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Paleodemography is the field of inquiry that attempts to identify demo-

graphic parameters from past populations (usually skeletal samples)

derived from archaeological contexts, and then to make interpretations

regarding the health and well-being of those populations. However,

paleodemographic theory relies on several assumptions that cannot easily

be validated by the researcher and, if incorrect, can lead to large errors or

biases. In this book, physical anthropologists, mathematical demo-

graphers and statisticians tackle these methodological issues for recon-

structing demographic structure for skeletal samples. Topics discussed

include how skeletal morphology is linked to chronological age, assess-

ment of age from the skeleton, demographic models of mortality and their

interpretation, and biostatistical approaches to age structure estimation

from archaeological samples. This work will be of immense importance to

anyone interested in paleodemography, including biological anthropol-

ogists, demographers, geographers, evolutionary biologists and statis-
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1 The Rostock Manifesto for
paleodemography:
the way from stage to age
  .     . 

Introduction

In June 1999, the Laboratory of Survival and Longevity at the Max Planck
Institute for Demographic Research in Rostock, Germany, hosted a three-
day workshop entitled ‘‘Mathematical Modelling for Palaeodemography:
Coming to Consensus’’. The title chosen reflected two issues the workshop
was meant to deal with. First, the use of biostatistical methods as a means
for estimating demographic profiles from skeletal data was clearly emerg-
ing as the right direction for the future. A number of individuals were
invited who had published such techniques. Second, coming to consensus
was a play on words for evaluating and finding a methodological approach
that best did the job for paleodemography.

The initial workshop focused specifically on adult aging techniques.
This was partly a reflection of the need to find methods that could capture
the right-most tail of the age distribution in archaeological populations —
the oldest old. Although nonadult aging techniques have increased levels
of accuracy and precision, assessing the complete age structure of the
population is absolutely imperative. The statistical approaches presented
in this volume, while presented in the context of adult age estimation,
are more broadly applicable to age indicator methods for any group
(see e.g., Konigsberg and Holman 1999).

The purpose of the workshop was to provide individuals with an
identical dataset on which to test their techniques. Thus everyone would be
able to use their methods to estimate the demographic profile for a real
target sample using a series of skeletal age indicator stages for which
known-age data were associated, but not revealed. The assumption here
was that, for the first time, the presentation of these newly emerging
statistical techniques could be evaluated in terms of their accuracy and
reliability in estimating age profiles on a level playing field — comparing
apples with apples, if you will.

1



As it turns out, the outcome of the workshop resulted in a realization
that statistical methods might vary, but it was the theoretical framework in
which such methods were placed that was critical. Thus, on conclusion of
the workshop, there was unanimous acceptance of a theoretical approach —
what became known amongst attendees as the ‘‘Rostock Manifesto’’, a
collegial call for new directions in paleodemographic research. While this
theoretical framework represents the primary basis for which this project
was developed, we nevertheless recognized that there are several intercon-
nected issues in the reconstruction of population parameters from skeletal
samples that should be addressed. Subsequently, in August 2000, a follow-
up workshop was held in Rostock, in which attendees presented and
discussed a variety of issues directly relevant to the field of paleodemogra-
phy. This book represents the cumulative efforts of those who participated
in these meetings.

The Rostock Manifesto has four major elements:

1. Working more meticulously with existing and new reference collec-
tions of skeletons of known age, osteologists must develop more re-
liable and more vigorously validated age indicator stages or categories
that relate skeletal morphology to known chronological age.

2. Using these osteological data, anthropologists, demographers and
statisticians must develop models and methods to estimate Pr(c �a), the
probability of observing a suite of skeletal characteristics c, given
known age a.

3. Osteologists must recognize that what is of interest in paleodemo-
graphic research is Pr(a �c), the probability that the skeletal remains are
from a person who died at age a, given the evidence concerning c, the
characteristics of the skeletal remains. This probability, Pr(a �c), is
NOT equal to Pr(c �a), the latter being known from reference samples.
Rather Pr(a �c) must be calculated from Pr(c �a) using Bayes’ theorem.
Even the most experienced and intelligent osteologists cannot make
this calculation in their heads. Pencil and paper or a computer is
required, as well as information concerning f (a), the probability dis-
tribution of ages-at-death (i.e., lifespan) in the target population of
interest.

4. This means that f (a) must be estimated before Pr(a�c) can be assessed.
That is to say, to calculate Pr(a �c) it is necessary to first estimate f (a),
the probability distribution of lifespans in the target population. To
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estimate f (a) a model is needed of how the chance of death varies with
age. Furthermore a method is needed to relate empirical observations
of skeletal characteristics in the target population to the probability of
observing the skeletal characteristics in this population. The empirical
observations generally will be counts of how many skeletons are
classified into each of the stages or categories c. The probability of
these characteristics, Pr(c), is given by

Pr(c)��
�

�

Pr(c �a) f (a)da, (1.1)

where � is the upper limit of the human lifespan. The basic strategy is
to choose the parameters of the model of the lifespan distribution f (a),
or the levels of mortality in various age categories in a nonparametric
model, to maximize the ‘‘fit’’ between the observed frequencies of the
morphological characteristics and the underlying probabilities of these
characteristics.

The various chapters of this book pertain to these four precepts. In the
following discussion we explain each of the dictums in more detail and
adumbrate how the chapters relate to them.

The need for better osteological methods

Paleodemographic reconstructions of past populations depend on accu-
rate determination of age-at-death distributions, sorted by sex, within
skeletal samples. The accuracy and reliability of age estimation techniques
have been central concerns in critiques of paleodemography. In particular,
the underestimation of ages for older adults and age mimicry have invited
strong criticism (Bocquet-Appel and Masset 1982, 1985, 1996; Sattenspiel
and Harpending 1983; Van Gerven and Armelagos 1983; Buikstra and
Konigsberg 1985; Masset and Parzysz 1985; Bocquet-Appel 1986; Greene
et al. 1986; Wittwer-Backofen 1987; Horowitz et al. 1988; Konigsberg and
Frankenberg 1992, 2001). While there are a variety of methodological
approaches to scoring age-related changes in the skeleton, many (although
not all) commonly employed methods are based on an osteological age
indicator staging system where the stages serve as proxies for age. In
Chapter 4, Kemkes-Grottenthaler provides an excellent historical over-
view of age indicator methods for assessing age-at-death in the skeleton,
contrasting the historical division between European and North American
methods, and the need for true multivariate techniques. Such methods are
used both in forensic investigations where the age of an individual is of
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primary interest, and in paleodemographic investigations where the mor-
tality schedule of a population is of interest. The subsequent two chapters
present two new osteological techniques relevant to estimating age-at-
death from the skeleton. In Chapter 5, Boldsen and colleagues present a
new multivariate method that incorporates morphological assessments of
the pubic symphysis, auricular surface, and cranial suture closures. Estima-
ting age for an individual requires, as noted above, information about the
population mortality schedule. Different statistical approaches to estima-
ting this schedule may be appropriate when the number of individuals to be
aged is a handful or less or thousands or more. Chapter 5 by Boldsen and
colleagues demonstrates the applicability of transition analysis for estima-
ting age in a single individual or a small sample for which estimating of age
structures from the target sample is impossible. In Chapter 6, Wittwer-
Backofen and Buba present the preliminary results of a validation study of
a refined method for estimating age-at-death directly from teeth, using
cementum annulation.

The need for better reference samples

As noted above, the information that osteologists have regarding age and
stages pertains to the probability of being in a specific stage given age,
Pr(c �a). This is based on comparisons of stage and age in documentary
reference samples. It is important that the reported ages in such reference
samples be carefully validated. Age misreporting is common, so care must
be taken to document and verify ages. This is particularly important when
a person’s age is given by a proxy source (because, e.g., the person has died).
The reference collection used in Chapter 5 by Boldsen and coworkers
includes three black females who are reported to have reached their 90s.
They almost certainly died at younger ages and either their reported ages
should be checked or they should be excluded from any future analysis. For
further discussion of age validation, see Jeune and Vaupel (1999).

It became abundantly clear both from discussions that developed dur-
ing the workshops and from the practical difficulties in providing attendees
with real data on which to test their methods — specifically the paucity of
published reference sample data — that there was a need to explore the
existence of known-age skeletal samples for which methods have and can
be developed and/or tested. Usher addresses this issue in Chapter 3, where
she provides an overview of the use of known-age reference samples as a
means for developing osteological aging techniques, and a general assess-
ment of those collections that are known to exist.

4 R . D. Hoppa and J . W. Vaupel



The need to use Bayes’ theorem

The concept of estimating age from a skeleton is fundamental to any
skeletal biologist. Training in osteology means learning rigorously how to
‘‘read’’ biological information from the skeleton related to age, sex, pathol-
ogy, and personal identification. The specific means of any one study will
be tied to the questions being asked, but ultimately age and sex have
formed a fundamental first step for any anthropologist examining a series
of skeletons. Because these two features are so important to further ana-
lyses, and to some extent codependent on one another (many aging criteria
are sex specific), they have formed an intrinsic expertise for all experienced
researchers.

The concept of age estimation has, despite a variety of possible tech-
niques, followed the same series of short steps: (a) assess skeletal morphol-
ogy, (b) link skeletal morphology to chronological age through a reference
collection, and (c) estimate age. While in principle these steps are correct,
there is some issue over how the second step is executed. The second step is
tied critically to the reference population on which a method, or series of
methods, has been developed. In this step, morphological aging criteria are
established, given known age in the reference sample. Thus we have some
understanding of the probability of what stage a skeleton should be,
conditional on age, or in mathematical notation Pr(c �a), where c represents
the morphological age indicator stage or category, and a represents chro-
nological age-at-death. However, the ultimate goal of using this relation-
ship is to estimate the age of an individual or group of individuals within an
archaeological sample: that is to say, to estimate the probability of age
conditional on stage, or Pr(a �c). This probability is not equivalent to
Pr(c �a) but can be solved using Bayes’ theorem as follows:

Pr(a�c)�
Pr(c �a) f (a)

�
�

�

Pr(c�a) f (a)da

. (1.2)

As noted by Konigsberg and Frankenberg (1994), it is a paradox that the
very distribution that one is trying to estimate, f (a), is required before
individual age estimation can proceed. This seems counterintuitive to
osteological training — how can one estimate a population structure before
knowing the age of the individuals? But again, the problem is based, in
part, on the notion that we can easily invert the relationship between stage
and age, which is not correct. The question then arises as to how to make
use of information in the reference sample without biasing our estimates of
the age distribution or making faulty assumptions.
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While, ultimately, the goal would be to proceed without the need to
impose any predefined patterns of mortality, currently the kinds of os-
teological data available are not adequate to allow for nonparametric
approaches, at least for intervals of reasonable length. As a result, there is a
need to incorporate parametric models of mortality into paleodemo-
graphic reconstructions. Given the limited information available from
current skeletal age indicator methods and relatively small target samples
sizes, only a handful of parameters can reasonably be estimated. As
Konigsberg and Frankenberg (2001) note, this has plagued a variety of
statistical exercises that have attempted to estimate more age intervals than
age indicator categories, resulting in negative degrees of freedom in their
models.

Chapters 7 (Wood et al.) and 8 (Paine and Boldsen) both deal with the
process of modeling population dynamics in paleodemography. First,
Wood and colleagues summarize for the reader various models that can be
used to fit to paleodemographic data, and the advantages and disadvan-
tages of differing approaches. In Chapter 8, Paine and Boldsen illustrate
how one can link the mortality patterns in paleodemographic analyses to
the broader questions of population processes, including disease, migra-
tion, and fertility.

The need to assess the distribution of lifespans in the target
population

There are four approaches to estimating f (a), the probability distribution of
ages at death (i.e., lifespan) in the target population of interest. First, the
distribution can be specified based on some convenient assumption, such
as the assumption that all lifespans between age 20 years, say, and age 100
years, say, are equally likely. Second, the distribution can be assessed using
the subjective judgments of experts who have ancillary knowledge. Third, a
known distribution of lifespans, from some population assumed to be
similar to the target population of interest, can be appropriated. Fourth,
empirical data on the frequency of characteristics c in the skeletons of the
target population together with information about Pr(c �a) from the refer-
ence population can be used in a mortality model to estimate the para-
meters or values of f (a). The first three of these approaches are discussed
briefly in Chapter 5, where Boldsen and colleagues argue that, when a flat
or uniformprior is assumed, Pr(a �c) is related proportionally to Pr(c �a) and
can be estimated relatively easily. However, a uniform prior is not reflective
of real mortality distributions. The last, and most appealing, approach is
discussed in Chapters 9 to 12.

6 R . D. Hoppa and J . W. Vaupel



First, Love and Müller (Chapter 9) use a semiparametric approach and
estimate weight functions in order to estimate age structure from age
indicator data in the target sample. The next two chapters present para-
metric approaches to estimating age profiles — Holman and colleagues
(Chapter 10) use a logit and Konigsberg and Herrman (Chapter 11) a
probit approach. An example of how these methods can be applied to
archaeological data follows with Herrmann and Konigsberg (Chapter 12)
re-examining the Indian Knoll site, using the statistical approach outlined
in Chapter 11 to make new inferences about this Archaic population.

Paleodemographic studies have the potential to provide important in-
formation regarding past population dynamics. However, the tools with
which this task has been traditionally undertaken have not been sufficient.
If we are interested in understanding demographic processes in archae-
ological populations, it is necessary to adopt a new framework in which to
estimate age distributions from skeletal samples. It was once argued that,
to be successful, paleodemographers should work more closely with re-
searchers in the field of demography (Petersen 1975). This book answers
that challenge, bringing together physical anthropologists, demographers,
and statisticians to tackle theoretical and methodological issues related to
reconstructing demographic structure from skeletal samples.
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2 Paleodemography:
looking back and thinking ahead
  . 

Introduction

Paleodemography is the field of inquiry that attempts to identify demo-
graphic parameters from past populations derived from archaeological
contexts. Questions have been explored primarily by physical anthropolo-
gists through the analysis of skeletal remains, although such information
can be augmented with associated documentary information available
from epigraphy, census and parish records, or, sometimes, primary literary
sources.

When demographic parameters are known or can be estimated, it is
argued that the resultant population structure is predictable and can be
extended either forward or backward in time to examine the significance of
sets of parameters (Howell 1986:219). However, paleodemographic theory
relies upon several assumptions that cannot be readily validated by the
researcher. The primary assumption of paleodemographic reconstructions
is that the age and sex profiles seen within the sample of dead individuals
provide a clear and accurate reflection of those parameters within the
once-living population — that is, the numbers, ages and sexes of the mortal-
ity sample accurately reflect the death rate of the population. Second, any
bias that may affect the data can be recognized and taken into account
(Ubelaker 1989).

Historical perspectives

By 1950, the subject of human longevity in the past had been tackled by the
occasional inquiry (e.g., Lankester 1870; Pearson 1902; MacDonnell 1913;
Hooton 1930; Vallois, 1937; Willcox 1938; Weidenreich 1939; Senyürek
1947). However, it was the writings of J. Lawrence Angel, in the mid 20th
century, on life expectancy in ancient Greece (e.g., Angel 1947, 1954) that
many cite as the beginnings of paleodemography as an emerging area of
specialization within physical anthropology (for a more detailed overview
of the history of the field, see Konigsberg and Frankenberg 2001).

9



Following Angel’s early papers, paleodemography became standard
practice in physical anthropological studies of human skeletal samples
from the archaeological record. Initially, such studies made use of the
abridged life table as a tool for interpreting age-at-death profiles in ancient
populations (e.g. Vallois 1960; Kobayashi 1967; Angel 1968, 1969a,b, 1972,
1975; Kennedy 1969; Swedlund and Armelagos 1969; Acsádi and Nem-
eskéri 1970; Blakely 1971, 1977; Brothwell 1971; Lovejoy 1971; McKinley
1971; Bennet 1973; Masset 1973; Weiss 1973,1975; Ubelaker 1974; Moore
et al. 1975; Piasecki 1975; Plog 1975; Asch 1976; Armelagos and Medina
1977; Bocquet-Appel 1977, 1978, 1979; Bocquet-Appel and Masset 1977;
Clarke 1977; Henneberg 1977; Lovejoy et al. 1977; Passarello 1977; Pal-
kovich 1978; Owsley and Bass 1979; Piontek 1979; Welinder 1979; Hassan
1981; Piontek and Henneberg 1981; Van Gerven et al. 1981; Pardini et al.
1983). Using osteological age indicator methods, individuals were assigned
to age groups and distributed into an abridged life table. That is to say,
individual ages were estimated first and those estimates were aggregated
for demographic analysis. Because of the differences in precision for differ-
ing ages, and the desire to try to standardize the demographic data into
five-year cohorts, individuals were often redistributed across multiple co-
horts within the life table.

