r ( 1 , O )  ) becomes less than unity only 
when N e  is less then about nine. In the three dimensional case, the tendency will 
be still weaker, since 4N,ml (1-r ( 1  ) ) is approximately 8Nem,/3. It is remark- 
able that this quantity is now independent of m,. This means that however small 
the value of m, is, random differentiation is impossible in three dimension unless 
m, is very small. 

WRIGHT (1940, 1943, 1946) studied the same type of problem for the conti- 
nuum using an entirely different approach, and arrived at a similar conclusion 
with respect to one and two dimensions. 

(v) Decrease of genetic correlation with distance: The fact that tendency 
toward random differentiation depends very much on the number of dimensions 
is also reflected in the way in which the correlation coefficient falls off with 
distance, especially when the distance is large (p 03 ) : In the one dimensional 
case, the correlation falls off exponentially with distance 

(3.12) 

in two dimensions, it falls off more rapidly, namely 

(3.13) 
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and in three dimensions, it falls off still more rapidly 

(3.14j 

MALBCOT (1955) obtained a result, based on his elegant method of using an 
integro-differential equation for  a continuum, that the coefficient of relationship 
as well as the correlation coefficient between gene frequencies decrease approxi- 
mately in exponential form with distance independent of dimension. It is prob- 
able that our present results are more accurate than his result. 

(vi) Concept of dimension: The one dimensional model can represent a popu- 
lation of organisms living along a river, coastal line or mountain ridge. The two 
dimensional model can represent a population en a plane and cover the most 
important cases in nature. CAVALLI-SFORZA and CONTERIO ( 1960) introduced 
“coefficient of dimensionality” to measure the pattern of geographical distri- 
bution of villages. It varies from 1 to 2. The intermediate case may be repre- 
sented by the two dimensional stepping stone model with different migration 
rates in the X and Y directions. The three dimensional model can represent a 
population in an oceanic habitat and the treatment assuming equal rate of migra- 
tion in horizontal ( X  and Y )  directions but different rate in a vertical (2) 
direction will be useful. 

The three dimensional model can also represent a population of organisms 
living on a plane, but there is a third dimension such as the social rank in which 
“migration” is restricted to the neighboring classes, if distance is well defined in 
this third dimension. The results presented in this paper can readily be extended 
to cover the cases of four and higher dimensions, but they do not appear to have 
an important application to natural populations. 

(vii) Variance of gene frequency within a restricted region: In the present 
paper, V ,  represents the theoretical variance of gene frequencies between colonies 
in an infinitely large distribution range. On the other hand, actual observations 
cover only a restricted area. Therefore, in applying the present theory to actual 
data, it is necessary to derive, for each dimension, a formula for the variance of 
gene frequency within a restricted region. Here we will consider the one and 
two dimensional cases. 

In the one dimensional case, the variance of gene frequency between colonies 
within a group of n consecutive colonies may be given by 

(3.15) 

In the two dimensional case, if we consider a squared region of length n, in X 
directions and length n2 in Y directions where nln2 colonies are contained, then 
the variance of gene frequency between colonies within such region is 
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SUMMARY 

If the distance of individual migration is much smaller as compared with the 
entire distribution range of the species, the random local differentiation in gene 
frequency will be expected as shown by WRIGHT in his studies on "isolation by 
distance". In  the present paper, the stepping stone model is used to study this 
phenomenon. The model assumes that the entire population is subdivided into 
colonies and the migration of individuals in each generation is restricted to nearby 
colonies. 

The solution of this model is presented for one, two and three dimensional 
cases, with special reference to the correlation coefficient of gene frequencies 
between colonies. Also, the variance of gene frequencies between colonies is given 
for the three cases. 

It has been shown that the decrease of genetic correlation with distance depends 
very much on the number of dimensions: In one dimension, the correlation 
decreases approximately exponentially with distance: 

where p is the distance and A is a constant which is equal to d2mm/m,. While 
in two dimensions, it falls off more rapidly and if the migration is isotropic in 
X and Y directions, we obtain, for a large value of p, the relation 
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where B is a constant which is equal to d4m,/m1. In three dimensions, it falls 
off still more rapidly and asymptotically, we obtain 

The quantity 1-r( 1 ), where I( 1 ) is the correlation coefficient between two 
adjacent colonies, is also pertinent in discussing the tendency toward random 
local differentiation. It has been shown that the relation of this quantity with 
mutation and migration rates depends very much on the number of dimensions. 
This, together with the above results on the decrease of correlation at a large 
distance, clearly indicates that the tendency toward random local differentiation 
is very much dependent on the number of dimensions; it is strongest in one 
dimension and becomes weaker as the number of dimension increases. 

More general forms of migration and also some effects of selection are dis- 
cussed. 
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