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Abstract

With the great advances in ancient DNA extraction, genetic data are now obtained from 

geographically separated individuals from both present and past. However, population genetics 

theory about the joint effect of space and time has not been thoroughly studied. Based on the 

classical stepping–stone model, we develop the theory of Isolation by Distance and Time. We 

derive the correlation of allele frequencies between demes in the case where ancient samples are 

present, and investigate the impact of edge effects with forward–in–time simulations. We also 

derive results about coalescent times in circular and toroidal models. As one of the most common 

ways to investigate population structure is principal components analysis (PCA), we evaluate the 

impact of our theory on PCA plots. Our results demonstrate that time between samples is an 

important factor. Ancient samples tend to be drawn to the center of a PCA plot.
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1. Introduction

Geography plays a central role in the pattern of genetic differentiation within a species. 

Seminal work on describing the evolution of continuous populations was done by Wright 

and Malécot. They studied genetic differentiation and inbreeding in continuously distributed 

populations [1, 2]. The resulting idea is that, under the assumption of local dispersion, 

genetic differentiation accumulates with distance. This pattern of genetic structure is called 

Isolation–By– Distance (IBD), which is detected by computing measures of differentiation 

such as FST [1, 3, 4], or correlation coefficients [5, 6]. Understanding the effect of 

geographic distance on population structure is an important task for population geneticists, 

as it is a source of neutral genetic variation [7, 8]. Furthermore, IBD has been observed in 

humans and many other species [9, 10, 11, 12, 13].

The role of geography in neutral genetic variation has been widely studied partly because of 

the many population genetic studies of individuals sampled from different locations in 

present–day populations. Because of the development of methods for sequencing DNA from 
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fossils, genomes of individuals alive at previous times are now available to bring new 

information about the evolutionary processes that affected a species in the past. Since the 

first studies of ancient DNA (aDNA) three decades ago [14, 15], techniques to retrieve DNA 

molecules from ancient bones have tremendously developed [16].

In modern evolutionary biology, the similarity of differentiation in space and time has been 

recognized [17, 18, 19]. Theoretical developments predict the effect of time on FST and 

related quantities [20]. Epperson [21] studied patterns of isolation by distance and time in 

ecology by using stochastic spatial time series and identity by descent probabilities. 

However such theoretical studies remain scarce.

The effect of separation in time can be studied using classical statistical methods in 

population genetics, such as principal component analysis (PCA) [22]. PCA is widely used 

to determine relatedness between individuals, and is a convenient way to represent 

geographic patterns [23]. But PCA can also capture the differentiation between ancient and 

modern samples: the percentage of variance explained by time can be expressed on the same 

scale as the percentage of variance explained by geography [20]. Unfortunately, PCA does 

not give a complete picture of how quantities such as Fst and correlation coefficients evolve 

in time and space.

In this article we generalize the theory of IBD to allow for difference in the times at which 

different individuals are sampled. We call this the theory of isolation by distance and time 

(IBDT). We base our work on the stepping–stone model of [24] and add to the theoretical 

results already derived for this model [6, 25, 26, 27, 28, 29]. We start by briefly reviewing 

the original results for the infinite stepping–stone model at equilibrium and the decay of 

correlation of allele frequencies with distance. Then, we extend the original work to derive 

the correlation between individuals separated by distance and time. We perform simulations 

that show the validity of the analytic results, even in the case of a finite number of 

populations where some demes are subject to edge effect. We also derive the expected 

coalescence times between samples separated by time and space in circular and toroidal 

models [30, 31]. Finally we consider the consequences of IBDT on PCA in the common 

case of a dataset made up of a large proportion genomes from present–day individuals and 

few ancient genomes.

2. The stepping–stone model

The stepping–stone model describes the distribution of allele frequencies in an infinite set of 

demes in different locations of the space represented by Cartesian coordinates. We start by 

describing the 1-Dimensional case. Let p(k) be the frequency of one allele at a bi-allelic 

locus in population k and p̄ be the average allele frequency. In each generation, p(k) is 

updated with the following three steps [32]:

• Exchange a proportion mi of migrants with demes at a distance i.

• Exchange a proportion m∞ of migrants with a deme that has fixed allele frequency 

p̄. The meaning of this step is discussed later.

• Sample gametes of the next generation in the population.
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In the case considered by [6], migrants are exchanged only between neighboring locations in 

the first step, so that mi = 0, i > 1. The second step consists of the exchange of migrants with 

an external population at rate m∞. This event is equivalent to reversible mutation with 

equilibrium allele frequency m∞. In general m1 >> m∞. Random sampling of step 3 is 

represented by a random change in the allele frequency ε(k), with E[ε(k)] = 0, and E[ε(k)2] = 

p(k)(1–p(k))/2Ne, where Ne is the effective population size of a deme [33, 34].

Our interest is in the changes in allele frequency in one generation. We consider p̃(k) = p̄–

p(k), the deviation from the average frequency. Given these three steps,

(1)

To simplify the notation, we define the operators S and L,

(2)

(3)

where , so that,

(4)

The quantity of interest in this model is the correlation of allele frequencies between two 

demes at locations k1 and k2. Let r(k) be the correlation coefficient of allele frequencies 

between populations that are k steps apart. Assuming equilibrium, we have

(5)

where ρ(k) is the covariance in frequencies in demes k steps apart. The within-population 

variance of allele frequencies, ρ(0), value is detailed in [25]. The mathematical treatment of 

equation (5) by [25] using the spectral representation of a correlation [35] gives the general 

formula

(6)

where C is the normalizing constant chosen so that r(0) = 1.