In the mid 1970s Howell (1976) noted that demographic analyses of past
populations rely on the assumption of biological uniformitarianism. This
principle asserts that past and present regularities are crucial to future
events and that, under similar circumstances, similar phenomena will have
behaved in the past as they do in the present, and will do so in the future
(Watson et al. 1984:5). The law of uniformitarianism is a fundamental
assumption made by biologists working on skeletons at a variety of ana-
lytical levels. Estimates of demographic parameters in past populations
necessarily assume that the biological processes related to mortality and
fertility in humans were the same in the past as they are in the present
(Weiss 1973, 1975; Howell 1976; see also Paine 1997). However, it is not
only the broader issues of demographic structure that must conform to this
assumption. Techniques for assessing age from skeletal remains must also
assume uniformitarianism in the use of biological aging criteria, such that
the pattern of age-progressive changes observed in modern reference popu-
lations is not significantly different from the pattern observed in past
populations.

This assumption has implications at two levels for paleodemography.
The first issue relates to application of this theory to biological processes,
particularly those relevant to population structure, and assumes that hu-
mans have not changed over time with respect to their biological responses
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to the environment (Howell 1976). This assumption is critical in order for
us to be able to relate our current understanding of the impact of demo-
graphic changes on past populations (e.g. see, Gage 1989, 1990; Paine and
Harpending 1998; Wood 1998; see also Paine and Boldsen, Chapter 8,
Wood et al., Chapter 7, this volume). Wood and colleagues (1992b; see also
Chapter 7, this volume) noted that an important goal of paleodemography
is to find models of population dynamics that facilitate etiological ways of
thinking about mortality profiles and allow for meaningful biological
interpretation and insight. As these authors commented, there seems to be
some agreement that there is a common pattern of mortality among
human populations and that alterations in its shape and trajectory can be
captured by parametric models. Nevertheless, there is still debate regarding
which parametric models can best fit the force of human aging and mortal-
ity, or whether in fact we should be applying nonparametric approaches
first to explore the data.

Second, it assumes that the biological development of age-related mor-
phology in humans is the same in populations that are separated in either
time or space. While the rate at which these changes occur may be different,
the general pattern should be the same. Several studies in fact have exam-
ined this issue for osteological aging techniques. We know that the rate of
change in various age indicator techniques is different between males and
females, and has been shown to be different when applied to populations
with a background different from that of the original reference samples.
Lovejoy and colleagues (1997:44) have recently noted that, while great
strides have been made in our ability to estimate ‘‘basic demographic
parameters from human skeletal remains . . . [further] progress will re-
quire investigations that improve our understanding of the fundamental
biology of human skeletal aging in contrast to most previous studies which
have been largely typological’’ (see also Lovejoy et al. 1995). The point here
is that variation inherent in the biological process of aging in the skeleton
continues to be a fundamental source of error for current osteological
aging criteria (Lovejoy et al. 1997; Bocquet-Appel and Masset 1997; see
also Kemkes-Grottenthaler,Chapter 4, this volume). As such, differences in
age-related changes in the human skeleton may impede the use of these
criteria on skeletal samples that differ significantly in time from the refer-
ence (Bocquet-Appel and Masset 1982; Angel et al. 1986; I� şcan and Loth
1989; Kemkes-Grottenthaler 1996). Hoppa (2000) has even suggested that
there may be distinct differences between populations with similar back-
grounds, although others have suggested this is a product of interobserver
error, rather than population differences (Konigsberg and Frankenberg
2001).
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If we presuppose the validity of biological uniformitarianism proposed
by Howell (1976), the basic premise for using the abridged life table in
demographic reconstructions from skeletal samples is that the population
from which the sample is from is ‘‘stationary’’. A stationary population is a
special form of ‘‘stable’’ population (Acsádi and Nemeskéri 1970). A stable
population is defined as a ‘‘population which is closed to migration and has
an unchanging age—sex structure that increases (or decreases) in size at a
constant rate’’ (Wilson 1985:210). In reality, paleodemographic analyses do
not expect this assumption to be true, since changes in composition over
time are a central focus — temporal analyses would be meaningless if we
truly assumed that the intrinsic growth rate was zero over time. However,
errors introduced by failure of the population to meet stationary condi-
tions will depend on the extent to which the population deviates from the
assumed conditions (Gage 1985).

In nonstationary populations, age-at-death distributions are extremely
sensitive to changes in fertility but not to changes in mortality . . .. Thus,
if a population is not stationary — and changing populations never are —
small variations in fertility have large effects on its age-at-death
distribution, while even quite large modifications of mortality have
virtually none.

(Wood et al. 1992a:344)

Acsádi and Nemeskéri (1970) once argued that the long-term rate of
growth within populations has been very close to zero. Weiss (1975)
similarly noted that in most animal populations, including humans, there is
a tendency toward an approximate zero-growth equilibrium, with signifi-
cant deviations often being corrected through natural ecological processes.
Even with the apparent rapid growth in the world population over the last
10 000 years, Hassan (1981) argued that it is likely that intervals of rapid
growth in human prehistory were infrequent and easily defined against a
general trend of very slow growth. Whether this claim is applicable in the
short term with respect to various local populations, which are for the most
part the primary focus of paleodemographic analyses, is difficult to assess
(Johansson and Horowitz 1986). Moore and colleagues (1975) attempted to
estimate the effects of stochastic fluctuations within small populations.
Using computer simulations, these authors suggested that, since an indi-
vidual cemetery represents only one of many possible outcomes within a
dynamic system, interpretations based on such samples are questionable.

In the late 1970s, demographers issued a call to arms regarding
paleodemography (Petersen 1975; Howell 1976). Petersen (1975) argued
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that the demographic analyses of past population by anthropologists are
undertaken without a firm understanding of demographic theory and
method. ‘‘Very little of the demographic analysis in [archaeology and
anthropology] has reached the level of professional competence that is
almost routine in historical studies’’ (Petersen 1975:228). Petersen’s (1975)
primary critique is that anthropologists do not have a firm grasp of the
fundamentals of demographic theory. Secondarily, he noted that the pau-
city of evidence from which to make statements regarding paleodemo-
graphic parameters forces extrapolations from models derived from other
sources (e.g., ethnographic analogy).

Following an earlier critique of paleodemography in which she high-
lighted the importance of uniformitarianism, Howell (1982) undertook an
analysis of the Libben site (Lovejoy et al. 1977) using the program
AMBUSH (Howell and Lehotay 1978). On the basis of the mortality
structure and assumptions about fertility in this large skeletal sample,
Howell concluded that serious social consequences would have been occur-
ring within the Libben population for the demographic structure implied
from the skeletal sample to have developed. Such elements included un-
stablemarriagepatternsanda two- rather than three-persongenerationas a
result of abnormally high adult mortality, a high proportion of orphaned
children, and a high dependency ratio (Howell 1982). This led Howell to
conclude that either biocultural interactions in prehistoric societies were
very different from those observed in ethnographic populations or that the
sample was unrepresentative of the true mortality sample.

Ethnographic analogy for prehistoric demography

The primary question is whether skeletal data alone are sufficient for
accurate demographic reconstructions of past populations. Petersen’s
(1975) concern over the paucity of evidence from which to make statements
regarding paleodemographic parameters forced many investigators to ex-
trapolate from models derived from other sources. Coale and Demeny’s
(1966) classic compendium of model life tables for modern demographic
studies was the probable impetus for anthropological demographers to
develop model life tables for past populations (e.g., Weiss 1973). Weiss
(1973) provided model life tables for various fertility schedules based on
probability of death, q

�
. Relating probability of death to life expectancy at

age 10 years by least squares linear regression and logarithmic regression
equations from a variety of relatively contemporary populations based on
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vital statistics, Coale and Demeny (1966) produced age-specific mortality
rates for males and females presented as regional model life tables. These
authors asserted that the use of life expectancy at age 10 years, rather than
birth, is an unbiased general index of differences that can result from fitting
model life tables. Many investigators have agreed that demographic statis-
tics derived from contemporary non-Western societies represent an effec-
tive means of assessing skeletal age profiles of past populations (Weiss
1973; Petersen 1975; Milner et al. 1989; Paine 1989). On the other hand,
given the variety of conditions under which many contemporary popula-
tions live, it is difficult to be certain that ethnographic analogies for
demographic statistics will always be appropriate. Further, the application
of ethnographic estimators to samples for which related sociocultural
information is sparse serves only to compound the problem. However,
‘‘comparing data from different groups, understanding the cultural context
of the population, and critically evaluating the sources of the data can
minimize some of the potential errors’’ (Hassan 1981:5).

Although a potentially powerful tool for anthropological and, particu-
larly, paleodemographic analyses, model life table fitting techniques are
still subject to potential biases resulting from the use of inappropriate
model populations (Gage 1988). As such, Gage (1988, 1989, 1990) has
proposed the use of a hazard model of age-at-death patterns that can be
fitted to survivorship, death rate, and age structure data. This technique
provides a method of estimating age-specific mortality and fertility directly
from anthropological data, and will smooth demographic data from a
variety of populations without imposing a predetermined age structure
(Gage 1988). Gage (1990) later constructed a new set of model life tables
using hazard models, for which there were no equivalent corresponding
models in Coale and Demeny (1966), noting that the greatest variation
between these models resulted from differences in adult mortality.

Looking to what we know from small, contemporary hunter—gatherer
and foraging societies must surely provide some insight. However, argu-
ments that prehistoric patterns of mortality are unlike their observed
contemporary analogy are difficult to assess. Meindl and Russel (1998:393)
assert that paleodemographic data should not be forced into modern
industrialized demographic profiles without some empirical justification.
If the demographic patterns of prehistory were fundamentally different,
archaeological demographers should reserve the opportunity to detect
them.
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The great debate: paleodemography on trial

The 1980s marked a pivotal point for paleodemography. While there had
been the occasional critique prior to the 1980s (e.g., Petersen 1975; Howell
1976) it was not until 1982 that the great debate ensued regarding the
validity of the methods on which paleodemographic reconstructions were
based (Bocquet-Appel and Masset 1982, 1985; Sattenspiel and Harpending
1983; Van Gerven and Armelagos 1983; Buikstra and Konigsberg 1985;
Masset and Parzysz 1985; Bocquet-Appel 1986; Greene et al. 1986;
Horowitz et al. 1988). In 1982 Bocquet-Appel and Masset (1982) attacked
paleodemography on two fronts: (1) that age-at-death profiles obtained
from prehistoric skeletal samples are artifacts of the age distributions of the
reference samples employed for estimating chronological age from human
skeletal remains, and (2) there is inherent inaccuracy and unreliability of all
age estimation techniques because of the low correlation between skeletal
age and chronological age. These authors noted that the mean ages for
various skeletal stages are a product of both the biological process of aging
and the age structure of the reference population. They further suggested
that paleodemographers assume that age-related changes in the human
skeleton are constant through time. Despite the fervor of publications
critical of the relative merit of paleodemography, studies of demography
from excavated skeletal samples continue to flourish (e.g., Wittwer-
Backofen 1989, 1991; Balteanu and Cantemir 1991; Grauer 1991; Miu and
Botezatu 1991; Parsche 1991; Alekseeva and Fedosova 1992; Berner 1992;
Cunha et al. 1992; Srejic et al. 1992; Cesnys 1993; Rewekant 1993; Hen-
neberg & Steyn 1994; Macchiarelli & Salvadei 1994; Saldavei and Mac-
chiarelli 1994; Coppa et al. 1995; Alekseeva and Buzhilova 1996, 1997;
Della Casa 1996; Kozak 1996; Leben-Seljak 1996; Piontek et al. 1996;
Sciulli et al. 1996; Pietrusewsky et al. 1997; Alesan et al. 1999; Buzhilova
and Mednikova 1999; Bocquet-Appel and Demars 2000).

Nevertheless, the next 15 years saw researchers refocusing their atten-
tion on testing the accuracy and bias of the age indicator techniques used in
osteological investigations. Initial studies examined this problem by utiliz-
ing cadaver samples to test the relationship between estimated age and
known chronological age (see Usher, Chapter 3, this volume). Later, with
the increased availability of archaeological skeletal samples from with
documented individuals, researchers were able to examine the reliability of
these methods (e.g., Lovejoy et al. 1985; Meindl et al. 1985, 1990; Gruspier
and Mullen 1991; Saunders et al. 1992, 1993; Aiello and Molleson 1993;
Bedford et al. 1993; Rogers and Saunders 1994; Lucy et al. 1995). During
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this period paleodemography saw a revival of model life table fitting
techniques and the development of more sophisticated mathematical ap-
proaches that attempted to compensate for known biases in skeletal
samples (Gage 1985, 1988, 1989, 1990; Jackes 1985; Boldsen 1988; Milner et
al. 1989; Paine 1989; Siven 1991a,b; Konigsberg and Frankenberg 1992,
1994; Roth 1992; Wood et al. 1992a; Skytthe and Boldsen 1993; Lucy et al.
1995, 1996). However, in recent years, much of the debate regarding
paleodemography has moved away from the methodological issues of
sample reconstruction, to the more theoretical concern of sample represen-
tativeness (Lovejoy 1971; Piontek and Henneberg 1981; Milner et al. 1989;
Paine 1989; Wood et al. 1992a; Hoppa 1996; Paine & Harpending 1996,
1998; Hoppa and Saunders 1998). With the more recent, detailed studies of
historic cemetery skeletal samples, researchers have begun to test the
representativeness of their samples by comparing the mortality data de-
rived from the skeletal sample with the documentary mortality data asso-
ciated with the cemetery from which the sample was drawn (Walker et al.
1988; Lanphear 1989; Herring et al. 1991; Molleson et al. 1993; Grauer and
McNamara 1995; Higgins and Sirianni 1995; Molleson 1995; Saunders et
al. 1995a,b; Scheuer and Bowman 1995; Sirianni and Higgins 1995). Infant
underrepresentation and older adult underrepresentation, the two most
commonly recognized biases in paleodemographic studies have been the
focus of many investigations (e.g., Cipriano-Bechtle et al. 1996; Guy et al.
1997; Paine and Harpending 1998). Reiterating the impact of adult un-
derenumeration on paleodemographic studies (Jackes 1992; Hoppa and
Saunders 1998) Paine and Harpending (1998) observed that a deficiency in
older adults (45�) serves to inflate estimates of crude birth rate by 10 to
20%. At the other end of the spectrum, infant underrepresentation de-
creased both fertility and crude birth estimates by 20 to 25%.

While methodological issues relating to age determination and repre-
sentativeness in skeletal samples remain a primary focus for refining
answers to this problem, the current approach to understanding demo-
graphic structure in past populations has begun to shift. Ultimately, the
focus of physical anthropology has been to refine estimates at the individ-
ual level in order to get some aggregate estimate of the population level.
More recently, however, borrowing heavily from biostatistical sources,
researchers have begun directly to estimate the mortality distribution of
samples on the basis of the distribution of age indicator stages. While the
difference is subtle, it is important, in that approaches try to avoid the
broad range of error associated with estimates at the individual level. This,
of course, means that there is now a distinction between methods most
appropriate for estimating error in individual assessments of age, as would
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be important for forensic anthropology, and those for estimating error in
aggregate assessments of demographic structure.

Recognizing that age estimation techniques in skeletal biology are less
than 100% accurate, paleodemographic reconstructions of age structures
have had to compensate for the possible error, or range of confidence, that
is attributable to individual assessments. Jackes (1985, 1992) has suggested
that probability distributions derived using this concept are preferable to
previously used methods of smoothing. Konigsberg and Frankenberg
(1992:239) demonstrated that techniques typically used to recast skeletal
age distributions result in ‘‘an estimated age distribution which is neither a
complete ‘mimic’ of the reference sample nor completely independent of the
reference’’.

