
THE ISLAND MODEL OF POPULATION DIFFERENTIATION: 
A GENERAL SOLUTION 

B. D. H. LATTER 

Division of Animul Genetics, C.S.I.R.O., Sydney, N.S.W. Australia 

Manuscript received December 7, 1971 
Revised manuscript received August 14, 1972 

Transmitted by T. PROUT 

ABSTRACT 

The island model deals with a species which is subdivided into a number of 
discrete finite populations, races or subspecies, between which some migration 
occurs. If the number of populations is small, an assumption of equal rates of 
migration between each pair of populations may be reasonable approximation. 
Mutation at a constant rate to novel alleles may also be assumed.-A general 
solution is given for the process of population divergence under this model 
following subdivision of a single parental population, expressed in terms of the 
observed average frequency of heterozygotes within and between subpopula- 
tions at  a randomly chosen set of independently segregating loci. No restriction 
is imposed on  the magnitude of the migration or mutation rates involved, nor 
on the number of populations exchanging migrants-The properties of two 
fundamental measures of genetic divergence are deduced from the theory. One 
is a parameter related to @, the coefficient of kinship, and the other, y, measures 
the rate of mutational divergence between the sub-populations. 

T H E  process of genetic differentiation in a subdivided population due to muta- 
tion, migration and random genetic drift, has recently been discussed by a 

number of authors (BODMER and CAVALLI-SFORZA 1968; MAYNARD SMITH 1970; 
IMAIZUMI et al. 1970; MARUYAMA 1970). The basic theoretical models involved 
in these studies are ( i )  the island model, in which each island exchanges genes 
equally with every other island; (ii) stepping stone models, which assume the 
rate of migration between colonies to be a function of the distance between them; 
(iii) models of isolation by distance, which deal with populations uniformly 
distributed throughout a continuum, with individual migration defined by a 
continuous probability distribution; and ( iu)  a migration matrix model, designed 
to deal with a general migration pattern involving a finite number of colonies. 
Renewed interest in these models has been stimulated by the discovery of exten- 
sive allozyme variability in natural populations of Drosophila, mice and man 
(LEWONTIN 1967; HARRIS 1969), and by suggestions that selectively neutral 
mutant alleles may be largely responsible for the observed levels of heterozy- 
gosity in these species (KIMURA 1969; KING and JUKES 1969). 

Of the basic models, the island model is the most realistic for the study of 
differences in allelic frequencies between the major racial groups of man or the 
races and subspecies of other organisms, and for tests of the compatibility of 
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these differences with the neutral allele hypothesis. WRIGHT (1943) defined the 
island model to be one “in which the total population is assumed to be divided into 
subgroups, each breeding at random within itself, except for a certain proportion 
of migrants drawn at random from the whole”. He dealt only with the case of a 
large number of subgroups in equilibrium, and MAYNARD SMITH (1970) and 
MARUYAMA (1970) have recently extended the theory to deal with the equi- 
librium structure of an arbitrary number of colonies. The present paper deals 
with the complete process of population divergence, providing expectations fo r  
the mean frequency of heterozygotes within populations, and in population 
hybrids, at a randomly chosen set of independently segregating loci. 

If the number of races or subspecies is small, the assumption of equal and 
constant migration rates between each pair of such subgroups may be a reason- 
able approximation. Mutation at a constant rate to alleles not currently repre- 
sented in the species can also be assumed, in keeping with modern concepts of 
the nature of the mutational process (CROW 1969), leading to non-zero mean 
levels of heterozygosity at equilibrium. With these assumptions, two funda- 
mental measures of the rate of genetic divergence can be defined in terms of the 
mean frequency of heterozygotes within and between populations. One is a 
parameter related to +, the coefficient of kinship, and the other, y, measures the 
rate of mutational divergence between the populations (LATTER 1972). 

1. THE MODEL A N D  RECURRENCE RELATIONS 

The theory deals with a diploid monoecious species subdivided into k popu- 
lations each of effective size N .  The gene pool of the j t h  population is supposed to 
contain a proportion 1-m of gametes derived at random from adults resident in 
the j t h  population in the previous generation, and a proportion m/(k-1) of 
gametes derived at random from adults resident in each of the remaining k-1 
populations. Random mutation at a rate p per generation gives rise to an average 
of 2Np novel alleles per locus in each population. All alleles are considered to 
be selectively neutral. We consider arbitrary values of k > 1, 0 < p < 1, and 
0 S m S (k-l)/k. It is convenient at the outset to redefine the migration para- 
meter as 

m’ = mk/(k-l) (1) 
where the possible range of values of the parameter is 0 S m’ S 1. The value 
m’ = 1 corresponds to panmixia involving all Nk breeding individuals. 