In the case of a stepping-stone model where migrants are exchanged only between 

neighboring demes (mi = 0, i > 1), r can be approximated by an exponential function of k:
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(7)

as detailed in [6]. This simple formula conveys the important idea that in one dimension, the 

correlation of allele frequencies between populations decays exponentially with distance. In 

the 2–Dimensional and 3–Dimensional cases, the correlation function is more difficult to 

approximate. Using modified Bessel function, it has been shown that correlation at a given 

distance is lower in these cases than in the 1–Dimensional case [25].

3. Isolation–by–Distance–and–Time

3.1. 1-Dimensional case

We are here interested in the case where genetic samples are collected from demes that are 

in different locations and at different times (measured in generations). Let ρ(k, t) be the 

covariance between allele frequencies of two demes separated by k steps and t generations. 

We denote the coordinates of these demes by (k1, t1) and (k2, t2), and the deviations in allele 

frequencies p̃(k1)(t1) and p̃(k2)(t2). Since we assume the distribution of allele frequencies is 

stationary in both time (equilibrium distribution) and space (all migration rates are equal), 

we can consider these coordinates to be (0, 0) and (k, t) with no loss of generality. Following 

previous notation

(8)

To characterize the evolution of the covariance between allele frequencies with respect to 

time t, we iteratively apply the operator L defined in equation (3). This operation describes 

the potential trajectories of an allele. This process leads to

(9)

with ρ(k) = ρ(k, 0) (see Appendix A).

Let r(k, t) be the correlation between allele frequencies of two demes separated by k steps 

and t generations, equations (5) and (9), combined with the general formula of equation (6) 

gives

(10)

and the constant C is set such that r(0, 0) = 1 (Appendix B).

This equation reduces to

Duforet-Frebourg and Slatkin Page 4

Theor Popul Biol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(11)

in the standard stepping–stone model, where demes only exchange migrants with their 

closest neighbors at rate m1/2. An exact formula for this integral can be calculated and is 

notable for its size and lack of utility (Appendix C).

One noteworthy feature of equation (10) is that the decay of the correlation with time is not 

affected by the effective population size Ne. This result is different from what is expected for 

an isolated population: the level of differentiation as a function of the number of generations 

separating two samples is larger when the effective population size is small, reflecting the 

increased magnitude of genetic drift. However, in the particular case of an equilibrium 

stepping-stone model, the covariance of allele frequencies between the demes is not a 

function of the effective population size, a result already known in the spatial context (see 

equation (7)) [6]. This result becomes clear when considered in terms of coalescence times. 

Between the time the first and second samples are taken, the trajectory of the first sample 

depends only on the migration process. There is no possibility of coalescence.

3.2. Two dimensions and more

So far, we have focused on the 1-Dimensional case for the sake of simplicity. However, it is 

important to investigate the decay in higher dimensions as it is common in practice to have 

samples taken from a 2-Dimensional or even 3-Dimensional habitat. The general formula for 

the correlation in higher dimensions can be obtained with no more theoretical development. 

In their work on the stepping–stone model, Kimura and Weiss derived a general formula for 

the correlation that can be extended to any number of dimensions. In their work they only 

gave approximations for 1, 2 or 3 dimensions as these are the practical cases. Using general 

formula (3.11) of [25], we can write the correlation 10 in 2 dimensions

(12)

where . The generalization to obtain the 

correlation in n dimensions is straight–forward (Appendix D).

We perform a numerical integration of equation (12) to investigate the decay of correlation 

with distance and time in one or more dimensions. Correlation decreases as a function of 

distance and time in 1, 2 and 3 dimensional models (Figure 1). In addition, for the same 

values of the migration and mutation rates the decrease in correlation is more rapid in both 

time and space in higher dimensional models, consistent with previous results for space only 

[36, 26]. The more rapid decay can be explained by the random walk followed by the 

genealogy of a gene. In a higher dimension model the probability for the gene to move away 

from its original deme is larger. Numerical integration was done using the R package 

cubature.
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3.3. Simulations in one dimension and two dimensions

In realistic examples, there is only a finite number of demes. As a consequence, correlation 

patterns are affected by edge effects [37]. Another effect of there being a finite number of 

demes is that the overall allele frequency can drift away from the expected allele frequency. 

An alternative is to consider a finite, non-circular model, and to deal with edge issues 

independently [38]. To investigate to what extent the analytic theory developed in the 

previous section is valid in a finite stepping–stone model with temporal sampling, we 

performed simulations.

Backward in time simulation software such as ms [39], or fastsimcoal [40], are usually used 

to investigate IBD in a stepping–stone model [23]. Temporal sampling can be investigated 

using Serial SimCoal software [41]. Another approach is to simulate gene trees where 

lineages from isolated demes are joined to the stepping–stone demes at a chosen time in the 

past [20]. Mutations are then randomly placed on the gene tree. Such a simulation is needed 

to understand the influence of time and distance on genetic differentiation, but it assumes an 

infinite sites mutation model because of the way mutations are placed on the branches of the 

gene tree. The infinite site model, unlike the reversible mutation model, does not have a true 

equilibrium at each site.

We wrote a C program that performs forward in time simulations. The program is available 

upon request. The simulation program precisely follows the model presented in the previous 

section. At the initial time, the allele frequencies in all the demes are equal to the allele 

frequencies in the external infinite–sized population. Then the program runs for 150, 000 

generations until the stationary distribution of the allele frequencies is reached.