While Konigsberg and Frankenberg (1992) focused on age estimation
with the life table and series of discrete age groups, they and a few others
(e.g., Gage 1988; Wood et al. 1992a) anticipated that future directions
would include the use of hazards analysis for estimating the age structure of
skeletal samples. Indeed a variety of recent reviews (e.g., Konigsberg and
Frankenberg 2001; Milner et al. 2000) all recognize that hazards analysis is
now a practical and essential procedure for reconstruction paleodemo-
graphic profiles. Hazards analysis provides a way of dealing with the age
ranges associated with various methods, while at the same time easily
incorporating related factors such as population growth (see Konigsberg
and Frankenberg 2001; see also Wood et al., Chapter 7, this volume).

Of particular interest to this approach is a return to bases for
paleodemography. Angel (1969a,b) was a strong proponent of using age
indicator groups and not assigning those groups mean ages based on the
distribution in a reference sample. This same approach has been reiterated
recently by osteologists. Jackes (2000) argues that, given the problems of
accuracy in aging methods, we should be comparing the distribution of age
indicator stages themselves between populations, rather that translating
those into estimates of chronological age first. It seems clear, now, that the
central tenet of paleodemography — the analysis of the life table — cannot be
used. Rather, demographic profiles must be estimated directly from the
distributions of age indicator data themselves.

Answering Petersen’s challenge

The field of paleodemography has survived a series of battles over the last
25 years. The debates have continued spouting such publications as ‘‘Fare-
well to Paleodemography’’, ‘‘Paleodemography: Resurrection or Ghost?’’,
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‘‘Paleodemography: Not Quite Dead’’ and most recently ‘‘Deconstructing
Death in Paleodemography’’ (Bocquet-Appel and Masset 1982; Buikstra
and Konigsberg 1985; Konigsberg and Frankenberg 1994, 2001). Dealing
with critiques from both within and outside the anthropological commu-
nity, the field has strived and struggled in order to better understand
human survival in the past. This volume represents a true multidisciplinary
endeavor between physical anthropologists, demographers, and biostatis-
ticians to bring together their expertise to the problem of assessing human
survivorship in the past.

Like any multidisciplinary project, there is a considerable amount of
time spent educating one another in the relevant strengths and weaknesses
of each others’ fields. While many of our contributors are extremely versed
in osteological, demographic, and statistical methods and theory, this
repertoire of scholarly hats is not one that is often interchanged so comfort-
ably by many physical anthropologists. While we do not believe that we
have solved all the problems associated with this field of inquiry, we do
believe that this volume provides new hope for really understanding demo-
graphic structure in populations in which skeletal samples have been
found. Clearly there remain several issues that can be explored further.

By its very nature the question of human survival in the past falls within
the purview of the historical sciences. Unlike many sciences in which an
hypothesis is proposed and an experiment conducted to collect data to
accept or reject that hypothesis, osteological studies by necessity or cir-
cumstance collect the data first and then put forward a number of ques-
tions and hypotheses. Since archaeological samples are collected retrospec-
tively, there can be no premeditated control over factors of interest. As a
result, interpretations are made that best fit with observable data. When
these data change, so too must our interpretations. What does this mean
for the story of human life expectancy? It remains a work in progress,
but one for which there is now new hope for accurately answering this
question.
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es. Bulletins et Mémoirs de la Société d’Anthropologie de Paris 6, 261—268.

Bocquet-Appel JP (1986) Once upon a time: paleodemography. Mitteilungen der
Berliner Gesellschaft für Anthropologie, Ethnologie und Urgeschichte 7, 127—
133.

Bocquet-Appel JP and Demars PY (2000) Population kinetics in the upper Paleo-
lithic in western Europe. Journal of Archaeological Science 27, 551—570.

Bocquet-Appel JP and Masset C (1977) Estimateurs en paléodémographie.
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Antropologia 70, 237—245.

Della Casa P (1996) Linking anthropological and archaeological evidence: notes on
the demographic structure and social organization of the Bronze Age necrop-
olis Velika Gruda in Montenegro. Arheoloski vestnik 47, 135—143.

Gage TB (1985) Demographic estimation from anthropological data: new methods.
Current Anthropology 26, 644—647.

Gage TB (1988) Mathematical hazards models of mortality: an alternative to model
life tables. American Journal of Physical Anthropology 86, 429—441.

Gage TB (1989) Bio-mathematical approaches to the study of human variation and
mortality. Yearbook of Physical Anthropology 32, 185—214.

Gage TB (1990) Variation and classification of human age patterns of mortality:
analysis using competing hazards models. Human Biology 62, 589—617.

Grauer AL (1991) Patterns of life and death: the palaeodemography of Medieval
York. In H Bush and M Zvelebil (eds.): Health in past societies. British
Archaeological Reports International Series no. 567. Oxford: Tempus Repar-
atum, pp. 67—80.

Grauer AL and McNamara EM (1995) A piece of Chicago’s past: exploring
childhood mortality in the Dunning Poorhouse Cemetery. In AL Grauer (ed.):
The not too distant past: reconstructing the past through skeletal analysis. New
York: Wiley-Liss Inc., pp. 91—103.

Greene DL, Van Gerven DP, and Armelagos GJ (1986) Life and death in ancient
populations: bones of contention in paleodemography. Human Evolution 1,
193—207.

Gruspier KL and Mullen GJ (1991) Maxillary suture obliteration: a test of the
Mann method. Journal of Forensic Sciences 36, 512—519.

Guy H, Masset C and Baud C (1997) Infant taphonomy. International Journal of
Osteoarchaeology 7, 221—229.

Hassan FA (1981) Demographic archaeology. New York: Academic Press.
Henneberg M (1977) Proportion of dying children in paleodemographic studies:

estimation by guess or by methodological approach.Przeglad Antropologiczny
43, 105—114.

Henneberg M and Steyn M (1994) Preliminary report on the paleodemography of
the K2 and Mapungubwe populations (South Africa). Human Biology 66,
105—120.

Herring DA, Saunders SR, and Boyce G (1991) Bones and burial registers: infant
mortality in a nineteenth century cemetery from Upper Canada. Northeast
Historical Archaeology 20, 54—70.

Higgins RL and Sirianni JE (1995) An assessment of health and mortality of

21Looking back and thinking ahead



nineteenth century Rochester, New York using historic records and the High-
land Park skeletal collection. In AL Grauer (ed.): The not too distant past:
reconstructing the past through skeletal analysis. New York: Wiley-Liss Inc.,
pp. 121—136.

Hooton, EA (1930) The Indians of Pecos Pueblo: a study of their skeletal remains.
New Haven, CT: Yale University Press.

Hoppa RD (1996) Representativeness and bias in cemetery samples: implications
for palaeodemographic reconstructions of past populations. PhD dissertation,
McMaster University.

Hoppa RD and Saunders SR (1998) The MAD legacy: how meaningful is mean
age-at-death in skeletal samples. Human Evolution 13, 1—14.

Horowitz S, Armelagos G, and Wachter K (1988) On generating birth rates
from skeletal populations. American Journal of Physical Anthropology 76,
189—196.

Howell N (1976) Toward a uniformitarian theory of human paleodemography. In
RH Ward and KM Weiss (eds.): The demographic evolution of human popula-
tions. New York: Academic Press, pp. 25—40.

Howell N (1979) The demography of the Dobe !Kung. New York: Academic Press.
Howell N (1982) Village compostition implied by a paleodemographic life table: the

Libben site. American Journal of Physical Anthropology 59, 263—269.
Howell N (1986) Demographic anthropology. Annual Reviews of Anthropology 15,

219—246.
Howell N and Lehotay V (1978) AMBUSH: a computer program for stochastic

microsimulation of small human populations. American Anthropologist 15,
219—246.
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3 Reference samples:
the first step in linking biology and age in the
human skeleton
  . 

Introduction

One of the most overlooked, but basic, sources of error in skeletal age
estimation comes from problems with the human osteological reference
collection on which the method is based. The purpose of this chapter is to
review the need for known-age and sex human skeletal collections to be
used both for testing current age estimation methods and for developing
new ones, and to present a database of such reference collections world-
wide.

Bocquet-Appel and Masset (1982) were the first researchers to stress the
importance of the reference sample. They showed that, because of the
simple regression methods being used for age estimation methods, the age
structure of the reference population was reflected in the estimated age
distribution in the target (unknown or archaeological) sample. The authors
saw this as one of the fatal flaws of paleodemography, and although many
did not agree that it was insurmountable, the paper did spur a reanalysis of
age estimation methods (see e.g., Konigsberg and Frankenberg 1992, 1994;
Milner et al. 1997). However, none of these concentrated on the reliability
and representativeness of reference collections, which are usually taken for
granted.

There are two ways to deal with the problems with the structure of the
reference population. The first is to use a reference collection of skeletons
with a uniform distribution of ages. This has been the most logical method
in new age estimation methods (see e.g., Boldsen et al., Chapter 5, this
volume). However, this procedure assumes that the skeletons in the target
population have an equal chance of being all ages (Konigsberg and Frank-
enberg 1994). While not necessarily wrong, this method means that the
information about the age distribution in the target sample is discarded
(Konigsberg and Frankenberg 1992). The second method of dealing with
the reference collection structure is to use statistical methods, such as those
presented in the other chapters in this volume, to avoid the affect of the age
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structure of the reference population. In these cases, a reference population
that adequately represents all ages for the features being used in the
method is all that is needed. In either case, good reference collections
provide the foundation of any age estimation method.

Methods

A major portion of this research has consisted of compiling a database of
worldwide reference collections (Table 3.1). The preference has been for
anthropologists to use a small number of collections, because they are well
known and easily accessed. The most studied collections are the Terry
Collection, housed in Washington, DC, at the Smithsonian Institution’s
National Museum of Natural History, and the Hamann—Todd Collection
at the Cleveland Museum of Natural History. An astonishing amount of all
age and sex estimation research, published both in the USA and in other
countries, has been based on these collections, despite their known discrep-
ancies. A search of PubMed (http://www.ncbi.nlm.nih.gov/entrez/
query.fcg) in October 2000, resulted in 73 references to the Terry Collec-
tion, 32 to the Hamann—Todd Collection, 23 to the English Spitalfield
Collection, and fewer than 10 for any other collection. Therefore, it is
important to compile a list of known-age skeletons that are directly avail-
able or have data available for research.

Information about reference collections was gathered through literature
searches in MedLine, PubMed, Anthropological Literature, and Anthro-
pological Index Online, and through searches on the Internet con-
centrating on museums and departments of anthropology and anatomy at
universities and medical schools. Additional information came through
personal communication with curators, who were often able to refer me
to additional collections. Most collections listed here contain complete
skeletons. However, because different collections meet different needs,
there are several collections included that do not contain the entire
skeleton, or a complete age range. There are several fetal and child skeletal
collections listed, including the Smithsonian fetal and infant, and the Johns
Hopkins Fetal Collection. There are also collections that include
only certain elements. The Florence and Amsterdam anatomy collections
comprise mostly skulls, and the Okamoto Research Laboratory of Den-
tistry Collection has collections of human teeth with known identification.
Several collections consist of radiographs of human bones (e.g., the
Brush—Bolton Collection), and others have only selected elements. For
example, St Thomas Anglican Church has only written records, measure-
ments, and tissue samples, and the Suchey collection has pubic symphyses
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of known individuals. The Forensic Anthropology Data Bank contains
extensive, standardized data about modern forensic cases (Jantz and Jantz
1999).

This research is ongoing. The table is not complete; new collections and
additional information are being added regularly. Therefore, the table
presented here is for initial information only. A more complete table, with
contact and access information, links to email addresses and web sites, and
updated information about the collections is available at the Reference
Collection website (www2.potsdam.edu/usherbm/reference).

Discussion

Despite the fact that no one collection is ‘‘ideal’’, a set of characteristics of
an ideal sample was compiled to highlight the strengths and weaknesses of
the different collections, and to provide a standard for new collections. An
ideal reference collection has several characteristics. The first is that the
ages-at-death of the skeletons are known. Many collections, including the
Terry Collection, that are called ‘‘known age’’ have some or all skeletons
with ages that were self-reported. Demographers have ample data that
people do not always give accurate information about their ages, because
either they do not know their true age or they choose for cultural reasons to
misrepresent their age (Howell 1976a). Therefore, a good reference collec-
tion will have verified ages that have used vital records to collaborate a
self-reported age.

The second issue of concern with reference collections is that most real
collections contain a select subset of individuals. An ideal reference collec-
tion would also have a good representation of the variation present in the
population of interest. This would include individuals of various
socioeconomic statuses, races, and health. Because these real collections
are based on one of several collection strategies that produce biased
samples, most do not fit the ideal description. The first collection strategy is
epitomized by the Terry and Hamann—Todd Osteological Collections,
where anatomy departments curated all skeletons from their dissection
laboratories. These individuals included both unclaimed or indigent bodies
from the state, and the bodies of people who willed that their bodies be used
for research. A study by Ericksen (1982) showed, that while there were
differences between the ‘‘regular’’ (unclaimed body) collection and the
willed bodies in the Terry Collection, presumably reflecting differences in
socioeconomic status, these differences were not ubiquitous and did not
show clearly that the ‘‘regular’’ skeletons were different enough to invali-
date most age estimation procedures.
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Another collection strategy used to produce human osteological collec-
tions was to save bodies that showed ‘‘interesting’’ or pathological features,
usually for teaching purposes. The National Museum of Health and Medi-
cine in Washington, DC, and the Museum of Pathological Anatomy in
Vienna, Austria, have extensive collections of this type. Several collections,
particularly those housed at universities in the USA, have collections based
on forensic cases, where the skeletal materials have been donated for
further study. The collections of the University of Tennessee William M.
Bass Donated Collection and Forensic Anthropology Data Bank, the
Louisiana State University FACES Laboratory Collection, and some of
the material from the US National Museum of Health and Medicine were
accessioned this way. The final method of collecting skeletons comes from
disinterment of skeletons of known individuals from cemeteries. Examples
of this type of collection strategy are the Spitalfields, Frasetto, Hong Kong,
and I. Gemmerich Collections.

The next characteristic of an ideal reference sample is that all ages and
both sexes are well represented. For adult age estimation techniques, this
normally means a skeletal collection that includes male and female individ-
uals from their mid or late teenage years up through the 80s and 90s. Many
skeletal collections are oversampled at certain years, depending on the
origin of the sample. For instance, the sample that McKern and Stewart
used for their pubic symphysis aging method (McKern and Stewart 1957)
was based on dead soldiers from the Korean War, oversampling young
men. In contrast, because the Terry Collection of the Smithsonian Nation-
al Museum of Natural History consists primarily of the remains of indi-
gents from St Louis, Missouri, in the first half of the twentieth century, it
has an overabundance of older black and white males and fewer young
women (http://nmnhwww.si.edu/anthro/Collmgt/terry.htm).

The final criterion for an ideal reference collection is that it is easily
accessed. All of the collections mentioned in this chapter have opportuni-
ties for researchers to access the collections, although some may require
more preliminary permission and planning than others. In all cases, it is
important to contact the curator of the collection before research begins;
some may require a copy of a research proposal before allowing access.

Even though many of the collections have some or many of the ‘‘ideal’’
characteristics, the most important part of choosing a research collection is
that it meets the criteria needed for the specific research project. Popula-
tions should be closely matched for ages, ethnic origin, socioeconomic
status, etc. A reference collection that is perfect for one study may be
impractical for another.

Because no real reference population is ‘‘ideal’’, two assumptions have
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to be made when using one as the basis of an age estimation method. The
first is the assumption that the reported ages are correct biological ages.
This has been an unacknowledged underlying assumption of most of the
age estimation methods that are currently used. The researcher has to
accept that the ages, if incorrect, are ‘‘close enough’’, but this does add an
additional amount of uncertainty to the final individual age estimation.
Noting whether the ages of the sample have been verified will help to
alleviate most of the uncertainty.