Let pii denote the frequency of allele Ai in the gene pool of the j t h  population 
at time t. Progress from one generation to the next can conveniently be con- 
sidered in two steps: (i) a random sampling of 2N gametes from the gene pool 
of the j t h  population, giving a frequency of Ai among the sample individuals 
equal to 

prj = pij -+ 6 i j  (2) 

where 6 i j  is a random variable with zero mean and variance pij (1-pii>/2N; 
and (ii) mutation and migration to give a frequency of Ai in the following 
generation of 
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p i j =  (l-JA) [(l-m) p * j  + n p 3  
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(3) 

Corresponding to these two steps, the following expressions for the expected 
frequency of heterozygotes can be derived. Let H denote the mean frequency of 
heterozygotes prior to random sampling, i.e., 

and let HB represent the corresponding frequency of heterozygotes in the set of 
all possible hybrid populations, i.e., 

so that 

Let H * ,  H ;  and H’, H; also be defined by equations 4 and 5, when the fre- 
quencies p i i ,  P i h  are replaced by p: , p:h and p i j ,  pih respectively. 
Then 

(7) 
1 

2N 
E ( H * )  = H ( l - - )  

and 

(8) 

(9) 

(10) 

H 
2N E ( H i - H * )  = H B - H + -  

Similarly it can be shown that 

E ( H ’ )  = l-(l-/.L)z [(l-H*) - ( H ;  -H*)m(2-”)1 
and 

E(”, - H’) = (1-p)’ (1-m’)’ [H,* - H*]  

Note that for k indefinitely large and p = 0, equations 9 and 10 are equivalent 
to the familiar recurrence relation (WRIGHT 1951) 

4 4 

Equations 7-1 0 give expectations over repeated passages from generation 
t + t f l ,  for a single locus with current levels of heterozygosity specified by H 
and H B .  However, the equations are linear in the variables H and He, and hence 
may also be used to predict changes in the average levels of heterozygosity 
observed over a large sample of independently segregating loci. Note that identi- 
cal recurrence relations expressed in terms of coefficients of kinship can be 
derived from equation 1 of IMAIZUMI, MORTON and HARRIS (1970). The expres- 



150 B. D. H. LATTER 

sions given by MARUYAMA (1970) appear to be in error because of the omission 
of a term in calculating the probability of sampling two genes from the same 
population. 

2. GENETIC DIVERGENCE AFTER POPULATION SUBDIVISION 

In this section we obtain a general algebraic solution for the continuous process 
of population differentiation, following splitting of a parental population into k 
identical sub-populations each of effective size N (generation 0). Let z =HB--H, 

and y = H, with initial values xo = 0, and yo. The recurrence relations 7-10 can 
then be written 

(11) 

(12) 

Y 
2N 2'= (1-p)2 (1-")2 [ s f - ]  

and 

1-f= (1--p)2 [ ( l - y + - )  Y -m(2-m') ( X f - ) ]  Y 2N 2N 

Progress from one generation to the next can be expressed in terms of the partial 
differential equations 

-- a x - a x + b y  ; g = d z + e y + f  
at  at 

where 
a =  (l-p)"1-")2- 1 

1 b = -  
2N 

d =  (1-~~)~77~'(2-m') (1 -r) 
(1 -p)2( 1 -") 2 

1 

1 
2N k [l-"(2--") (1 - -)] e = 7 4 2 - p )  - 

f = EL 

The Laplace transform method of solution (LAPWOOD 1968) leads to the 
following algebraic equations 

Pf = aSE + by 
- yo  = dSE + @ + f / p  

where SE ( p )  , 7 ( p )  denote the Laplace transforms of z ( t )  , y ( t )  respectively. The 
general solutions are then obtained by inversion of the expressions 

to give 
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p= -af 
ea- bd 

Similarly, the equilibrium value of z, denoted by 2, is 

2 =  bf 
ea - bd 

Equilibrium levels of heterozygosity 

MAYNARD SMITH (1 970) has determined the equilibrium values of H and HB 
for this model, provided m’, p and N-I are all small. The foregoing general 
solutions for H and He as a function of time allow us to give the following equi- 
librium relationships for k > 1, 0 < mr < 1, 0 < p < 1. Equations 16 and 17 
lead to 

= 4NX 
where 

so that 
A =  f / z  [(1-p)-z((1-m’)-2 -I] 

8 -  4NA 
A B  1+4NX 
-- 

The second relationship of interest involves the ratio 

A A g - A  
y =  1 - a  

- bf - 
ea - bd -I- af 

= [ I + {  k p ( 2 - p )  I]” m’ (2-m’) 

and expressions 19 and 20 lead to the equation 
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(21 1 4N& 