In the 1-Dimensional case, we simulate 100 demes. For the 2-Dimensional case, we simulate 

a total of 2500 demes on a 50 × 50 grid. We assume all the demes have the same effective 

population size. We sample the allele frequencies at several times in the past. Correlation 

between demes fit very closely the theory of equations (11) and (12) provided that demes are 

taken sufficiently far away from the edge of the grid (Figure 2). As predicted by [26, 42], the 

edge effect increases the correlation between demes, and is present when comparing present 

and ancient samples. In both 1 and 2 dimensions, the edge effect is less strong with lower 

migration rates (Figure 3). In the 1-Dimensional model, the magnitude of the edge effect 

decreases monotonically with distance from the edge in one dimension but not in two. The 

non-monotonicity indicates a more complex interaction with the boundary in two 

dimensions than in one.

Only the classical stepping-stone model with migration between nearest neighbors is 

simulated here. However, the general formula (10) gives the correlation in the case with 

long distance migration between demes. The decrease in correlation with distance is weaker 

if there is long distance migration (Figure S1). The effective migration rate between demes 

is larger, and consequently, edge effects in the simulation would have a greater impact in the 

case where (mi > 0, i = 2 … ∞), accordingly to Figure (3).
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4. Coalescence times

4.1. Coalescence times in one dimension

Coalescence times in a stepping–stone model can be derived under some assumptions. In 

particular, we consider a case with migration only between neighboring demes and low 

mutation rate. Expected coalescence times between genes that are in different demes is a 

function of the locations of these demes. These coalescence times are of interest because 

they are closely related to FST and coefficients of identity–by–descent [30]. Under the 

assumption of a circular 1-Dimensional stepping-stone model with nd demes, two genes A1 

and A2 have an expected coalescence time

(13)

where Ne is the effective population size per deme, m the migration rate between 

neighboring demes (previously m1), and k is the distance between the two demes [30]. 

Considering a circular arrangement of the demes makes the analysis simpler, as only the 

distance between the demes matters, and there are no edge effects. In addition it has been 

shown that linear/planar and circular/toroidal stepping stone models are very similar when 

considering populations away from the edges [26, 42]. To study a case similar to the infinite 

stepping–stone model, we assume nd is large.

We extend the previous theoretical result in the case where two genes are sampled at 

different times. Let us assume that the sampled genes are in populations kA1 and kA2. The 

number of generations between the two sampling times is t = t1 – t2, and we assume, with no 

loss of generality, that t1 = 0 and t2 = t generations in the past. The coalescence process 

between these two genes can be divided into three phases. The first phase corresponds to the 

genealogy that traces back to the ancestor of the present gene, called , at generation t. 

This ancestor is in population . The two other parts correspond to the time until the 

coalescence event between  and A2. They are respectively the time until the gene 

and A2 are in the same deme, then the time to the common ancestor of these two genes. This 

part has already been described, and the expectation is given in equation (13) [30]. The 

expected coalescence time between A1 and A2 is then written

(14)

The variable  is the coalescence time between a random gene in the unknown 

population  and a random gene in population k2. To represent the uncertainty about the 

population , we derive the probability distribution of the position  at time t, given 

position kA1 at time 0. Using this probability distribution we rewrite the expectation (14) as
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(15)

To describe the probability distribution of position  at time t given that a gene is in 

population kA1 at time 0, we consider a random walk with transition matrix

(16)

Using standard results about Markov chains [43], we know that the vector of probabilities 

for the position at time t,  is expressed such as

(17)

with PkA1
 is the initial probability distribution of gene A1's position. The initial probability 

distribution is trivial and PkA1
 is a vector of 0 with a 1 in the  entry Exact formula for this 

matrix power can be obtained using tridiagonal matrix properties [44]. However we can also 

express an approximation for the probability distribution of this process at time t. This 

random process is symmetrical, centered in kA1, and using classical results about Brownian 

motion, has a variance proportional to t. We can approximate the probability distribution by 

a Normal distribution, and

(18)

The accuracy of this approximation can be verified with simulations using equation (17). 

The approximation is relevant for sufficiently large values of t, depending on the migration 

rate. Because the normal distribution has an infinite support, the approximation needs a 

sufficiently large number of demes nd to be accurate. the mean squarred error between 

coefficients of  and the Gaussian approximation is a function of parameters m, t and nd 

(Figure S2). The expected coalescence time in a 1-Dimensional circle can then be written

(19)

Coalescence time between genes is an increasing function of distance and time between 

demes (Figure 4). Asymptotically, when t is large, the expected time for two genes to be in 

the same population can be approximated by a linear function of time between the samples. 
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The right part of equation (19) is the integral of a product of a positive function that depends 

only on the distance between demes and a Gaussian kernel with variance mt. As the time 

gets large, relatively to m, the Gaussian kernel becomes flat, and the integral is almost 

constant (Figure 4). In practice, this implies that in a population at equilibrium, the 

geography does not matter when the sample is very old.

4.2. Coalescence times in two dimensions

In the case of a 2-Dimensional habitat with nd1 × nd2 demes, the expected coalescence time 

between two genes A1 and A2 is

(20)

where S(i1, i2) is a function of i1 and i2 given in equation (8b) of [31], the number of demes 

between the two genes. We assume in this case that the migration in each direction is the 

same.