The second assumption that must be made is that senescent processes
are uniform. The uniformitarian principle, on which much of our
paleodemographic research is based, states that the demographic processes
we see in the present are the same as they were in the past (Howell 1976b).
Extending this idea to skeletal age estimation, it means that a biological
marker of a certain age in one individual will be a marker of the same age in
a different person, regardless of sex, origin, health, or socioeconomic status.
This assumption, again, is known to be untrue (Boldsen 1997). It is partially
corrected by looking at males and females separately, ethnic groups separ-
ately, and usually discarding skeletons that were clearly from unhealthy
individuals. After correcting for these other differences, it still must be
assumed that people of similar background have biological aging processes
that proceed in similar ways, regardless of when that person was alive. In
other words, a reference sample of skeletons from European-derived indi-
viduals who died in the early 20th century will give valid information for
estimating the ages of medieval European peasants. Without this assump-
tion, no paleodemographic data would be valid.

One of the goals of identifying collections of known-age human skeletal
material is to test these assumptions about biological aging of the skeleton.
By comparing populations with different collection strategies and in differ-
ent parts of the world, questions about the uniformity of biological aging
patterns can be answered. It will be important to determine which aging
methods can be validated across cultures, and which biological character-
istics are always reliable indicators of age. If there are significant differences
between populations, quantifying the variation present will also be import-
ant, and will give us a baseline to evaluate how the differences affect the
ability to estimate ages of skeletons from preindustrial times.
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King CA, I� şcan MY, and Loth SR (1998) Metric and comparative analysis of sexual
dimorphism in the Thai femur. Journal of Forensic Sciences 43, 954—958.

Klepinger LL, Katz D, Micozzi MS, and Carroll L (1992) Evaluation of cast
methods for estimating age from the os pubis. Journal of Forensic Science 37,
763—770.

Konigsberg LW and Frankenberg SR (1992) Estimation of age structure in anthro-
pological demography. American Journal of Physical Anthropology 89, 235—
256.

Konigsberg LW and Frankenberg SR (1994) Paleodemography: not quite dead.
Evolutionary Anthropology 3, 92—105.

44 B. M. Usher



Liu W, Chen S, and Xu Z (1988) Estimation of age from the pubic symphysis of
Chinese males by means of multiple analysis. Acta Anthropologica Sinica VII,
147—153.

Liversidge HM (1994) Accuracy of age estimation from developing teeth of a
population of known age (0—5.4 years). International Journal of Osteoarchaeol-
ogy 4, 37—45.

Loth SR and Henneberg M (1996) Mandibular ramus flexure: a new morphological
indicator of sexual dimorphism in the human skeleton. American Journal of
Physical Anthropology 99, 473—485.

Mann RW, Symes SA, and Bass WM (1987) Maxillary suture obliteration: aging
the human skeleton based on intact or fragmentary maxilla. Journal of Foren-
sic Sciences 32, 148—157.

Mann RW, Jantz RL, Bass WM, and Willey PS (1991) Maxillary suture obliter-
ation: a visual method for estimating skeletal age. Journal of Forensic Sciences
36, 781—791.

MarinoEA (1995) Sex estimation using the first cervical vertebra. American Journal
of Physical Anthropology 97, 127—133.

McKern TW and Stewart SD (1957) Skeletal age changes in young American males.
Analyzed from the skeletal standpoint of age identification. Natick, MA: US
Army Quartermaster Research and Development Center.

Milner G, Boldsen J, and Usher BM (1997) Age at death determination using
revised scoring procedures for age-progressive skeletal traits (abstract). Ameri-
can Journal of Physical Anthropology Supplement 24, 170.

Moggi-Cecchi J, Pacciani E, and Pinto-Cisternas J (1994) Enamel hypoplasia and
age at weaning in 19th-century Florence, Italy. American Journal of Physical
Anthropology 93, 299—306.

Morita M (1990) Morphological studies on the roots of lower first molars in
Japanese. Shika Gakuho. Journal of the Tokyo Dental College Society 90,
55—71.

Oostra RJ, Baljet B, Dijkstra PF, and Hennekam RC (1998a) Congenital anomalies
in the teratological collection of the Museum Vrolik in Amsterdam, The
Netherlands. I: Syndromes with multiple congenital anomalies. American
Journal of Medical Genetics 77, 100—115.

Oostra RJ, Baljet B, Dijkstra PF, and HennekamRC (1998b) Congenital anomalies
in the teratological collection of the Museum Vrolik in Amsterdam, The
Netherlands. II: Skeletal dysplasias. American Journal of Medical Genetics 77,
116—134.

Oostra RJ, Baljet B, and Hennekam RC (1998c) Congenital anomalies in the
teratological collection of the Museum Vrolik in Amsterdam, The Nether-
lands. IV: Closure defects of the neural tube. American Journal of Medical
Genetics 80, 60—73.

Oostra RJ, Baljet B, Verbeeten BW, and Hennekam RC (1998d) Congenital
anomalies in the teratological collection of the Museum Vrolik in Amsterdam,
The Netherlands. III: Primary field defects, sequences, and other complex
anomalies. American Journal of Medical Genetics 80, 45—59.

Oostra RJ, Baljet B, Verbeeten BW, and Hennekam RC (1998e) Congenital
anomalies in the teratological collection of the Museum Vrolik in Amsterdam,

45Reference samples



The Netherlands. V: Conjoined and acardiac twins. American Journal of
Medical Genetics 80, 74—89.

Perizonius WRK (1984) Closing and non-closing sutures in 256 crania of known
age and sex from Amsterdam (AD 1883—1909). Journal of Human Evolution 13,
201—216.

Pfeiffer S (1992) Cortical bone age estimates from historically known adults.
Zeitschrift für Morphologie und Anthropologie 79, 1—10.

Prescher A and Bohndorf K (1993) Anatomical and radiological observations
concerning ossification of the sacrotuberous ligament: is there a relation to
spinal diffuse idiopathic skeletal hyperostosis (DISH)? Skeletal Radiology 22,
581—585.

Rogers TL (1999) A visual method of determining the sex of skeletal remains using
the distal humerus. Journal of Forensic Sciences 44, 57—60.

Saunders SR, FitzGerald C, Rogers T, Dudar C, and McKillop H (1992) A test of
several methods of skeletal age estimation using a documented archaeological
sample. Canadian Society of Forensic Science Journal 25, 97—118.

Scheuer L and Maclaughlin-Black S (1994) Age estimation from the pars basilaris
of the fetal and juvenile occipital bone. International Journal of Osteoarchaeol-
ogy 4, 377—380.

Schutkowski H (1993) Sex determination of infant and juvenile skeletons. I.
Morphological features. American Journal of Physical Anthropology 90, 199—
205.

Scoles PV, Salvagno R, Villalba K, and Riew D (1988) Relationship of iliac crest
maturation to skeletal and chronological age. Journal of Pediatric Orthopedics
8, 639—644.

Scoles PV, Latimer BM, DiGiovanni BF, Vargo E, Bauza S, and Jellema LM (1991)
Vertebral alterations in Scheuermann’s kyphosis. Spine 16, 509—515.

Simms DL (1989) Thickness of the lateral surface of the temporal bone in children.
Annals of Otology, Rhinology, and Laryngology 98, 726—731.

Singh G, Singh S, and Singh SP (1975) Identification of sex from tibia. Journal of the
Anatomical Society of India 24, 20—24.

Singh S and Singh SP (1972) Identification of sex from the humerus. Indian Journal
of Medical Research 60, 1061—1066.

Singh S, Singh G, and Singh SP (1974) Identification of sex from the ulna. Indian
Journal of Medical Research 62, 731—735.

Smith SL (1996) Attribution of hand bones to sex and population groups. Journal of
Forensic Sciences 41, 469—477.

Spence MW (1996) Nonmetric trait distribution and the expression of familial
relationships in a nineteeth century cemetery. Northeast Anthropology 52,
53—67.

Steele DG (1976) The estimation of sex on the basis of the talus and calcaneus.
American Journal of Physical Anthropology 45, 581—588.

Stojanowski CM (1999) Sexing potential of fragmentary and pathological metacar-
pals. American Journal of Physical Anthropology 109, 245—252.

Stout SD, Porro MA, and Perotti B (1996) Brief communication: a test and
correction of the clavicle method of Stout and Paine for histological age

46 B. M. Usher



estimation of skeletal remains. American Journal of Physical Anthropology 100,
139—142.

Susanne C, Guidotti A, and Hauspie R (1985) Age changes of skull dimensions.
Anthropologischer Anzeiger 43, 31—36.

SutherlandLD and Suchey JM (1991) Use of the ventral arc in pubic sex determina-
tion. Journal of Forensic Sciences 36, 501—511.

Suwa G (1981) A morphological analysis of Japanese crania by means of the
vestibular coordinate system. Journal of the Anthropological Society of Tokyo
89, 329—350.

Szilvassy J and KritscherH (1990) Estimation of chronological age in man based on
the spongy structure of long bones. Anthropologischer Anzeiger 48, 289—298.

Tanaka H (1999) Numeral analysis of the proximal humeral outline: bilateral shape
differences. American Journal of Human Biology 11, 343—357.

Tomczak PD and Buikstra JE (1999) Analysis of blunt trauma injuries: vertical
deceleration versus horizontal deceleration injuries. Journal of Forensic
Sciences 44, 253—262.

Trancho GJ, Robledo B, Lopez-Bueis I, and Sanchez JA (1997) Sexual determina-
tion of the femur using discriminant functions: Analysis of a Spanish popula-
tion of known sex. Journal of Forensic Science 42, 181—185.

Trudell MB (1999) Anterior femoral curvature revisited: race assessment from the
femur. Journal of Forensic Sciences 44, 700—707.

Ubelaker DH (1989) The estimation of age at death from immature human bone. In
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4 Aging through the ages:
historical perspectives on age indicator methods
  -

Introduction

Due to its resistance to decomposition, the human skeleton proves to be an
extremely valuable source for the reconstruction of past life parameters.
Archaeologists, historians, and anthropologists alike rely on these biologi-
cal building blocks for many paleodemographic inferences and, not sur-
prisingly, there is a longstanding tradition of establishing mortality profiles
from prehistoric cemetery populations. These death structures serve as
indicators of overall life expectancy, fertility, and even population growth.
Moreover, historical patterns of health, disease, and ontogenesis are used
to isolate biological as well as social life history factors.

However, the principal source of error — the accuracy of the osteologi-
cally derived vital statistics — needs to be critically addressed. Unfortunate-
ly, given the desire to make paleodemographic inferences, it is all too often
forgotten that the attribution of individual biological profiles merely repre-
sents a well-founded estimate. While sexing methods, when applied to
sufficiently preserved adult skeletons, may reach an overall precision of up
to 90% (St Hoyme and I� şcan 1989), postmaturity age assessment still
remains one of the most difficult tasks. Although bones and teeth undergo
a lifelong age-related metamorphosis, each part of the skeleton, depending
on its location, structure and function, reflects a different aspect of the
aging phenomenon (Figure 4.1).

In spite of the strong overall association between maturational and
skeletal changes, the aging process is merely universal to the extent that it
applies to both sexes and all populations. Beyond that, there is remarkable
interpersonal heterogeneity due to distinctive genetic differences, behavior
variation, diverse predispositions, and the individual’s lifetime interaction
with the environment. Making matters worse, there is evidence of notable
within-subject variability (Spirduso 1995). Consequently, the terms ‘‘bio-
logical age’’ and ‘‘chronological age’’ are not synonymous. Rather, the
determination of biological age is inferred from variables that are corre-
lated with chronological aging (Arking 1998). Biological age markers
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Figure 4.1. The lifelong sequential metamorphosis of the human skeleton;
depicted are some of the most often used age indicators (young male,
approximately 20—25 years old, Early Medieval cemetery). 1, dental attrition;
2, sternal rib end; 3, auricular surface; 4, pubic symphysis; 5, (ecto)cranial sutures;
6, proximal humerus; 7, proximal femur; 8, bone histology. Although all bone
markers point towards early adulthood, the specific ‘‘age windows’’ may vary
according to the trait employed and the influence of confounding factors. Thus
some indicators will provide an accelerated estimate.

therefore do not represent chronological age, but are merely an estimate of
the physiological status of the individual (Figure 4.2).

Whereas early research into skeletal biology focused exclusively on a
few select traits, the rise of the prominent subdiscipline of forensic osteol-
ogy has undisputedly elevated classical individualization techniques to a
new level of scientific inquiry. Continuous retesting, modification, and
calibration of existing methods as well the development of new techniques
has coincidentally promoted a dramatic shift from single-trait to multiple-
trait approaches. Beyond that, the multitude of confounding factors of the
aging process has shattered the long-held assumption that age estimation
requires merely the routine application of textbook standards. In retro-
spect, and not surprisingly, the past two decades have been characterized
by a critical rebuttal of such long-held concepts, ultimately culminating in
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Figure 4.2. From biological to chronological age estimates: the effect of
confounding factors on the final age estimation.

an undeserved and untimely ‘‘farewell to paleodemography’’ (Bocquet-
Appel and Masset 1982).

However, instead of prematurely hailing the demise of paleodemogra-
phy, innovative research avenues, novel traits, and new techniques need to
be explored.Admittedly, because of the plasticity of the aging process, valid
improvements in our knowledge of age progression may remain elusive.
Nevertheless, the conceptualization of genuinely polysymptomatic pro-
cedures may provide us with a valid research alternative.

The evolution of age markers: single-trait systems

Any recapitulation of current and past research traditions in skeletal
biology brings to light a longstanding and strong adherence to a select few
age markers. However wide the span of possible features presenting itself
today, past strategies almost exclusively focused on the fusion of cranial
sutures, the process of dental wear, or the metamorphosis of the pubic
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Figure 4.3. Current divergence of skeletal age markers, with emphasis on the
relative share of pubic, sutural, and dental wear standards; 435 distinct
methodical approaches surveyed; (Kemkes-Grottenthaler 1993). Summarized
markers include ‘‘dentition’’, i.e., enamel, color, dentine, pulp, racemization,
translucency, cement, third molar; ‘‘thorax’’, i.e., thyroid cartilage, clavicle,
scapula, sternum, ribs, vertebrae; ‘‘long bones’’, i.e., humerus, radius, ulna, femur,
tibia, fibula.

symphysis (see Figure 4.3). Some historically oriented reviews even go so
far as to claim that ‘‘from the 1920’s on, most skeletal biologists have relied
almost solely on the cranial sutures and pubic symphysis for age estimation
in the adult’’ (I� şcan 1989:7). Thus generations of physical anthropologists —
completely oblivious to the fact that individual bones are not isolates —
erroneously believed that skeletal age could be adequately calculated from
a small pool of available traits, when in truth the human skeleton, i.e., its
composition, physical appearance, and aging pattern, is influenced by a
myriad intrinsic and extrinsic factors. Once it was understood that a single
age marker merely provided a narrow window into a specific age segment,
a general picture of the sequential aging process arose and consequently
multiple-trait assessment became routine.

With hindsight, the obvious preponderance of certain traits cannot
simply be attributed to a commonly shared belief in these age markers’
relative accuracy (see Table 4.3). Instead, other reasons come to mind. For
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one, from the standpoint of practicality, these traits are easy to examine
and exhibit a very distinctive metamorphosis. Furthermore, the human
cranium has always been of exceptional fascination (Henschen 1966) and is
often the best-preserved portion of an archaeologically recovered skeleton.
Thus the preference for age markers of the skull seems to be highly related
to historical trends within the field of physical anthropology itself. Conse-
quently it was the rising interest in the discipline of craniology that gave
directional incentives. Collecting began in the 19th century, and the first
material to be addressed by contemporary physical anthropologists was
henceforward always cranial (Spencer 1997). This explains why the first
systematic study of suture closure trends was initiated in the 1860s (Baker
1984; Masset 1989). Likewise, dental wear research commenced within the
latter half of the 19th century (Rose and Ungar 1998). Gradually anthro-
pologists began to shift from collecting skulls to the acquisition of complete
skeletons and consequently some of the most famous anatomy collections
were established worldwide (see Usher, Chapter 3, this volume). The avail-
ability of these documented cadaver series gave new impetus to innovative
research aims and a growing number of questions relating to age and sex
estimation were thereby answered. While the recognition of age-related
patterns in pubic metamorphosis may antedate the 1800s (McKern 1956),
the first comprehensive study was not published until the third decade of
the following century (Meindl and Lovejoy 1985).