1 +4Nhj  
A =  

In the early generations of the process of genetic differentiation following 
+ 

subdivision, i.e. for -2- << 1, we may replace terms of the form 1 - exp(at) 

in equations 13 and 14 by -at, leading to 
2N 

x ( t )  =yo bt 
y ( t )  =yo + (f + v o ) t  

3. A N  APPROXIMATE SOLUTION 

In this section, expressions are derived which describe the continuous process 
of population differentiation for a restricted range of values of the parameters. 
The necessary conditions for the equations to give useful predictions are: 

(i) that ,p, m', N-' should all be sufficiently small for squares 

(ii) that 16Nm'/k should be small by comparison with (1 4- 4"') '. 
and products of these quantities to be ignored; and 

Given (i), the expression under the square root sign in equation 
approximately by 

Nm' 
k [(l +4Nm')2- 16-1 (a - e ) 2  + 4bd = - 

(2N) 

and if 16Nm'/k is small by comparison with (1 + 4"') ', equation 

1 (25) 
4"' 4"' 

k(1 4-4"') ' 4 N p + k ( l  f4Nm' )  
- - - L [ 1 + 4 N A -  2N 

15 is given 

15 becomes 

(24) 

1 

where X = p + m'. Equations 13 and 14 can then be evaluated by use of the 
following expressions: 

1 8"' 
[1+4Nm'-  k ( 1 ,+ 4"') 2N a1 - ff.2 = - - 

a=-2h; b= 1/(2N); d=2m'(l--l/k); e = -  - (1 +4Np); f=2p; (27) 

together with equations 16 and 25. 

2N 

The approximate equilibrium levels of heterozygosity are given by equations 

19 and 21, with h set equal to p -t m', and j evaluated by the expression 

;= [ I  +:']-I 
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For k indefinitely large, the equilibrium level of heterozygosity becomes 

153 

4NA 
1 +4Nh A =  

as given by WRIGHT (1943). In the absence of migration between populations 
(m' = 0) , the equilibrium mean frequency of heterozygotes is 

4NP 
1 + 4 N p  

A =  

for arbitrary k (KIMURA and CROW, 1964), and the approach to equilibrium is 
given by 

t 
d t ) =  ( l - y o )  [ I - e q 4 - 2 t p > I -  (?-yo) { 1 - - x p [ - - ( 1 + 4 N u ) l )  2N 

and 

(1 + 4 ~ ~ ) 1 1  
t 

2N y ( t >  - yo = (? - yo> (1 - ezp [- - 

For p = 0, the equations become (MAL~COT, 1948) 

The initial rate of genetic divergence 

For small values of t /2N,  it may be deduced from equations 22,23  and 27 that 

t 
2N x ( t )  = yo - 

y ( t >  =yo (1 - -1 + 2 p t ( l  -yo). 

and 
t 

2N 

A measure of genetic divergence, which is closely related to the coefficient of 
kinship, can then be defined as 

with an equilibrium value given by equation 19 as 

i* = (1 + 
and an initial rate of change given by 

[I '+ 2tp 
t 

2N l$*(t) = - 
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L -- 
2N 

The second parameter of importance is the measure of genetic distance defined 
by LATTER ( 1972) , viz., 

with an equilibrium value given by equation 28 and an initial rate of change 

If the average level of heterozygosity in the parental population prior to sub- 
division is represented as 

4k*Nfi 
1 +4k*Np yo = 

the expression for y ( t )  in the early generations becomes 

y ( t )  2k*ttp [l + 2tp (k* - 1) I-‘ - 2k*tp 

provided k*tp is small by comparison with unity. 
( 3 3 )  

4. DISCUSSION 

Two parameters emerge from the preceding analysis as informative measures 
of the degree of genetic differentiation among populations, viz. (i) the parameter 
+* ( t )  defined by equation 29, which is related to the coefficient of kinship, and 
(2) the measure of mutational divergence y ( t )  given by equation 32. In practical 
applications of these two formula, the expectations concerned should be taken to 
denote mean levels of heterozygosity over a large sample of independently segre- 
gating loci. In  the calculation of +*, loci which are monomorphic for  the same 
allele in all populations need not be included in the sample, since they make no 
numerical contribution to the ratio E(H)/E(He). This is not true of estimates 
of 7, which should be based on gene frequencies at a random sample of both 
monomorphic and polymorphic loci. Predictions based on equations 20,28 or 33 
cannot be expected to hold for gene frequency data derived from polymorphic 
loci alone. 

The parameter +* has been shown to have an equilibrium value under general 
conditions of (1  + ~ N x )  -l, where A = p + m’ for small values of both p and m’. 
Note that +* is identical with +, the coefficient of kinship, for the pure drift 
model, p = m’ = 0. By contrast, y reaches an equilibrium which is independent 
of N ,  being a function only of the pressure of mutation tending to differentiate 
the populations concerned, and the opposing effects of migration (equations 20, 
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FIGURE 1 .-Predicted changes in two measures of genetic divergence following population 
subdivision, based on  equations 13-17. The parameter +* is defined by equation 29, and is closely 
related to the coefficient of kinship; y is a measure of mutational divergence defined by equation 
32 (cf. LATER 1972). The initial level of heterozygosity assumed is yo = 0.15. In both regimes 
N = 2000 and N p  = 0.02, where N denotes the effective population size of each of k subspecies, 
races or island populations exchanging migrants at a rate m per generation. The mutation rate 
to novel alleles is p per generation. E ( H )  denotes the mean level of heterozygosity over a set of 
independently segregating loci. 