Using the same conditioning as in equation (14), we can derive the expectation for the 

coalescence time of genes A1 in population kA1 and A2 in population kA2 at t generations in 

the past, where kA1 and kA2 are 2-Dimensional vectors. We have

(21)

The probability distribution of the position of gene A1 at time t,  is known using the 

same random walk as in the 1-Dimensional case. The distribution can be approximated by a 

bivariate Normal distribution with mean kA1, and covariance matrix Ω, where Ω is diagonal 

with terms mt/2 in the diagonal. In the anisotropic case where migration rates are different in 

the two dimensions, m1 and m2, Ω would have m1t and m2t as diagonal terms. The 

evaluation of this function for samples separated in distance and time shows a similar 

pattern to the 1-Dimensional case (Figure 4). However for a same migration rate, the 

expected times for two genes to be in the same deme in the 2–Dimensional toroidal model 

are smaller than in the 1–Dimensional circular model. Then, if there is the same number of 

demes, with same effective population sizes, e.g. ndNe = nd1nd2Ne, the expected coalescence 

times are smaller in the 2–Dimensional case. This result is already known when comparing 

samples taken at the same generation and remains true when t is positive [31].

5. Connection with PCA

Because there is a close connection between PCA and coalescence times [45], our results are 

relevant to using PCA to compare ancient and modern samples. PCA is a useful way to 

represent the main axes of variation in data and has proven to be a powerful tool to infer 

genetic relationships when applied to ancient DNA data [46, 47].
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5.1. Ancient samples are shrunk towards 0

In population genetics, PCA is usually performed by computing the eigenvectors, and 

eigenvalues of the matrix of covariances in the genotypes of different individuals. Although 

there are other ways to compute principal components, this one is convenient in population 

genetics because the number of variables is usually larger by several orders of magnitude 

than the number of samples. The effect of differences in the sampling times can be evaluated 

using the dependence of the covariance matrix described by equation (10). To illustrate, 

consider a 2-Dimensional even repartition of 10 × 10 demes, and ancient samples taken in 

several randomly chosen demes at different times t = 500, 800, 900, 1000 generations in the 

past (Figure 5A). By calculating the theoretical covariance matrix and its first two 

eigenvectors, we obtain the first two principal components that reproduce geography of the 

demes [23, 48]. Figure (5B) shows that principal components mimic the geography of the 

present demes, but ancient demes are not superposed on the corresponding present-day 

sample from the same deme. Instead, ancient samples move towards the center of the first 

and second principal components. In addition, the intensity of the shrinkage effect increases 

with the time between present and ancient samples.

Using 100 demes from a 1-Dimensional simulation described above, we apply PCA to the 

allele frequencies at the 6000 simulated loci. To remove the edge effect, we simulate 200 

demes, and consider only the 100 demes in the center. We also include allele frequencies 

from past generations for several demes. PC1 shows the 1-Dimensional pattern of isolation–

by–distance as expected, and ancient samples are closer to 0 (Figure 6A). The distance 

between ancient individuals and the center of the principal component decreases as the 

sampling time increases. In practice, the true allele frequencies are not known, and the 

covariance matrix is estimated from the data. When working with sampled individuals 

instead of allele frequencies, the same pattern is still visible. A sub-sampling of 10 diploid 

individuals for each deme at the present time, and 1 diploid individual for each ancient deme 

shows the same shrinkage of PC scores for ancient individuals (Figure 6B).

When applying PCA on allele frequencies from the 2-Dimensional simulations, the time 

effect is visible on the first two components. We study the case of a 10 × 10 grid, with no 

edge effects, and ancient samples taken from 4 demes at different times in the past (Figure 

6C). The first and second principal components reproduce the geography of the samples, and 

the ancient samples are moved towards the center of the plot (Figure 6D). the dashed lines 

representing this shrinkage are not straight because of the residual variance captured by the 

principal components.

This shrinkage effect of time can be understood considering the shape of the covariance 

function. The first and second principal components represent the 2–dimensional IBD 

pattern. This pattern causes the covariance matrix at time t = 0 to have a “block Toeplitz 

with Toeplitz blocks” form [49]. However the pairwise covariance between present-day 

individuals (t = 0) and between ancient and present-day individuals (t > 0) does not have the 

same shape (Figure 1). Equation (10) implies that in a stepping–stone model the covariance 

as a function of distance flattens when comparing present and ancient individuals. As a 

consequence, the scores of ancient samples are moved towards the center of the principal 
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components reproducing the local correlation pattern. Thus ancient samples can cluster with 

present-day samples at different locations, even in an equilibrium stepping–stone model.

5.2. One component for the time differentiation

Links between PCA and population genetics quantities, such as coalescence times and FST 

have been studied [45, 50, 51] and show that these values can be estimated from principal 

components. In the 2–population case, [45] showed that the distance between individuals on 

the appropriate principal component is approximately a linear function of the square root of 

the time, Δ, until the lineages of the two individuals are in the same deme. If there are 

ancient and present-day samples, they can be considered as two groups, and Δ is the time 

corresponding to the first two parts of the coalescence process between the lineages, 

described in the previous section. The time separating the individuals is a source of variance 

important enough to be reflected in the principal components [20]. In this case, one 

component separates the two groups and the distance between groups is approximately 

proportional to √Δ. In Appendix E, we compute the expectation of Δ if there are several 

present-day and one ancient individuals sampled.

We analyze the case with 50 contiguous populations sampled from a circular 1-Dimensional 

stepping–stone model with nd = 1000. We assume m1 = 0.1, and one deme is sampled in the 

past. We apply PCA by computing the eigenvectors of the individuals correlation matrix. 

The first principal component represents the IBD pattern between the present demes. The 

second principal component corresponds to the differentiation between the ancient deme, 

and the present demes (Figure 7A). The average distance on PC2 between the two groups 

(present and ancient) is an increasing function that can be approximated by a linear function 

of the square root of Δ (Figure 7B).