Only after the advent of forensic osteology were new research avenues
successively explored, not merely in terms of possible traits but even more
so in terms of methodology. Notwithstanding a growing insight that the
search for an all-encompassing, single age indicator might be elusive,
innovative techniques are often welcomed as the long-awaited solution to a
time-old problem. For example, a biochemical method based on aspartic
acid racemization (AAR) that can be employed on teeth, and also on bone
and soft tissues, has been hailed as the method of choice when it comes to
providing simple, cost-effective and accurate results (Ritz-Timme et al.
2000). However, inconsistencies between different laboratories, due to
different protocols, must be resolved (Waite et al. 1999). Likewise, interper-
sonal heterogeneity (Ohtani 1997) and general restriction of the method to
adult individuals must be considered. But the most problematic issue
centers on the fact that the preservation of the skeleton is a severely limiting
factor. Chemical alteration of the proteins infringes greatly on the accuracy
of older samples (Carolan et al. 1997). Thus only a few investigations were
able to successfully apply this technique to cases with longer postmortem
intervals (Ogino et al. 1985).

When it comes to the exploration of the true nature of the aging process,
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Table 4.1. Primary, secondary, and tertiary criteria of age markers (after
Spirduso 1995)

Primary criteria Strong correlation between biological feature and age
Age indicator is not altered by pathological events
Age-related alteration is not secondary to metabolic or
nutritional changes
Sequential and unambiguously identifiable aging pattern
Continuous remodeling throughout lifespan

Secondary criteria Wide applicability
Generalization across species

Tertiary criteria Reliable changes within a short time interval as compared with
total lifespan

for any given indicator to be of unequivocal value, certain prerequisites
need to be fulfilled. In reference to the norms applied in identifying geron-
tological biomarkers (Spirduso 1995), a robust skeletal age indicator
should likewise satisfy several fundamental criteria (see Table 4.1). Extend-
ing these norms to skeletal age estimators, it is quite apparent that a single
age marker cannot fulfill these criteria. The human aging process is far too
complex. The sequential passage of time of any given estimator is a
function not only of age but also of a multitude of confounding factors.
Currently, very effective interventions into the aging process have been
documented for many vertebrate species, including humans (Arking 1998).
It must be concluded, then, that all markers employed in skeletal age
assessment are inherently flawed.

Issues of validity and reliability

Despite unequivocal endeavors to attain improved age estimates in both
the archaeological and the forensic context, none of the methodological
approaches available to date presents itself without inherent pitfalls (Table
4.2). Virtually every bone of the human skeleton may be aged via an array
of techniques. The choice of procedure is therefore guided mostly by the
circumstances of sample preservation and the laboratory equipment and
resources at hand.

Blind evaluations between various techniques have yielded somewhat
contradictory results (Masters and Zimmerman 1978; Aiello and Molleson
1993; Dudar et al. 1993; Turban-Just and Grupe 1995; Ericksen 1998;
Kvaal and During 1999). Since most of these studies were based on
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Table 4.2. Comparison of age estimation techniques (for a more detailed
review of these methods, refer to I� şcan and Loth (1989), Pfeiffer et al.
(1995), Stout (1998), Pasquier et al. (1999)

Methods Pro Con

Macroscopic
1. Morphology No special equipment

Cost-effective and fast
In situ determination
Sample integrity preserved
No bone selectivity

No measure of objectivity
Interobserver error bias?

2. Quantification by
numerical imagery

Simple preparation of
specimen

Specialized equipment
required

3. Radiography Invaluable in
developmental biology
Living reference samples for
comparison
Integrity of sample
preserved
Complements gross
morphology

Specialized training
necessary
X-ray standards are not
transferable
Technical problems (film)

Microscopic
1. Histology/

histomorphometry
Invaluable information
about health and disease

Requires exceptional
preservation
Specialized equipment
Need for strict
standardization of
parameters
Methods limited to certain
bones
Sampling error due to
intraskeletal variation
Elaborate preparation of
thin sections
Not all factors of osteon
creation and remodeling are
understood

2. Aspartic acid
racemization

Exceptional results Diagenetic factors
Elaborate preparation and
analysis

undocumented samples, the observed discrepancies cannot be validated. In
cases where the true age-at-death of the specimen was known, histological
methods seem to fare slightly, but not appreciably, better than traditional
morphological standards (Aiello and Molleson 1993). However, not all
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microscopic techniques may be equally suitable for all sexes and age
groups (Pratte and Pfeiffer 1999).

Regrettably, very few attempts have been outwardly directed at devel-
oping common standards, adequate calibration, or evaluation procedures.
Yet efforts to establish reliability and validity standards are necessary to
guarantee the quality estimates so important for forensic as well as
paleodemographic inquiries.

Reliability

Issues of reliability encompass observer error, phenotypic expression,
quasi-continuity, age and sex dimorphism, asymmetry, intertrait correla-
tion, causation factors, and heritability (Saunders 1989). The most import-
ant class of reliability estimates focuses on the problem of observer error.
Morphological assessment, in particular, has been repeatedly accused of
being prone to both inter- and intra-observer interference, although micro-
scopic methods of age determination are likewise at risk (Lynnerup et al.
1998). As osteomorphognostic methods are usually based on discrete,
highly descriptive traits it is stipulated that these traits — despite photo-
graphic standards or casts — easily lend themselves to subjective interpreta-
tions. Consequentially, the ability of a researcher to properly identify and
diagnose a given morphological trait is crucial to the method’s overall
predictive potential. Some techniques, indeed, seem to be highly biased by
observer error (Suchey 1979; Lovejoy et al. 1985b). However, the majority
of researchers report a negligible interobserver error (I� şcan et al. 1986a,b;
Charles et al. 1986; Galera et al. 1995). Apparently, several measures, such
as narrow category scales (Galera et al. 1995) and seriation of the sample
(Bedford et al. 1993), successfully counteract interobserver bias. Likewise,
the relative experience of the investigator may also be a contributing factor
(Baccino et al. 1999).

Validity

Issues of validity focus on the predictive values of given age indicators. The
accuracy of any given assessment hinges on a strong correlation between
the biological feature and age. A low correlation coefficient thus runs a
considerable risk of error to both the individual estimate as well as the
entire sample’s death structure. This holds true for single- as well as
multiple-trait methods (Table 4.3).
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Table 4.3. Coefficients of correlation between age indicators and age
at death (Bocquet-Appel and Masset 1982; Katz and Suchey 1985;
Lovejoy et al. 1985a; Meindl and Lovejoy 1985; Meindel et al. 1985;
Kemkes-Grottenthaler 1996b)

Indicator Females Males Both sexes�

Endocranial sutures (Acsádi and Nemeskéri) 0.35 0.51
Humerus (Acsádi and Nemeskéri) 0.34 0.44
Femur (Acsádi and Nemeskéri) 0.58 0.56
Pubic symphysis (Acsádi and Nemeskéri) 0.49 0.47
Pubic symphysis (McKern and Stewart)� 0.72
Pubic symphysis (McKern and Stewart)� 0.68 0.37 0.36
Pubic symphysis (Todd)� 0.85
Pubic symphysis (Todd)� 0.64 0.57 0.57
Auricular surface (Meindl et al.) 0.72
Multifactorial Summary Age (Lovejoy et al.) 0.79 0.90 0.85
Dental wear (Lovejoy) 0.70
Ectocranial sutures (Meindl and Lovejoy)� 0.57 (L); 0.50 (V)
Ectocranial suture (Meindl and Lovejoy)� 0.34 0.59 0.56

References: (1) Katz and Suchey 1985; (2) Meindl et al. 1985; (3) Meindl and Lovejoy 1985;
(4) Kemkes-Grottenthaler 1996b.
�L, lateral—anterior sutures; V, vault sutures.

Whereas Bocquet-Appel and Masset (1982) stipulated that a correlation
coefficient of less than 0.9 is unable to yield accurate assessments, Lovejoy
and colleagues (1985a) asserted that a factor of 0.7 is indeed sufficient. At
first glance, this may seem nothing more than a purely academic dispute;
however, the practical consequences for paleodemography would be genu-
inely devastating. The figures listed in Table 4.3 readily demonstrate that
accepting a lowered threshold of 0.7 would make a majority of the most
widely used age markers unfit for paleodemographic inquiries. However, in
cases of correlation coefficients as low as 0.6, it has been suggested that
iterative techniques might compensate for weak estimators (Bocquet-
Appel and Masset 1996).

Yet, from a statistical point of view, there are several fundamental
problems associated with the use of correlation coefficients. For one thing,
the traits typically used in age assessment are discrete. Furthermore, the
relationship between the assigned phase and corresponding age span is
usually highly nonlinear, as can be deduced from the fact that these phases
often overlap and represent intervals of variable length. Lastly, the predic-
tion of age-at-death depends on the mortality schedule of the target sample
(see Müller et al. 2001; Hoppa and Vaupel, Chapter 1, this volume). To
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circumvent these shortcomings, while still providing some measure of the
strength of a given technique, scatterplots of predicted versus actual ages
should become an integral part of the validation process. In addition to
providing a statistically sound alternative to the computation of correla-
tion coefficients, this procedure might be used to detect nonlinearities and
can be coupled with measures of association between predicted and actual
values.

Phases or components? The case of the pubic symphysis

The English anatomist T. W. Todd was the first to describe the progressive
morphological metamorphosis of the pubic symphysis within the frame-
work of a proper age assessment technique. What makes Todd’s opus such
a remarkable and valuable resource is the fact that he based his system on a
collection of fully documented specimens. His 10-phase system� of modal
standards initially incorporated sex- and population-specific trends (Todd
1920, 1921a—c, 1923, 1930); however, none of these differences proved to be
sufficiently distinct to preclude using the classic ‘‘white male’’ standards for
all specimens. Todd’s pubic aging standards focus on five main features of
the symphyseal face: surface, ventral border (or ‘‘rampart’’), dorsal border
(or ‘‘plateau’’), superior and inferior extremity. In addition, several subsidi-
ary traits such as ‘‘ridging’’, ‘‘billowing’’, or ‘‘ossific nodules’’ may be
distinguished. Todd’s phase system is still widely used today, along with
several subsequent refinements (Brooks 1955; Hoppe 1969; Hanihara and
Suzuki 1978; Meindl et al. 1985; Suchey et al. 1986; Zhang et al. 1989;
Garmus 1990). These modifications were directed mainly at narrowing or
expanding the age limits set by Todd, as well as condensing the original
10-phase scheme.

Although modal systems have repeatedly proved themselves to be suc-
cessful age estimators, several apparent weaknesses of Todd’s system gave
rise to a scoring method that is based on single components rather than
combined sets of features (McKern 1956; McKern and Stewart 1957).
Three components, which had also been previously identified by Todd,
were isolated: the dorsal plateau, the ventral rampart, and the symphyseal
rim. Each of these three is further divided into five chronological stages.
The resultant score, ranging in value from 0 to 15, is then used to derive at

� Interestingly, Todd later added other patterns of metamorphosis to his pubic aging standards,
which he named ‘‘anthropoid strain’’ (Todd 1923). These may be taken as morphological
changes alternative to the more commonly found patterns.
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Table 4.4. Phase methods versus component techniques

Phases Components

Pro Easy to use due to cases, photographic
standards etc.
Simple evaluation of results

Each component is easily evaluated
Scoring eliminates observer bias
Better suited for assessing variability

Con Static system, that does not make
allowances for variability
Highly descriptive
Prone to observer bias
If specimen does not depict modal stage,
method is limited

More time consuming

an age from the appropriate tables. These provide the mean, standard
deviation, and observed age range for each increment of the score. Due to
the fact that there is a developmental sequence within the three compo-
nents, only 21 formulas have been documented, as compared with the total
number of possible combinations of 125 (I� şcan 1979).

Gilbert and McKern (1973) subsequently established a separate set of
pubic standards for females. However, the standard deviations initially
provided were miscalculated and needed revision (Snow 1983). Snow alter-
ed the procedure and implemented a set of simple linear and polynomial
equations that also simplified the evaluation.

Diligent comparisons of both techniques (Table 4.4) have found that the
original phase method established by Todd, as well as the subsequent
improvements proposed by other researchers, proved to be superior to the
alternative component approach (Hanihara and Suzuki 1978; Suchey 1979;
Meindl et al. 1985; Klepinger et al. 1992). So far, this gap between the two
approaches has been interpreted on purely methodological grounds. How-
ever, attention should also focus on the neurobiological basis of object
recognition, which consists of three steps: feature extraction, solving corre-
spondence problems, and comparison with reference. Thus the modal
phase approach might, by its very nature, be the more adapt way of age
attribution.

From single- to multiple-trait techniques

Each bone is merely a single aspect of the whole skeleton and by its very
nature varies in its structure, function, and ultimately its aging pattern. In
order to minimize errors introduced by aberrant individual indicators, the
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combined analytical approach is desirable, whenever complete individuals
are available for analysis. Comprehensive approaches to age determination
have proved to be consistently superior to individual ones (Baccino et al.
1999).

The Gustafson method

The Swedish stomatologist G. Gustafson (1950, 1955) was the first to
combine several age estimators. His method encompasses six variables that
are determined in a longitudinally sectioned tooth: attrition, periodontosis,
secondary dentin, cementum apposition, root resorption and root trans-
parency.� Each criterion is ranked individually and allotted 0 to 3 points.
The point-values are then entered into a formula and the sum of points by
means of a standard curve gives the estimated age.

While the original publication described an error of estimation of �3.6
years, several subsequent re-evaluations demonstrated that the margin of
error was much broader than had been initially proposed (Nalbandian and
Sognnaes 1960; Elsner 1961). A substantial reworking of the original data
by Maples and Rice (1979) finally corrected Gustafson’s regression statis-
tics and found the error to be �7.09 years, nearly double that claimed in
the original publication. It is generally assumed today that the true error
may be approximated to �8 years (Lucy and Pollard 1995).

The ongoing debate about the correct error margin is due largely to the
fact that the statistical methods of regression analysis originally employed
by Gustafson had insufficient data (Lucy et al. 1996). Moreover, the misap-
plication of statistical methods is also responsible for an obvious regression
toward the mean (Solheim and Sundnes 1980). Endless alterations have
been stipulated (Rösing and Kvaal 1998) and the method is still being
modified and elaborated.

Complex method

Ever since the complex method was recommended by a joint group of
leading international anthropologists in 1980 (NN 1980), it has subse-
quently become the most popular basis for morphological age estimation
in Europe. Basing their model on that of Gustafson, Acsádi and Nemeskéri

� Several other dental methods that rely on a combined approach to dental aging are described
by Kilian and Vlček (1989) and Xu et al. (1992).
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(1970) devised their method after it became apparent that the cranial
sutures provided merely rough estimates of biological age. Their approach
therefore co-utilizes structural changes in the spongy tissue of humerus and
femur, and the metamorphosis of the pubic symphysis. All four age indi-
cators are averaged, giving equal weight to each region.

It is on the grounds of the averaging procedure, however, that the
validity of this approach was subsequently questioned (Lovejoy et al. 1977;
Meindl et al. 1985; Lovejoy et al. 1985a; Brooks and Suchey 1990). Factual-
ly, the symphyseal face is given a slightly dominant role, since its gross
estimate will determine the limits of the ranges of the remaining age
markers. Nevertheless, evidence has come to light that this method results
in an obvious overaging effect in younger individuals (Brooks and Suchey
1990; Kemkes-Grottenthaler 1996a). Moreover, Molleson and Cox (1993)
ascertained a bidirectional systematic error of constant overaging of indi-
viduals under 40 years and underaging of individuals of over 70 year, thus
largely contributing to the well-known phenomenon of ‘‘attraction of the
middle’’.

Multifactorial summary age

Contrary to the complex method, the multifactorial summary age (MSA)
ideally can incorporate as many indicators as are available (Lovejoy et al.
1985a). The original study encompassed five indicators (auricular surface,
pubic symphysis, dental wear, ectocranial sutures, and proximal femur).
However, the analysis can also be run employing fewer age indicators or
even additional standards, as long as the sample is seriated according to
each method (Bedford et al. 1993). More recently Kunos et al. (1999) have
shown that the incorporation of the first rib age indicator can successfully
strengthen the quality of the summary method.