28). The two parameters also differ intrinsically in their initial behavior follow- 
ing population subdivision. Provided the conditions set out in the first paragraph 
of section 3 are satisfied, +* increases initially at a rate proportional to 1/2N 
(equation 31), while the initial rate of increase of y is proportional to p (equa- 
tion 33). 

The complete process of change in +* and y is illustrated in Figure 1 for a rate 
of migration equal to the mutation rate ( la ) ,  and one equal to twice the mutation 
rate ( lb) .  The parameters were chosen to give levels of heterozygosity within 
populations of the order of 0.10-0.15 throughout. The initial rate of change of 
+* given by equation 31, and that for y predicted by equation 33, are realized in 
both instances up to t = O.lN, with errors less than 4%. The initial level of 
heterozygosity of yo = 0.15 corresponds to a value of k* in equation 33 of 2.2, 
so that the parental population is one with an average level of heterozygosity 
appropriate to a population in equilibrium at a size of 4,400. The model envisages 
a subsequent rapid increase in numbers, followed by subdivision into units of 
size 2,000 at generation t = 0. 

The data of Table 1 provide a check on the algebra leading to the derivation of 
equations 13-1 7, and indicate the accuracy of the approximate solution based on 
equations 25-28. The two regimes concerned are identical with those of Figure 1, 
except that N = 200 is used instead of N = 2000. The calculations indicate that 
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TABLE 1 

Predicted heterozygosity and genetic divergence between sub-populations 
The three values in each cell of the table are obtained by the use of ( i )  the recurrence relations 

11,12; ( i i )  the general solution given by equations 13-17; and (i i i)  the 
approximate solution based on equations 25-28. 

~~~~~ 

Predicted heterozygosity and genetic divergence? 
Regime’ * Geneiations - 

Nm‘ k ( 2 )  Solution E ( H )  E(H,-H) d’(t) Y ( 2 )  

0.02 5 N ( i )  

10N ( i )  

( i i )  
( i i i)  

( i i )  
( i i i )  

( i i )  
( i i i)  

( i i )  
( i i i)  

( i i )  
( i i i )  

( i i )  
( i i i)  

50N (9 

0.04 3 N ( i )  

1 ON ( i )  

50N ( i )  

0.1192 
0,1192 
0.1192 
0.0913 
0.0913 
0.0913 
0.1137 
0.1137 
0.1 136 
0.1198 
0.1198 
0.1198 
0.0997 
0.0997 
0.0995 
0.1239 
0.1239 
0.1237 

0.0639 
0.0638 
0.0638 
0.3253 
0.3252 
0.324Q 
0.6740 
0.G74Q 
0.6737 
0.0627 
0.0626 
0.0625 
0.2887 
0.2887 
0.2868 
0.5062 
0.5062 
0.5054 

0.3488 
0.3486 
0.3487 
0.7809 
0.7808 
0.7807 
0.8557 
0.8557 
0.8557 
0.3435 
0.31.32 
0.3430 
0.7433 
0.7433 
0.7423 
0.8034 
0.8034 
0.8033 

0.0725 
0.0725 
0.0725 
0 3579 
0.3579 
0.3576 
0.7605 
0.7604. 
0.7601 
0.0712 
0.071 1 
0.071 1 
0.3207 
0.3207 
0.3185 
0.5777 
0.5777 
0.5767 

* * N = 200, N p  = 0.02, yo = 0.15, together with the specified values of Nm’ and k. 
f- The measures are defined respectively by equations 4, 6,29 and 32. 

for p and m‘ small, quite accurate predictions may be obtained from equations 
25-28 with 16 Nm’/k as much as one-sixth the magnitude of (1 -I- 4Nm’)2. 
Equations 13-1 7 give precisely the values obtained by repeated application of 
the recurrence relations 1 1  and 12. 

It has been indicated previously that this analysis of population differentiation 
according to the island model is of potential interest in the study of the major 
racial groups of man and other species, where the number of groups may be 
small, and migration rates are low. The measures of genetic divergence defined 
in the paper have the advantage of being simple functions of the mean levels of 
heterozygosity within the groups concerned, and the predicted levels of hetero- 
zygosity in the inter-population hybrids. The behavior of these parameters by 
comparison with others in common use is discussed elsewhere (LATTER 1973). 
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