6. Conclusions and discussion

We have generalized the Kimura–Weiss theory of a stepping–stone model to the case where 

samples are taken at different times, a theory we call isolation-by distance-and-time (IBDT). 

The correlation between individuals decreases as a function of both geographic distance and 

time. This result is accentuated in higher dimensions. When considering IBDT patterns, the 

edge effect applies when considering a linear model with a finite number of demes, in a way 

similar to the standard stepping–stone model. However simulations shows that in both 1 and 

2 dimensions, this effect decreases at a rate depending of the migration rate. We have also 

derived the expected coalescence times under the assumption of a circular or toroidal model 

and low mutation rate. As the time between samples increases, the coalescence time between 

samples can be approximated by a linear function of time.

The connection between IBDT theory and PCA is of interest as it gives insights about what 

to expect from the PC plots that compare ancient and present-day samples. When 

considering the relationship between principal components and geography, ancient samples 

may not cluster with the population at the same location. Such a result can occur even in a 

population at equilibrium in a stepping–stone model, with no complex demographic history. 

This behavior of PCA is important to note as it could result in the inference of a non-existent 

past demographic event. The genetic differentiation created by time can be observed on 
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another principal component. An important question that remains is under what conditions is 

the proportion of variance explained by time larger than the proportion of variance explained 

by geography. In this event, the first principal component would not reflect the geography of 

the samples but rather the times separating the samples.

The limitations of PCA for investigating population structure in a spatio–temporal context 

highlights the need for new theoretical developments to analyze population structure when 

present-day and ancient samples are combined. This is especially apparent when considering 

the complex demographic scenarios already inferred about the history of modern humans 

[52]. Important theoretical work has already been done to test specific hypothesis [53, 54]. 

Another way to test different past demographic events is with simulation-intensive methods, 

such as Approximate Bayesian Computations [55, 56]. In this case, theoretical developments 

on mechanistic models such as the stepping–stone model are important to perform 

simulations efficiently [57].

In the article we considered the case where PCA is applied on all the individuals, both 

ancient and modern, at the same time. However PCA is also commonly used in a 2-step 

procedure where principal components are constructed based on a subset of individuals, 

present–day individuals, and the rest, ancient individuals, are projected onto these 

components [46, 47]. This approach leads to biases in the principal component projections 

similar to the shrinkage induced by the time between samples [58]. Such effect can be 

accounted for and corrected [59], but is different from the case we address here, since we 

use no projections.

We studied the classical stepping–stone model under the assumptions of a stationary 

distribution of the allele frequencies in both time and space. These assumptions are not valid 

in all cases. The time–stationary distribution is not reached when recent events such as range 

expansions occurred, causing asymmetry in the site frequency spectrum [60, 61]. Spatial 

non–stationarity and anisotropy are present when the migration pattern is uneven between 

all populations, or migration is asymmetric [62, 63, 64]. The correlation of allele frequencies 

is then not only a function of space and time, but also of the location of each deme.

A stepping–stone model is not the only model to describe spatial population structure. As an 

alternative to discrete models, continuous models can also be considered to study 

evolutionary processes [65, 66, 67]. Isolation–by-Distance– and–Time can be studied in a 

continuous framework. In the same way, results about coalescence times in a stepping–stone 

model can be connected to previous theory on coalescence in a continuous population [68]. 

Different models are especially useful since it is acknowledged that continuous stepping–

stone models are a source of difficulties because of the assumption incompatibilities in a 

continuous framework [69].
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Appendix A: derivation of r(k, t)

Using the notations in [25], we calculate the covariance of the allele frequencies ρ(k) 

between two populations that are spatially separated by k units of distance. This quantity is 

defined by

(22)

In the case where the demes are also separated by t units of time, we define

(23)

and in the particular case of t = 1,

By induction, we show that for any value of t > 0

(24)

Let's assume that for a time t > 0 equation (24) is true,

Then to obtain the correlation of allele frequencies r(k, t) between two demes, we have ρ(0, 

0) = ρ(0) and

(25)
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Appendix B: general formulation of r in 1 Dimension

We established in equation (11) that r(k, t) = Ltr(k), and using the general expression in 

equation (6) we have,

It is now demonstrated that

(26)

where . In the particular case of t = 1 we have

Now assuming that formula (26) holds for any value t > 0, we have
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We can conclude by induction that formula (26) is true for any positive t. Then, using 

equation (26), a general formula for r(k, t) can be expressed

(27)

Constant C is set such that r(0, 0) = 1. We do not analytically investigate this constant, 

however details about the case t = 0 can be found in [25].

Appendix C: general derivation

Let's assume the particular stepping-stone model: 

. Now the correlation between 2 demes k steps 

appart and t generations is

The fraction can be decomposed in two parts r(k, t) = C/(2π)(A1(k, t)+A2(k, t)) using partial 

fraction expansion, where

Let α = m0/m1, we can expand A1 and A2,
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To get rid of the integral, we can use the fact that

Where

g 0 1 2 3 4 5 Sum

0 1 2 × 1 = 2

2 0 1 2 × 1+2=4

0 3 0 1 2 × (1 + 3) = 8

6 0 4 0 1 16

0 10 0 5 0 1 32

and as given in [25]

This leads us to the expressions for A1 and A2,
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Appendix D: higher dimensions

The 2-Dimensional case of the analysis can be detailed by changing the operators L and S. 