All age indicators are independently applied to the entire population
sample and then processed to generate a population matrix. This matrix is
then subjected to principal components analysis (PCA), where the first
factor is assumed to represent true chronological age. The PCA provides
weights for each indicator according to its general reliability for the par-
ticular sample in question. The final age of any individual is the weighted
average of all chosen indicators. Application of this method indicates that
it produces an estimated age distribution that is (statistically) indistin-
guishable from the real. However, this does not imply that each individual
age estimate is accurate.
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Table 4.5. Comparison of four currently utilized multitrait methods

Gustafson’s Complex Summary Transition
method method age analysis

Sample
preparation

Longitudinal
sections of
teeth

Minimal Seriation None

Number of age
indicators

6 4 Variable 3

Anatomical
regions

Attrition
Periodontosis
Secondary
dentin
Cementum
apposition
Root
resorption
Root
transparency

Sutures
Humerus
Femur
Pubis

Variable Pubis
Auricular
surface
Sutures

Evaluation Regression
analysis

Tables Principal
components
analysis

Likelihood
estimation

Transition analysis method

This multifactorial age assessment method remains as yet unpublished
(Milner and Boldsen 1999; see Boldsen et al., Chapter 5, in this volume),
although the technique itself has been utilized in various archaeological
endeavors (Usher et al. 2000). The scoring system involves a detailed
skeletal age coding format incorporating various aspects of the pubic
symphysis, the auricular surface, and cranial suture closure. Two stage
designations are possible. This technique permits likelihood of death esti-
mates occurring at different ages for each character (confidence intervals)
and thus is useful in both the archaeological as well as the forensic context.

This abridged rebuttal of polysymptomatic approaches (see Table 4.5)
documents that while the first multifactorial methods were still based on
the idea that each bone equally reliably reflects age-at-death, the introduc-
tion of weighted combinations of several bones has yielded superior results.
However, due to the plasticity of human aging, future strategies will have to
go beyond multiregional assessment and will have to incorporate multi-
methodological concepts as well. Preliminary tests have already shown
encouraging results in terms of accuracy, although many methodological
issues still need to be resolved (Thomas et al. 2000).
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Future research perspectives

Whether attention is focused on devising innovative approaches to age
assessment or recalibrating existing techniques, researchers have always
been preoccupied with stipulating aging norms that are universally appli-
cable. Paradoxically, gerontologists believe in the basic axiom that aging is
a highly individual phenomenon (Bryant and Pearson 1994). Therefore,
applying the growing evidence from gerontology to questions of skeletal
age estimation, the key to a comprehensive understanding of age-related
changes may lie ultimately in the exploration of intra- and interpersonal as
well as population variation.

Intra-individual differences

Intra-individual differences are nowhere better represented than in the
conceptual framework of biological age. The extent to which within-
subject variability is stable throughout the lifespan differs mainly with the
function measured (Spirduso 1995). The problem of within-subject varia-
bility has been rarely addressed and, if so, almost exclusively within the
context of microscopic age determination. Consequently, Stout (1989,
1998) distinguished between spatial variance, incoherence, and temporal
variance. Some morphological evidence is available, but unfortunately the
observed trends could not be conclusively verified in the underlying ar-
chaeological sample (Kemkes-Grottenthaler 1993). One interesting aspect
of intra-individual variation that has come to light, however, centers on the
phenomenon of a markedly asymmetrical age progression of bilateral age
markers. This has been documented in ectocranial suture closure, where
left-sided sutures showed a retarded tendency toward fusion (Kemkes-
Grottenthaler 1996b) and also in the auricular surface method (Moore-
Jansen and Jantz 1986).

Interpersonal differences – young versus old individuals

It is a well-documented fact that age markers become more progressively
inefficient with advancing senescence (Angel 1984). The gap between es-
timated and chronological age inadvertently widens as a consequence of
the aging process itself. Due to the fact that the developmental phase is
predominantly characterized by definite and predictive sequences of
change, age estimation within younger age groups remains relatively
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straightforward.However, once maturity is reached, more variable and less
distinct changes take place. In addition, the last stretch of the human
lifespan is characterized by degenerative changes. The failure to diagnosti-
cally isolate older individuals may have led to a systematic bias of constant
underestimation (Molleson and Cox 1993; Aykroyd et al. 1997). It is
therefore of the utmost importance to extend the range of efficacy to
include older individuals, in order to verify whether the nonexistence of
older individuals in prehistoric settings is a true reflection of past life
histories or merely an artifact (see Aykroyd et al. 1997; Ericksen 1998).

Interpersonal differences – sexual dimorphism

Overall, the assessment of female age seems to be less accurate (Hanihara
1952; Brooks 1955; Jackes 1985; Molleson and Cox 1993). This phenom-
enon has been attributed primarily to differences between the reproductive
roles of males and females, especially as it pertains to pubic metamorpho-
sis. Consequently, the apparent divergence in female pubic morphology
has been attributed to child-bearing. However, whenever parity is actually
included in the analysis, variation in the mean stage by age between
low-birth and high-birth females appears to be insignificant (Hoppa 2000).
This demonstrates that the observed sexual dimorphism is not so much a
function of extrinsic factors, but rather an indication of genuine sex-specific
trends in age progression. Evidence from cranial suture closure documents
this phenomenon as well. Differential sex-specific correlation coefficients
(0.59 for males versus 0.34 for females (Kemkes-Grottenthaler 1996b))
indicate that females show a significant number of open sutures until a later
age (Hershkovitz et al. 1997). This is also apparent in the maxillary suture
closure trends (Mann et al. 1991). Not taking the female disposition toward
delayed obliteration into consideration will inevitably lead to a distinct
underestimationof female age-at-death. Thus the skewed mortality profiles
observed in many archaeological samples may simply rest on a method-
ological artifact (Kemkes-Grottenthaler 1996a).

Interpopulation differences – horizontal considerations

The horizontal transfer of age assessment criteria derived from one popula-
tion to a given target sample is implicitly based on the assumption that
these two samples carry the same biological aging characteristics.
Althoughmany findings in the field of aging studies suggest that intergroup
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differences are not intrinsic, but to great extent attributable to socio-
economic and cultural factors (Arking 1998), several characteristics of
bone aging such as bone mineral density, bone aging scores (OSS) or joint
degeneration are clearly subject to ethnic variation (for a review, see Plato
et al. 1994). However, it needs to be stressed that it is not population
differences per se but certain geoclimatic factors which trigger initial bone
changes in sensitive individuals. Two key agents, temperature and humid-
ity, have been identified. Both directly affect the level of thermoregulation
and thus indirectly the metabolic rate (Belkin et al. 1998). Although the
evidence of biologically induced differences in the aging mechanism may be
scant, numerous studies indicate interpopulation differences (see among
others Todd 1920, 1921a—c; Biggerstaff 1977; Zhang 1982; I� şcan et al. 1987;
Katz and Suchey 1989).

Interpopulation differences – vertical considerations

A fundamental axiom of paleodemography stipulates that growth rates
and mechanisms of aging established for modern humans can be readily
applied to extinct populations, a premise referred to as ‘‘uniformitarian-
ism’’ (Howell 1976). However, bone is an extremely dynamic tissue that is
constantly being remodeled owing to its responsiveness to a multiplicity of
environmental, genetic, metabolic, nutritional, hormonal, or mechanical
stimuli. Longevity thus fits the definition of a phenotype, i.e., a property of
an organism produced by the interaction between the organism’s genetic
potential and its environment (Arking 1998). Although only a few studies
have indicated possible diachronic trends (Bocquet-Appel and Masset
1982; Owings Webb and Suchey 1985; Simon 1987), the unequivocal
transfer of age assessment standards from modern reference populations to
archaeological samples needs to be scrutinized critically.

The general assumption that it is merely the progression of morphologi-
cal manifestations of the aging process that decides whether a technique is
suitable for cross-temporal use (Loth and I� şcan 1994) must be energetically
challenged. In determining the validity of age assessments, two terms have
proved useful, ‘‘inaccuracy’’ and ‘‘bias’’. The concept of ‘‘bias’’ is especially
relevant in this context, as bias alludes to the fact that a certain age marker
may have a directional error (Lovejoy et al. 1985a). As the exact
progression rate remains unknown, differences in the velocity of such
changes would inadvertently introduce systematic under- or over-
estimation trends.
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The reference sample

In their critical rebuttal of paleodemographic analysis, Bocquet-Appel and
Masset (1982) were able to demonstrate impressive reference sample arti-
facts. It is their contention that the overwhelming majority of skeletal
assemblages rarely fulfill the criteria of an adequate test sample. As a result,
the target sample’s distribution merely mimics the reference sample. One
feasible approach to circumvent this dilemma presents itself in the use of
reference samples that have been subject to similar age-modulating factors.
However, these are, by their very nature, rarely documented, and do not
fulfill the criterion of a uniform age distribution. The other solution rests on
the idea of employing standardized reference samples. As such collections
are still extremely limited (see Usher, Chapter 3, this volume), much effort
needs to focus on the construction and design of such samples according to
a set of recognized standards.

Conclusions

Paleodemographic research is always based on taphonomically altered
material. Decomposition artifacts can, if undetected, add a directional bias
toward overestimation by mimicking more mature stages of age pro-
gression (Eidam et al. 1990). Furthermore, archaeological samples always
represent a distorted portion of the once-living population and, to this end,
sociocultural selectivity must be taken into consideration when one is
making inferences about historical population structures. Consequently,
much attention has to focus on the phenomenon of sampling bias. Lastly,
some errors are statistical rather than biocultural in nature. The math-
ematical approaches employed for paleodemographic reconstruction
therefore need to be re-evaluated as well.

One of the most basic problems of eliciting vital statistics from skeletal
biomarkers centers on the question of the reliability and validity of the
estimators employed. This holds especially true for the estimation of adult
age-at-death. Due to the unbridgeable phenomenon of age plasticity, the
quest for the perfect aging standard remains futile. However, shifting the
research focus from symptomology to causality might prove to present
itself as a veritable research alternative. Sex and population heterogeneity
need to be addressed more thoroughly, and intra-individual variation
taken into consideration. Moreover, to successfully overcome the weak-
nesses of osteological age markers, genuinely polysymptomatic age
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assessment criteria need to be devised that incorporate multiregional as
well as multimethodological techniques.
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I� şcan MY and KAR Kennedy (eds.): Reconstruction of life from the skeleton.
New York: Alan R. Liss, pp. 23—40.
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methods. In KW Alt, FW Rösing, and M Teschler-Nicola (eds.): Dental

70 A. Kemkes-Grottenthaler



anthropology. Fundamentals, limits, and prospects. Wien, New York: Springer-
Verlag, pp. 443—468.

Saunders SR (1989) Nonmetric skeletal variation. In MY I� şcan and KAR Kennedy
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5 Transition analysis:
a new method for estimating age from skeletons
  .  ,   .  ,

  .  ,    . 

Introduction

Estimating the ages of skeletons is an essential part of any osteologist’s job,
regardless of whether the skeletons come from forensic or archaeological
contexts. The ages of juvenile skeletons can usually be estimated with
minimal bias and an acceptable range of error, although even this endeavor
is not entirely free from problems. But the situation is far worse when one is
dealing with the skeletons of adults. Here a number of serious osteological
and statistical problems plague the process of estimating an individual’s
age-at-death (see Bocquet-Appel and Masset 1982; Boldsen 1988; Masset
1989; Jackes 1992, 2000; Konigsberg and Frankenberg 1992, 1994; Milner
et al. 2000). Among these difficulties is the tendency of age estimates to
mimic the structure of the known-age reference samples used as standards
of calibration (a problem often called ‘‘age mimicry’’) and an inability to
estimate the ages of older skeletons (those greater than about 50 years of
age).

The Rostock protocol outlined in the present volume represents a step
toward a solution of these problems. In particular, the strategy of estima-
ting the entire age-at-death distribution f (a) before trying to estimate the
age of any individual skeleton is an important, if at first somewhat counter-
intuitive, innovation. However, the strategy has one serious practical
shortcoming: the target population has to be large enough to provide good
estimates of f (a). Many archaeological skeletal samples examined by
paleodemographers are simply too few in number to proceed in this
manner. The protocol is completely inapplicable to the ‘‘samples’’ of single
skeletons typically encountered by forensic scientists. How can we estimate
the age of an individual skeleton when that skeleton is the only one we have
to work with?

In this chapter, we outline a new method of age estimation that is
applicable to small samples, including individual skeletons. The need to
find a compromise between a method that is ideal from a mathematical
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perspective and one that can be applied to small samples has done much to
motivate the development of this method. Our general approach to the
problem of age estimation can be applied equally well to the skeletons of
young people, but we have chosen to focus here on adults because the
limitations of current age estimation methods are much greater for them
than for juveniles.

New ways of estimating age are no better than the skeletal information
upon which they are based. And here we encounter a further problem.
Existing methods of scoring age-related changes in the skeleton are gen-
erally inadequate for the needs of more sophisticated statistical approaches
to age estimation. Thus the problems we address in this chapter are both
statistical and osteological in nature. To tackle one while ignoring the
other serves no practical purpose, regardless of how interesting the exercise
might be in theory.

The method presented here can be used with any skeletal trait that can
be arranged into an invariant series of senescent stages. While the precise
timing of transition from one stage to the next will presumably vary among
individuals, the direction of the sequence can be regarded as essentially
fixed because osteological structures often age in a regular manner. Else-
where we have used the term ‘‘transition analysis’’ to refer to this kind of
estimation procedure (Boldsen 1997; Milner et al. 1997; Boldsen et al. 1998)
because the results allow us to make inferences about the timing of transi-
tions from one stage to the next (see below).

After developing the basic estimation procedure, we apply it to data on
the pubic symphysis, the iliac portion of the sacroiliac joint, and several
cranial sutures in a sample of known-age skeletons from the Terry Collec-
tion at the Smithsonian Institution. Each of the three anatomical com-
plexes is broken down into several separate components (or suture seg-
ments), and new scoring procedures are developed for the pubic symphysis
and sacroiliac joint. Age-related changes in the pubic symphysis are re-
garded by many osteologists as providing the best means of establishing
age-at-death in adult skeletons (e.g., McKern and Stewart 1957; Buikstra
and Ubelaker 1994). Recently, it has been demonstrated that the iliac
auricular surface also provides useful information on age-at-death
(Lovejoy et al. 1985a). It has long been recognized that cranial sutures first
close and then become obliterated with advancing age, but for the past 50
years or more they have been considered of questionable value in estima-
ting age (Brooks 1955; McKern and Stewart 1957; I� şcan and Loth 1989;
Buikstra and Ubelaker 1994). We include sutures in our analyses because
isolated crania are often found in forensic and archaeological work, and we
must do something with them. Here we follow Meindl and Lovejoy (1985)
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in saying that, if used properly, cranial sutures still provide some informa-
tion about age-at-death.

Problems of adult age estimation

Juveniles display numerous developmental traits that change with age in a
sufficiently regular way to permit estimation of their ages at death with
minimal error, either systematic or random. But senescent changes in bone
are degenerative rather than developmental. By their very nature, they are
likely to be more variable among individuals and across populations.
Estimates of age-at-death based on senescent changes are, therefore, al-
ways likely to involve a considerable degree of error, which can be reduced
but not eliminated. The common practice of lumping skeletons together
into an open-ended terminal age interval, such as 50� years, is an honest
admission of this problem. Many, but not all, of the characteristics tradi-
tionally used by osteologists to estimate the ages of adult (ca. 20� years)
skeletons fall into the senescent category.�

There are at least four basic analytical difficulties in adult age estima-
tion, all of which become more critical in older skeletons. First, what is the
best way to represent the unavoidable (and often quite large) uncertainty
involved in adult age estimation? Second, how can we avoid age mimicry,
the contamination of our estimates by the age composition of the reference
sample? Third, since different morphological traits may not provide inde-
pendent information on age, how can we best combine multiple skeletal
indicators of age? Fourth, how can anatomical features be scored in a way
that most effectively captures any morphological variation that is informa-
tive about age?

Faced with the first of these problem, osteologists generally use discrete
age intervals, often of constant width, to capture at least some of the
imprecision inherent in estimating skeletal age-at-death. Constant age
intervals, however, involve an assumption that all individual age estimates
have the same degree of error. But just as no osteologist believes that an
exact age can be assigned to any particular skeleton, no one would claim
that all skeletons that appear to be roughly the same age can be assigned
with equal confidence to a single age interval. Every skeleton has its own
degree of error or precision, depending upon its own particular suite of

� An obvious exception pertinent to this paper is early change in the pubic symphysis, especially
the outgrowth of bone that makes up the ventral margin, which osteologists often call the
ventral rampart.
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traits and quality of preservation. What is needed is not a point estimate of
age or even a fixed age interval, but rather the whole probability density
function Pr(a�c

�
) calculated separately for each skeleton and for every value

of a. Pr(a�c
�
) is the probability that a skeleton died at age a given that it has

characteristics c
�
, where c

�
is the set of skeletal traits observed in the j-th

skeleton in our sample. If we wish to estimate a confidence interval around
a point estimate of age for the j-th skeleton, it should be based directly on
the density function Pr(a�c

�
) or something closely related to it.

Twenty years ago, Bocquet-Appel and Masset (1982) showed that most
traditional aging methods produce estimates for the target sample of
archaeological skeletons that are biased in the direction of the composition
of the known-age reference sample used as a standard of calibration. For
example, the Korean War dead used by McKern and Stewart (1957)
understandably have a much younger average adult age than do ‘‘natural’’
mortality samples, and age estimates using them as a reference sample
often appear very young on average. This ‘‘age mimicry’’ bias can create the
illusion that adult mortality rates in the target sample were extraordinarily
high and accelerated more rapidly than is true of any historically well-
attested human population.

Masset (1989) has provided one of the clearest explanations of how this
problem arises. The relationship between age and skeletal trait in a refer-
ence sample is typically examined by applying some form of regression
analysis (using the term in the broadest possible sense). But in doing such
an analysis, we need to decide whether to regress c

�
on a or a on c

�
, since the

two regression lines will usually be different. If we regress a on c
�
, we obtain

an estimate of a for each value of c
�
, which is exactly what we want.

Unfortunately, these estimates turn out to be sensitive to the age composi-
tion of the reference sample. If, for example, the reference sample contains
many 20-year-olds but few 50-year-olds, then Pr(20 �c

�
) will almost certain-

ly be greater than Pr(50 �c
�
) even if trait complex c

�
is more typical of living

50-year-olds than of people in their 20s. Any prehistoric or forensic skel-
eton aged in this way will appear to be more like a 20-year-old than a
50-year-old, purely because of the reference sample’s age distribution.

But what if we regress c
�
on a? Then we obtain results that are much less

sensitive to the composition of the reference sample, but we end up with
estimates of Pr(c

�
�a) rather than Pr(a �c

�
). In other words, we can get good

estimates of the probability that we do not want, but only poor estimates of
the probability that we do want.

Konigsberg and Frankenberg (1992) have shown how to solve this
problem in principle, and Love and Müller (Chapter 9, this volume) have
developed a way to solve it in practice. It is best to start with estimates of
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Pr(c
�
�a) — which Love and Müller call ‘‘weight functions’’ — since these can

be obtained without bias from a good reference sample. (Love and Müller
also provide a promising nonparametric method for estimating the weight
functions; Chapter 9, this volume.) Only after Pr(c

�
�a) has been estimated

should Pr(a �c
�
) be derived secondarily from the regression results. The

correct value of Pr(a �c
�
) can be obtained from our estimates of Pr(c

�
�a)

using Bayes’ theorem, which states that:

Pr(a�c
�
)�

Pr(c
�
�a) f (a)

�
	

�

Pr(c
�
�x) f (x)dx

, (5.1)

where f (a) is the age-at-death distribution of the ancient population that we
are trying to analyze — i.e., the probability that a randomly selected dead
individual from that population is exactly age a. In Bayesian analysis, f (a)
would be called the prior distribution of ages at death, since information on
it must come prior to estimation of Pr(a �c

�
). As Love and Müller show in

their contribution to this volume (Chapter 9), it is possible to estimate a
parametric model of f (a) by maximum likelihood using the estimated
weight functions and the marginal distribution of skeletal traits in the
target sample — if, that is, the target sample is large enough to provide a
good estimate of f (a). Alternatively, we can base our estimate of f (a) on
information independent of the target sample of skeletons, if such informa-
tion is available.

As outlined in the Rostock Manifesto (see Hoppa and Vaupel, Chapter
1, this volume), Bayesian inversion (equation 5.1) is applied only after f (a)
has been estimated for the sample as a whole. Thus any individual age
estimate is, in effect, a secondary by-product of the aggregate-level analysis.
We agree, in principle, that this is the right way to estimate an individual
skeleton’s age-at-death. But the right way may not always be the most
useful way, simply because target samples in archaeological and forensic
research will often be too small to support the estimation of f (a). Although
at this stage it is difficult to be precise about how many skeletons are
needed, the Rostock protocol almost certainly requires samples larger than
those found in most forensic or archaeological situations. So a method is
needed that is applicable to the kinds of small samples (including single
skeletons) that are typical of much osteological research.

In this chapter we develop such a method based on either a uniform
prior distribution or documentary information on f (a) that is independent
of our skeletal material. In the case of a uniform prior, the f (·) values cancel
in equation (5.1), as first noted by Konigsberg and Frankenberg (1994).
Their suggestion of using a uniform prior was criticized by Di Bacco et al.

77Transition analysis



(1999), who noted that it places disproportionate weight on extremely old,
and highly unlikely, ages-at-death. While we agree with this critique, in our
experience the empirical weight functions dominate most informative
priors for age-at-death. In other words, the age information contained in a
skeleton (and in the weight functions) is much greater than the age informa-
tion that comes from knowing that it was randomly sampled from a
particular adult mortality profile. Good practice or bad, there is ample
precedent for using uniform priors in the calibration literature (Brown
1993; Konigsberg et al. 1998).

Use of a uniform prior seems particularly appropriate in paleodemo-
graphic research, where any assumption about an informative prior can
create a tautological circle. (The only way to avoid such circularity is to use
a very general parametric model of mortality as advocated by Wood et al.,
Chapter 7, this volume.) In certain cases, however, we may have indepen-
dent information on the prior — independent, that is, of the skeletal sample
we are trying to age — and proper use of that informationwill almost always
give us better estimates than if we had assumed a uniform prior. For
example, if we are trying to age a skeleton from western Europe dated to
the 17th century, we may be able to estimate f (a) from parish burial
records. In forensic work, informative priors might be constructed from
information on the ages of homicide victims in the general population.
Whenever it is possible to use an appropriate informative prior, we should
do so, because our estimates using equation (5.1) will then be entirely free
from age mimicry.

It is also important to find an appropriate way to combine information
from different skeletal indicators of age, as osteologists have recognized for
a long time (Acsádi and Nemeskéri 1970; Workshop of European Anthro-
pologists 1980; Lovejoy et al. 1985a; I� şcan and Loth 1989). The problem
here is that multiple age indicators can be correlatedwith each other, so the
information they contain is not independent. One approach to this prob-
lem is the recent suggestion that the correlation matrix among traits can be
estimated from a reference sample by a stochastic expectation-maximiza-
tion (SEM) algorithm and used to condition traits properly (Konigsberg
and Holman 1999). Unfortunately, for m traits this approach requires us to
estimate �

�
m(m
 1) correlations for each transition, which in turn demands

an enormous reference sample. The dimensionality of the problem can be
reduced considerably by adopting the latent trait approach of Holman et
al. (Chapter 10, this volume). In the work presented here, we simplify things
even further by assuming that any correlation among traits is purely
attributable to age, so that the traits would be independent if they could be
conditioned on age (Boldsen 1997; for similar assumptions, see Roche et al.
1988; Lucy and Pollard 1995). This assumption of ‘‘conditional indepen-
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dence’’ may work well for many senescent changes in the skeleton. At least
one standard theory for the evolution of senescence — the so-called muta-
tion accumulation mechanism (Rose 1991:72—78) — suggests that it should
work well. But we would never argue that it accurately reflects the biology
of all skeletal traits, especially developmental traits in juveniles. When the
assumption is incorrect, our method still provides asymptotically unbiased
point estimates, but the confidence intervals associated with them appear
narrower than they really are (Boldsen et al. 1998). In what follows, we
develop an ad hoc correction for this bias.

The final problem, which is strictly osteological in nature, has to do with
how one should classify morphological features that are potentially
informative about age. Our approach to scoring age-related variation
follows the logic of McKern and Stewart (1957), who broke the pubic
symphysis down into three separate components, each of which was
coded as a series of unidirectional stages (also see Gilbert and McKern
1973).

This approach captures the changes that occur in complex biological
structures much better than classificatory schemes that rely on the appear-
ance of these anatomical structures in their entirety (see e.g., Todd 1920,
1921; Brooks and Suchey 1990). Because senescent changes in morphology
do not occur in lockstep — and there is no conceivable biological reason
why they should do so — it is typically difficult to classify adult skeletons
unambiguously. That is to say, it is often difficult to shoehorn a complex
anatomical structure, such as the sacroiliac joint, into one particular
developmental stage. One solution to this problem is to use categories that
encompass considerable morphological variation, but then potentially
valuable information on age is lost. It is for these reasons that we follow the
lead of McKern and Stewart (1957). Indeed, we take their approach a step
further by scoring the pubic symphysis in terms of five, not three, compo-
nents. This same approach has been adopted in dealing with the iliac
portion of the sacroiliac joint. Previous work with this joint has focused on
its appearance in its entirety (Lovejoy et al. 1985b). Sutures have long been
described in terms of separate segments, so in scoring them we have not
departed from traditional practice.

Materials and methods

Skeletal sample

The skeletons used in this study are from the Smithsonian Institution’s
Terry Collection, one of the few large collections of purportedly known-
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Table 5.1. Race, sex, and age composition of the reference sample

Black White

Age (years) Female Male Female Male Total

�20 0 1 0 2 3
20—24 7 7 1 2 17
25—29 7 9 2 5 23
30—34 2 5 4 6 17
35—39 3 3 4 4 14
40—44 2 3 2 1 8
45—49 4 2 3 3 12
50—54 1 3 2 3 9
55—59 2 3 3 2 10
60—64 2 1 2 2 7
65—69 3 3 3 3 12
70—74 4 1 3 2 10
75—79 3 3 4 3 13
80—84 2 3 3 3 11
85—89 2 3 3 1 9
90—94 1 1 1 0 3
95—99 5 1 0 0 6
�99 2 0 0 0 2

Total 52 52 40 42 186

age skeletons in the USA (St Hoyme and I� şcan 1989).� They are from
people who died somewhere between the 1920s and 1960s in St Louis,
Missouri.

Skeletons were selected on the basis of age, sex, and race (as indicated by
documentation that accompanies the collection), as well as skeletal com-
pleteness. The four sex and race groups were broken down by age, and
skeletons were chosen randomly from the collection. The objective was to
obtain a sample of skeletons spread across all of adulthood for the sex and
race groups. Individuals who were less than 40 years old at the time of
death were oversampled because some of the morphological changes of
interest take place rapidly during early adulthood. Since we were interested
in age-related morphological change in both the cranium and the pelvis,
skeletal completenesswas of concern only when one of them was missing or
badly damaged. The reference sample consisted of 186 individuals: 52 from
black females, 52 from black males, 40 from white females, and 42 from
white males (Table 5.1). As is immediately apparent, the age-at-death

� The ages provided in the Terry Collection documentation are not necessarily the true ages of
these individuals, but the overwhelming majority are likely to be approximately correct.
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distribution of the reference sample does not resemble anything that would
be observed in a ‘‘natural’’ population.

An additional 84 skeletons from the same collection were used in a
validation study of the age estimation method (24 black females, 24 black
males, 18 white females, and 18 white males). They were selected randomly
from the skeletons that were not part of the reference sample, and they were
examined three years after the initial work.

Osteological measures

The features used in our study were derived from previous descriptions of
bony changes in the pelvis and cranium, as well as our experience with
several thousand prehistoric and historical skeletons. In all, there are five
characteristics for the pubic symphysis and nine for the iliac portion of the
sacroiliac joint, as well as five suture segments. Archaeological skeletons
from North America and Denmark were used when defining the character-
istics of the pubic symphysis and all but one of the sacroiliac joint features.
The exception — widely distributed, tightly packed, and uniformly low
exostoses across the ilium posterior to the auricular surface, which we
regard as an ‘‘old age’’ trait (posterior iliac exostoses) — was only noticed
when we were handling the many skeletons from elderly people in the
Terry Collection. There would have been few such individuals in the
archaeological samples used when the skeletal traits were initially defined.

Brief descriptions of age-related changes in the morphology of the
various anatomical units are provided in Appendix 5.1. Many of the terms
used are immediately recognizable as being derived from earlier work,
especially that of McKern and Stewart (1957) and Lovejoy et al. (1985b).
We have intentionally used these terms to make our classification of
skeletal traits easier to understand by researchers who are familiar with
existing age estimation methods.

Estimation procedure

Transition analysis for a single trait

We first consider the simplest case, in which data for only one skeletal trait
are available (e.g., the pubic symphysis considered as a single unit, as in the
Todd or Suchey—Brooks approaches). We assume that the developmental
trajectory for the trait can be broken down into an invariant sequence of s
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distinct, nonoverlapping stages, and that morphological change is strictly
unidirectional with respect to those stages. In other words, an individual
can only move from state i to i� 1, never in the opposite direction, and
never directly from i to i � 2 or higher. For simplicity, we first assume that
we are dealing with a skeletal trait that has only two stages. In this case y

�
,

the skeletal trait in the j-th individual, has only two states that we will score
as 0 and 1. We assume we have access to a known-age reference sample of n
skeletons.

The probability that a skeleton is in stage 1 (as opposed to stage 0) is a
binomial random variable whose one parameter is assumed to be a func-
tion of age. If we have joint data from the reference sample on each
skeleton’s trait and age at death — which we assume to be known without
error — we can use a generalized linear model (McCullagh and Nelder
1989):

Pr(y
�
� 1 �a

�
)��(��	a

�
), (5.2)

where a
�
is the age at death of the j-th skeleton in the reference sample and �

and 	 are parameters to be estimated from the reference sample. The
symbol�(·) represents what is known as the inverse of the link function in a
generalized linear model (see Johnson and Albert 1999: equation 3.4 and
surrounding discussion). We use the logit link, exp(·)/(1� exp(·)) in this
chapter.� This type of analysis is referred to as a ‘‘transition analysis’’
because the intercept and slope in equation (5.2) can be converted to the
mean and standard deviation for a logistic distribution of the age at the
transition from stage 0 to stage 1. Specifically, the mean is �/	 and the
standard deviation is 3����
/	. Under the model in equation (5.2), the
likelihood function for estimating � and 	 is:

L(�,	)�

�
�
��

exp[(�� 	a
�
)y
�
]

�
�
��

[1� exp(�� 	a
�
)]

(5.3)

(Cox 1970:19). Maximum likelihood estimates of � and 	 can be obtained
using one of many readily available statistical packages, including the
proprietary program GLIM (Francis et al. 1994) or the glm function within
the freely available statistical package ‘‘R’’.

For a skeletal trait with more than two stages, equation (5.2) can be
applied as a binary contrast between those individuals who have made a
particular transition and those who have not. This model is called a

� In Chapter 11, Konigsberg and Herrmann use the probit link.
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cumulative logit or proportional odds model (McCullagh 1980) and can be
written as:

Pr(y
�
� i �a

�
) ��(�

�
�	a

�
). (5.4)

This model has a slope common to all the transitions, but intercepts that
differ. In the transition analysis paradigm, this means that the average age
at which individuals make transitions differs by stage (e.g., the average age
at the transition from stage 0 to 1 is lower than the average age at the
transition from stage 1 to 2), but the standard deviations are the same for
all transitions. This is an unattractive by-product of the proportional odds
model. Everything we know about developmental biology indicates that
the standard deviations of age-to-transition increase with increasing
stages.