We note the cartesian coordinates of each deme with the couple (k1, k2), and we define the 

operators S1 and S2 such as

The operator L in two dimensions becomes

where mi1i2 is the migration rate between demes separated by i1 and i2 steps. The correlation 

in 2 dimensions can be written using the spectral decomposition and for two demes we have

for two populations that are separated by k1 and k2 steps at the same generation. Using the 

same trigonometric properties as in appendix B, we have

and m00 = (1 – Σi1Σi2 mi1i2 – m∞). As a consequence, the correlation of allele frequencies in 

2 dimensions between two populations separated by k1 and k2 steps, and t generations is

To go further, and especially investigate the 3-Dimensional case that can be relevant in 

practice, it is possible to extend the calculations in n-dimensional models, where two 

populations are separated by t generations and a vector of steps (k1,…kn). Redefining the 

operators S and L, we can show that the correlation is
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Appendix E: expected coalescence time between two groups

We detail the case where two groups are present in the data, the present demes and the 

ancient deme. The quantity Δ is the time for two genes in different groups to be in the same 

group. In the case where there is one ancient deme k2 and one present deme k1, using 

equation (19) we have

In the practical case we consider several present time demes 1… np, and one ancient deme. 

The expectation of Δ has to be conditioned by the probability that A1 is in a given present 

population k1.

(28)

Since we consider a stepping–stone model where all the populations have the same effective 

population size, we have p(k1 = j) = 1/np, j = 1…np.

References

1. Wright S. Isolation by distance. Genetics. 1943; 28(2):114–138. [PubMed: 17247074] 

2. Malécot, G. Mathématiques de l'hérédité. Paris: Masson et Cie; 1948. 

3. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci. 1973; 70(12):
3321–3323. [PubMed: 4519626] 

4. Weir BS, Cockerham CC. Estimating f-statistics for the analysis of population structure. Evolution. 
1984; 38(6):1358–1370.

5. Malécot G. The decrease of relationship with distance. Cold Spring Harbor Symp Quant Biol. 1955; 
20:52–53.

6. Kimura M, Weiss GH. The stepping stone model of population structure and the decrease of genetic 
correlation with distance. Genetics. 1964; 49(4):561. [PubMed: 17248204] 

7. Slatkin M. Gene flow in natural populations. Annu Rev Ecol Evol Syst. 1985; 16:393–430.

8. Rousset F. Genetic differentiation and estimation of gene flow from f-statistics under isolation by 
distance. Genetics. 1997; 145(4):1219–1228. [PubMed: 9093870] 

9. Sharbel TF, Haubold B, Mitchell-Olds T. Genetic isolation by distance in arabidopsis thaliana: 
biogeography and postglacial colonization of europe. Mol Ecol. 2000; 9(12):2109–2118. [PubMed: 
11123622] 

10. Castric V, Bernatchez L. The rise and fall of isolation by distance in the anadromous brook charr 
(salvelinus fontinalis mitchill). Genetics. 2003; 163(3):983–996. [PubMed: 12663537] 

11. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL. 
Support from the relationship of genetic and geographic distance in human populations for a serial 

Duforet-Frebourg and Slatkin Page 18

Theor Popul Biol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



founder effect originating in africa. Proc Natl Acad Sci. 2005; 102(44):15942–15947. [PubMed: 
16243969] 

12. Hellberg ME. Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol 
Syst. 2009; 40:291–310.

13. Karakachoff M, Duforet-Frebourg N, Simonet F, Le Scouarnec S, Pellen N, Lecointe S, 
Charpentier E, Gros F, Cauchi S, Froguel P, et al. Fine-scale human genetic structure in western 
france. Eur J Hum Genet. 2015; 23(6):831–836. [PubMed: 25182131] 

14. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, 
an extinct member of the horse family. Nature. 1984; 312:282–284. [PubMed: 6504142] 

15. Pääbo S. Molecular cloning of ancient egyptian mummy DNA. Nature. 1985; 314:644–645. 
[PubMed: 3990798] 

16. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Roh-land N, Kuch M, Krause J, 
Vigilant L, Hofreiter M. Genetic analyses from ancient DNA. Annu Rev Genet. 2004; 38:645–
679. [PubMed: 15568989] 

17. Depaulis F, Orlando L, Hänni C. Using classical population genetics tools with heterochroneous 
data: time matters! PLoS One. 2009; 4(5):e5541. [PubMed: 19440242] 

18. Andrello M, Bevacqua D, Maes GE, De Leo GA. An integrated genetic-demographic model to 
unravel the origin of genetic structure in european eel (anguilla anguilla l.). Evol ppl. 2011; 4(4):
517–533.

19. Teacher AG, Thomas JA, Barnes I. Modern and ancient red fox (vulpes vulpes) in europe show an 
unusual lack of geographical and temporal structuring, and differing responses within the 
carnivores to historical climatic change. BMC Evol Biol. 2011; 11(1):214. [PubMed: 21774815] 

20. Skoglund P, Sjödin P, Skoglund T, Lascoux M, Jakobsson M. Investigating population history 
using temporal genetic differentiation. BMC Evol Biol. 2014; 31(9):2516–2527.

21. Epperson BK. Spatial and space–time correlations in ecological models. Ecol Model. 2000; 132(1):
63–76.

22. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006; 
2(12):e190. [PubMed: 17194218] 

23. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann S, 
Nelson MR, et al. Genes mirror geography within europe. Nature. 2008; 456(7218):98–101. 
[PubMed: 18758442] 

24. Kimura M. Stepping stone model of population. Ann Rept Nat Inst Genetics Japan. 1953:62–63.

25. Weiss GH, Kimura M. A mathematical analysis of the stepping stone model of genetic correlation. 
Appl Probab Trust. 1965; 2(1):129–149.

26. Maruyama T. Analysis of population structure: Ii. two-dimensional stepping sone models of finite 
length and other geographically structured populations*. Ann Hum Genet. 1971; 35(2):179–196. 
[PubMed: 5159533] 

27. Nagylaki T. The robustness of neutral models of geographical variation. Theoretical Population 
Biology. 1983; 24(3):268–294.

28. Cox JT, Durrett R, et al. The stepping stone model: New formulas expose old myths. Ann Appl 
Probab. 2002; 12(4):1348–1377.

29. De A, Durrett R. Stepping-stone spatial structure causes slow decay of linkage disequilibrium and 
shifts the site frequency spectrum. Genetics. 2007; 176(2):969–981. [PubMed: 17409067] 

30. Slatkin M. Inbreeding coefficients and coalescence times. Genet Res. 1991; 58(02):167–175. 
[PubMed: 1765264] 

31. Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution. 1993; 
47(1):264–279.

32. Crow, JF.; Kimura, M., et al. An introduction to population genetics theory. New York, Evanston 
and London: Harper & Row Publishers; 1970. 

33. Wright S. Breeding structure of populations in relation to speciation. American Naturalist. 1940; 
74(752):232–248.

34. Kimura M, Crow JF. The measurement of effective population number. Evolution. 1963; 17(3):
279–288.

Duforet-Frebourg and Slatkin Page 19

Theor Popul Biol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Doob, JL. Stochastic processes. New York: Wiley; 1953. 

36. Maruyama T. Rate of decrease of genetic variability in a subdivided population. Biometrika. 1970; 
57(2):299–311.

37. Maruyama T. Stepping stone models of finite length. Adv Appl Probab. 1970; 2(2):229–258.

38. Felsenstein J. Covariation of gene frequencies in a stepping-stone lattice of populations. 
Theoretical Population Biology. 2015; 100:88–97.

39. Hudson RR. Generating samples under a wright–fisher neutral model of genetic variation. 
Bioinformatics. 2002; 18(2):337–338. [PubMed: 11847089] 

40. Excoffier L, Foll M. Fastsimcoal: a continuous-time coalescent simulator of genomic diversity 
under arbitrarily complex evolutionary scenarios. Bioinformatics. 2011; 27(9):1332–1334. 
[PubMed: 21398675] 

41. Anderson CN, Ramakrishnan U, Chan YL, Hadly EA. Serial simcoal: a population genetics model 
for data from multiple populations and points in time. Bioinformatics. 2005; 21(8):1733–1734. 
[PubMed: 15564305] 

42. Maruyama T. The rate of decrease of heterozygosity in a population occupying a circular or a 
linear habitat. Genetics. 1971; 67(3):437. [PubMed: 5111362] 

43. Ross, SM., et al. Stochastic processes. John Wiley & Sons; New York: 1996. 

44. Al-Hassan Q. On powers of tridiagonal matrices with nonnegative entries. J App Math Sci. 2012; 
6(48):2357–2368.

45. McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009; 
5(10):e1000686. [PubMed: 19834557] 

46. Skoglund P, Malmström H, Raghavan M, Storå J, Hall P, Willerslev E, Gilbert MTP, Götherström 
A, Jakobsson M. Origins and genetic legacy of neolithic farmers and hunter-gatherers in europe. 
Science. 2012; 336(6080):466–469. [PubMed: 22539720] 

47. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt G, Nordenfelt S, 
Harney E, Stewardson K, et al. Massive migration from the steppe was a source for indo-european 
languages in europe. Nature. 2015; 522:207–211. [PubMed: 25731166] 

48. Engelhardt BE, Stephens M. Analysis of population structure: a unifying framework and novel 
methods based on sparse factor analysis. PLoS Genet. 2010; 6(9):e1001117. [PubMed: 20862358] 

49. Novembre J, Stephens M. Interpreting principal component analyses of spatial population genetic 
variation. Nat Genet. 2008; 40(5):646–649. [PubMed: 18425127] 

50. Duforet-Frebourg N, Laval G, Bazin E, Blum MG. Detecting genomic signatures of natural 
selection with principal component analysis: application to the 1000 genomes data. arXiv preprint 
arXiv:1504.04543. 

51. Baran Y, Halperin E. A note on the relations between spatio-genetic models. J Comput Biol. 2015; 
22(10):905–917. [PubMed: 26083718] 

52. Pickrell JK, Reich D. Toward a new history and geography of human genes informed by ancient 
DNA. Trends Genet. 2014; 30(9):377–389. [PubMed: 25168683] 

53. Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely 
related populations. Mol Biol Evol. 2011; 28(8):2239–2252. [PubMed: 21325092] 

54. Loh PR, Lipson M, Patterson N, Moorjani P, Pickrell JK, Reich D, Berger B. Inferring admixture 
histories of human populations using linkage disequilibrium. Genetics. 2013; 193(4):1233–1254. 
[PubMed: 23410830] 

55. Beaumont MA, Zhang W, Balding DJ. Approximate bayesian computation in population genetics. 
Genetics. 2002; 162(4):2025–2035. [PubMed: 12524368] 

56. Csilléry K, Blum MG, Gaggiotti OE, François O. Approximate bayesian computation (ABC) in 
practice. Trends Ecol Evol. 2010; 25(7):410–418. [PubMed: 20488578] 

57. Baird SJ, Santos F. Monte carlo integration over stepping stone models for spatial genetic 
inference using approximate bayesian computation. Mol Ecol Res. 2010; 10(5):873–885.

58. Lee S, Zou F, Wright FA. Convergence and prediction of principal component scores in high-
dimensional settings. Ann Stat. 2010; 38(6):3605–3629. [PubMed: 21442047] 

Duforet-Frebourg and Slatkin Page 20

Theor Popul Biol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



59. Wang C, Zhan X, Liang L, Abecasis GR, Lin X. Improved ancestry estimation for both genotyping 
and sequencing data using projection procrustes analysis and genotype imputation. Amer J Hum 
Genet. 2015; 96:926–937. [PubMed: 26027497] 

60. Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes 
gene segregation. Proc Natl Acad Sci. 2007; 104(50):19926–19930. [PubMed: 18056799] 

61. Peter BM, Slatkin M. Detecting range expansions from genetic data. Evolution. 2013; 67(11):
3274–3289. [PubMed: 24152007] 

62. Jay F, Sjödin P, Jakobsson M, Blum MG. Anisotropic isolation by distance: the main orientations 
of human genetic differentiation. BMC Evol Biol. 2013; 30(3):513–525.

63. Duforet-Frebourg N, Blum MG. Nonstationary patterns of isolation–by– distance: inferring 
measures of local genetic differentiation with bayesian kriging. Evolution. 2014; 68(4):1110–
1123. [PubMed: 24372175] 

64. Petkova D, Novembre J, Stephens M. Visualizing spatial population structure with estimated 
effective migration surfaces. bioRxiv. 2014:011809.

65. Maruyama T. Rate of decrease of genetic variability in a two-dimensional continuous population of 
finite size. Genetics. 1972; 70(4):639–651. [PubMed: 5034774] 

66. Barton NH, Depaulis F, Etheridge AM. Neutral evolution in spatially continuous populations. 
Theor Popul Biol. 2002; 61(1):31–48. [PubMed: 11895381] 

67. Barton NH, Etheridge AM, Véber A. A new model for evolution in a spatial continuum. Electron J 
Probab. 2010; 15(7):162–216.

68. Wilkins JF, Wakeley J. The coalescent in a continuous, finite, linear population. Genetics. 2002; 
161(2):873–888. [PubMed: 12072481] 

69. Felsenstein J. A pain in the torus: some difficulties with models of isolation by distance. Amer Nat. 
1975; 109:359–368.

Duforet-Frebourg and Slatkin Page 21

Theor Popul Biol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Correlation as a function of distance between demes k steps appart in 1, 2 and 3-

Dimensional models. The correlation is evaluated for different number of generations t 

between the demes. The migration and mutation rates are used for all models, and m1 = .01 

and m∞ = 4.10−4. Migration rates are the proportion of individuals leaving the population.
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Figure 2. 
Comparison between theoretical results and simulations on a 2-Dimensional square with m1 

= .02 and m∞ = 10−5. The solid lines represent the theory prediction. The dots represent the 

simulation results evaluated for demes at a distance 4, 10 or 16 from the edges. Since in the 

simulations several pairwise comparisons between demes have the same distance in space 

and time, we keep the mean of these pairwise correlations.
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Figure 3. 
Mean squarred error between simulations and theory in 1 and 2 Dimensions as a function of 

the distance to the edge. The error is evaluated for m∞ = 10−5 and m1 = .01, .005, .001, .

0005.
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Figure 4. 
Panel A: Expected time for two genes to be in a same deme in a 1–Dimensional circular 

stepping–stone model with Ne = 100, m = .01, and nd = 51 demes as a function of the 

distance between demes. Panel B: Expected time for two genes to be in a same deme in a 2–

Dimensional toroidal stepping–stone model with Ne = 100, m = .01, and nd = 51 × 51 demes 

as a function of the distance between demes. Colors indicate the time between samples. 

Sampling consists in 45 time points evenly separated by 50 generations. As the time 

between samples gets large, the influence of the geography is less important especially in 2 

dimensions.
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Figure 5. 
Panel A. Sampling scheme of a 10 × 10 grid of demes. Triangles represent demes where 

ancient individuals are sampled at 500, 800, 900 or 1000 generations in the past. The demes 

are colored according to their geographic location. Panel B. First 2 eigenvectors of the 

covariance matrix between populations of Panel A. Parameters used are m1 = .01 and m∞ = 

10−5. Color code is the same as in Panel A. Lines start from the position of the present deme 

where an ancient sample is taken, and end at the PC coordinates of the ancient sample.
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Figure 6. 
Panel A. First principal component for the 1-Dimensional simulation, with m1 = .01 and m∞ 

= 4.10−5. PCA is performed on allele frequency data from each of the 100 demes, and 

ancient allele frequencies are taken in 5 populations at 8 times in the past. Panel B. First 

principal component for the 1-Dimensional simulation. In each deme, 10 diploid individuals 

are sampled at the present time. One diploid individual is sampled in 5 demes at 8 times in 

the past. Panel C. Sampling scheme of a 10 × 10 grid of populations. Demes marked by a 

triangle are demes where ancient individuals were sampled. Panel D. plot of PC1 and PC2 

for the 2-Dimensional simulation with m1 = .001 and m∞ = 10−5. Ancient samples are taken 

at different times in the past for 4 demes.

Duforet-Frebourg and Slatkin Page 27

Theor Popul Biol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Panel A. Principal components for a 1-Dimensional stepping–stone with 50 present demes, 

and 1 ancient deme. The PCA is performed several times, with an ancient deme sampled at 

different times. The results of all the PCA are plotted on the same graph. Panel B. Average 

distance between present demes and ancient deme on PC2 as a function of √Δ.
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