As an alternative to the proportional odds model, we can use what is
known in the statistical literature as a ‘‘continuation ratio model’’ (Fien-
berg 1977:86; Agresti 1990:319; Lindsey 1995a:98, 1995b:59; Long
1997:146) or in survival analysis as a ‘‘discrete time proportional hazards
model’’ (see McCullagh 1980:140). In the continuation ratio model we fit a
series of binary logistic models as:

Pr(y
�
� i �y

�
� i 
 1, a

�
)��(�

�
�	

�
a
�
), (5.5)

where the successive conditioning means that we form subsamples that
contain only those skeletons in stage i 
 1 or greater. We assume that there
are s stages, so that the last stage is numbered s
 1 (because we began
counting stages at zero). Consequently, the first logistic regression con-
trasts individuals in stage 1 or higher against individuals in stage 0 or
higher (i.e., all individuals), the second contrasts individuals in stage 2 or
higher against those in stage 1 or higher (thus excluding individuals in stage
0), and the last regression contrasts individuals in stage s
 1 with those in
s
 1 and s
 2 (to the exclusion of all stages less than s 
 2). The condi-
tioning in equation (5.5) can be removed by forming the product

Pr(y
�
� i �a

�
) �

�
�
	�

�(�
	
�	

	
a
�
). (5.6)

The probability of being in exact stage i at any given age at death is then:

Pr(y
�
� i �a

�
) � Pr(y

�
� i �a

�
) 
 Pr(y

�
� i � 1 �a

�
), (5.7)

which makes cross-overs impossible (Long 1997).
Equations (5.5) to (5.7) specify what is usually referred to as a ‘‘forward’’

continuation ratio model, but we can also write a ‘‘backward’’ continuation
ratio model by replacing equation (5.5) with
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Pr(y
�
� i �y

�
� i, a

�
)��(�

�
�	

�
a
�
). (5.8)

Equation (5.7) then becomes

Pr(y
�
� i �a

�
) �Pr(y

�
� i �y

�
� i, a

�
)

��
�

	���

[1
 Pr(y
�
� k �y

�
� k, a

�
)]. (5.9)

Equation (5.9) is quite similar to equation 5.24 of Powers and Xie
(2000:163), which they present in a discussion of discrete-time hazard
models (showing that continuation ratio and discrete-time hazard models
are alternative ways of viewing the same process).

The continuation ratio logit can be fit by explicitly forming each of the
subsamples and applying a logistic regression, or more expeditiously using
Frank Harrell’s ‘‘cr.setup’’ and ‘‘lrm’’ in S� or ‘‘cr.setup’’ and ‘‘glm’’ in
‘‘R’’.� One of the best computing environments for applying the continu-
ation ratio model is the US Environmental Protection Agency’s (2000)
‘‘CatReg’’ script for S�. In addition to fitting the continuation ratio model
(referred to as an ‘‘unrestricted conditional odds model’’ in CatReg) with a
logit, probit, or complementary log—log link function (McCullagh and
Nelder 1989), CatReg also includes the unrestricted cumulative model used
by Konigsberg and Herrmann (Chapter 10, this volume), and it can test
whether the speed of transition varies between phases (using the paral-
lel.test command after fitting an unrestricted model). The CatReg package
for S� fits the ‘‘backward’’ continuation ratio model, in contrast to the
forward model (equations (5.5) to (5.7)) that we use here. Unfortunately, the
‘‘forward’’ and ‘‘backward’’ continuation ratio models usually give different
probabilities of being in a particular stage at a given age. For example, we
have fit both models to Suchey’s data on 737 male pubic symphyses, and
find in the ‘‘forward’’ model that the probability of being in the initial stage
at exact age 20 years is 0.776 while in the ‘‘backward’’ model the probability
is 0.675. Greenland (1994:1668) has previously noted this problem with the
continuation ratio model, writing that the method is ‘‘not invariant under
reversal of the outcome codes unless Y is binary’’. He also noted that the
method ‘‘is not invariant under collapsing of categories’’, a problem that
does not carry over to the proportional odds (cumulative logit) or unre-
stricted cumulative probit that Konigsberg and Herrmann use in Chapter
11.

Since equations (5.7) and (5.9) refer to a single age and behave as proper
probability functions at that age, they are uninfluenced by the distribution
of the reference sample at other ages — except in the indirect sense that the
age distribution may influence how well we can estimate �

�
and 	

�
. Thus,

� See http://heswebl.med.virginia.edu/biostat/s/Design.html
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our estimate of Pr(y
�
� i �a

�
) is robust to the biasing effects of the reference

sample’s age distribution.
If we assume a uniform prior distribution for age between birth and the

highest age attained by anyone in the target population, we can find the
probability density function for age conditional on the skeleton being in
the i-th stage of the indicator:

f (a �y
�
� i) �

Pr(y
�
� i �a)

�
	

�

Pr(y
�
� i �x)dx

. (5.10)

This posterior density for age yields a maximum likelihood estimator,
which in the calibration literature would be called a classical calibration
estimate (Konigsberg et al. 1998) or more properly a ‘‘controlled’’ calibra-
tion estimate (Brown 1993). Equation (5.10) can be used to write the
individual likelihood for age-at-death conditional on the observed skeletal
stage. In equation (5.10) the denominator is a constant of proportionality
that can be ignored in the likelihood function, so that the final likelihood is
simply

L(a �y
�
� i)� Pr(y

�
� i �a). (5.11)

The value of a that maximizes this function is the maximum likelihood
estimate of the skeleton’s age-at-death. Note, however, that we ultimately
want the full density function provided by equation (5.10), not just a point
estimate of age.

Transition analysis for multiple traits

The presentation thus far has concerned transitions among stages defined
by a single skeletal trait, and such an approach is arguably not the best way
to handle the morphological variation that actually occurs in a skeleton.
Imagine that we have observations on a total of m traits from a single
anatomical complex — for example, the pubic symphysis, the iliac part of
the sacroiliac joint, or the cranial sutures — each of which is subdivided into
a series of stages (the number of which may vary from one trait to another).
If entry into stages for one trait were conditionally independent of all the
other traits — i.e., if the trait stages were uncorrelated once the age effect is
removed — a combined likelihood function could be formed by multiplying
the stage likelihoods for each trait. Under the assumption of conditional
independence, the likelihood for m traits is
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L(a �y
�
� i)�

�
�
	�

L(a �y
�	

� i
	
). (5.12)

As before, the value of a that maximizes equation (5.12) is regarded as the
best point estimate of age-at-death. We will refer to this value of a as â.

Approximate confidence intervals

It is comparatively easy to compute confidence intervals for multivariate
normal data, including intervals that correct for the lack of independence
among measures. Unfortunately, categorical data such as staging scores do
not readily lend themselves to such analysis. We can, however, find an
approximate confidence interval by exploiting the fact that 
2 times the
natural logarithm of the likelihood ratio is asymptotically distributed as a
�� random variable (Cox and Hinkley 1974). For the j-th skeleton in the
reference sample, we form a ‘‘Z score’’ defined jointly by the two points

Z
�
��� �2ln[L(a�y

�
� i)/L(â �y

�
� i)] � . (5.13)

If the traits are indeed conditionally independent once the effect of age has
been partialled out, then Z�N(0, 1). If the traits are not conditionally
independent, the mean should still remain 0 but the variance will be greater
than 1. Assuming conditional independence, we can compute a (1
 �)th %
confidence interval for the j-th age estimate by finding the range of � values
that satisfy:


2ln[L(a�y
�
� i)/L(â �y

�
� i)]� ��

�����. (5.14)

In this expression, ��
����� is the value at the (1
 �)-th percentile of a

chi-square distribution with one degree of freedom. If the traits are not
conditionally independent, this confidence interval can be corrected by
replacing L(a �y

�
� i)/L(â�y

�
� i) in equation (5.14) with [L(a �y

�
� i)/

L(â �y
�
� i)]�������, where var(Z) is the estimated variance of the full set of Z

scores. This correction is an exponential version of the standard formula
for transforming a variable so that it has a variance of 1.

The likelihood-based confidence region given in equation (5.14) has
been used by Brown and Sundberg (1987) in the general multivariate
calibration setting. In their article they consider a number of possible
contexts, including estimation of a confidence region for one variable (such
as age) from multiple continuous indicators. They show that the confidence
region for a single case will increase as an ‘‘inconsistency diagnostic’’
increases. Their inconsistency diagnostic is a measure of how discrepant
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the indicators are in their prediction of (in our case) age. More accurately,
in our situation, the inconsistency diagnostic is a quadratic form based on
the deviation of the observed indicators from their predicted values at the
‘‘classical calibration’’ estimate of age. This quadratic form is written in the
inverse of the residual variance—covariance matrix among indicators (i.e.,
the inverse of the variance—covariance matrix among indicators after re-
gression on age). As we have assumed conditional independence, the
residual variance—covariance matrix must be diagonal. This being the case,
the confidence interval given in equation (5.14) is unaffected by increasing
discrepancies in skeletal indicators. This is an undesirable side-effect of
assuming conditional independence if there is in fact dependence among
skeletal indicators after accounting for the effect of age.

A test of internal consistency

When dealing with multivariate trait data, certain combinations of traits
are extremely unlikely to occur at any age. For example, we would not
expect to observe any combination of the highest and lowest scores for any
two components of the pubic symphysis in the same individual — a fact
explicitly recognized by McKern and Stewart (1957). If such a combination
were in fact observed, it might indicate the mixing of skeletal elements from
different individuals or an error on the part of the observer. Using the value
of the untransformed likelihood function from equation (5.12), it is possible
to define a test statistic 

�
that evaluates the consistency of the trait scores

for the j-th skeleton in the sample as:


�
� 
2ln[L(â�y

�
� i)]. (5.15)

Under the assumptions of conditional independence and internal con-
sistency, the values of 

�
should follow a �� distribution with degrees of

freedom equal to the number of traits minus 1. This test will usually be
conservative; the test statistic 

�
is likely to be biased downward when

conditional independence does not hold — i.e., when skeletal traits remain
positively correlated once the effects of age have been partialled out.

Using an ‘‘external’’ f (a)

Many of the practical problems in applying Bayes’ theorem (equation (5.1))
occur because we do not have any information on f (a) apart from that
contained in the bones themselves. Sometimes, however, we have ancillary
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information — for example, on the target sample’s historical or archaeologi-
cal context — that allows us to select suitable f (a) values that are indepen-
dent of the bones. We have relevant information on the distribution of
age-at-death from many parts of the modern world and for some places in
the past that can serve as general models for our archaeological popula-
tions. For example, here we use an age-at-death distribution from 17th
century Danish rural parish records to provide estimates of f (a) in equation
(5.1) (Johansen 1998). For forensic purposes, one could use national homi-
cide data, such as the 1996 figures for the USA that are incorporated into
the transition analysis computer program (Peters et al. 1998).

Computer program

A computer program for all the analyses outlined here is currently avail-
able at: www.sdu.dk/tvf/Demcenter/transitionanalysis.html

Results

Transition analysis for a single trait

The dorsal margin of the pubic symphysis in black males from the Terry
Collection is used as an example of single-trait analysis. Figures 5.1—5.3
show the empirical relationship between morphological stage and reported
age, the transition probabilities Pr(y
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�
). The actual distribution by age of individuals in

each of the dorsal margin stages is shown in Figure 5.1. Similar information
was collected for each part of the pubic symphysis, sacroiliac joint, and
cranial sutures used in the transition analysis. These data are used to
generate transition curves that show the passage from one stage to the next
(Figure 5.2). In Figure 5.3, the transition curves have been subtracted from
each other. The likelihood curves thereby produced aid in a simple visual
understanding of what happens to the various dorsal margin stages
throughout adulthood. The best point estimate of age for this single trait is
the peak of the curve. A 95% confidence interval for the point estimate can
be obtained by excluding the upper and lower 2.5% tails of the distribu-
tion.

All three of these figures — from raw data to likelihood curves — show
that the dorsal margin trait is strongly age progressive. Useful age informa-
tion can be derived from these data by transition analysis. As expected
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Figure 5.1. The relationship between the dorsal margin of the pubic symphysis
and reported age using bones from black males from the Terry Collection.

Figure 5.2. Estimated curves showing the age-specific probabilities of making the
transition from one stage to the next, based on the Terry Collection data in
Figure 5.1.

from the original data (Figure 5.1), the likelihood curves get broader later
in life (Figure 5.3). The relative widths of these curves plainly show the
well-known error associated with estimating the ages of old people. The
dorsal margin goes through rapid transitions early in adulthood, and then
it reaches a point where little or no morphological change occurs. Thus our
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Figure 5.3. Likelihood curves showing the proportions of individuals in the
several stages at each age as calculated from the transition curves shown in
Figure 5.2.

results conform to what is known about the aging process and to practical
osteological experience.

This example is not particularly realistic because only rarely will only
one part of a single anatomical structure be available. It would most
commonly happen with a skull fragment because the suture segments of
interest are, comparatively speaking, widely separated from one another.
The quality of age estimates obtained by combining information on all
components of each of the three anatomical units was evaluated by calcu-
lating correlation coefficients between estimated age (â) and reported age
(a). The correlation coefficients for each of the three complexes were
reasonable high: 0.86 for the pubic symphysis, 0.82 for the iliac part of the
sacroiliac joint, and 0.66 for the cranial sutures. The combination of all
three complexes, 0.88, is only slightly higher than the value for pubic
symphysis alone. These results are what osteologists would expect: the
pubic symphysis works best, and the cranial sutures worst. The pubic
symphysis is essentially as informative as all three parts of the skeleton
combined. But it is not practical to limit ourselves to the pubic symphysis
because it is the most likely part of the skeleton to be damaged postmor-
tem.

Once we move from a single-trait to multiple-trait analysis, the assump-
tion that the different features of each of the three complexes are condi-
tionally independent of each other becomes critically important. It is
necessary, therefore, to examine this assumption carefully. It should be
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emphasized that the structure of correlations among scores in different
components of each of the three complexes is, strictly speaking, a property
of the reference sample and cannot be studied apart from that particular
sample. But the underlying assumption of an invariant biological relation-
ship between age and c

�
means that the partial correlations remain con-

stant among all samples. The correction used here to compute approxi-
mate confidence intervals is obviously only a first step toward solving the
problem of a lack of conditional independence among scores. It is en-
couraging, however, that the point estimates of age-at-death derived from
the Terry Collection reference sample do in fact appear to be conditionally
independent. This means there is no strong indication of a separate factor
that acts on the aging of all three anatomical units in the same way. We
have not, however, examined the correlations among characters within
complexes after conditioning on age. We would expect, for example, that
correlations in the closure times of neighboring sutures might be high even
after partialling out the effect of age.

Age estimates (and their confidence intervals) tend to vary from one
skeleton to the next because the particular suite of observable traits is
usually different. That is to say, each skeleton has its own set of mor-
phological characteristics, a fact that transition analysis deals with effec-
tively. It is interesting, however, that age estimates are often different for
blacks versus whites and for men versus women, even when identical
combinations of morphological traits are involved. There are a number of
possible reasons for such discrepancies — most obviously, differences in
genetic background or lifetime experiences of the various samples. In
general the effect of changing race or sex in transition analysis estimates is
much greater for a single component, such as the dorsal margin, than on
the aggregate level where all components from the pelvis and skull are
combined. Nonetheless, the discrepancies across races and sexes highlight
the need to identify an appropriate reference sample.

As discussed above, use of a uniform prior age distribution poses a
problem. We have used such a distribution here in the absence of other
information about the age structure of the population that produced the
skeletons. The effects of its use were explored using an age-at-death dis-
tribution derived from 17th century rural Danish parish records (Johansen
1998). In general, the largest differences associated with the use of this
informative prior rather than a uniform distribution occur at older ages,
where the uniform prior produces estimates that are too high. Figure 5.4
illustrates the effect of using an appropriate f (a) distribution instead of a
uniform one for a 17th century Danish skeleton of known age. Laurits
Ebbesen was a Danish nobleman who died in 1637 and was buried in
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Figure 5.4. Estimated likelihood curves for Laurits Ebbesen, a Danish nobleman
who died in 1637 at age 87 years. Estimates are shown for a uniform prior
distribution (dashed line) and one generated from 17th century Danish rural
parish records (solid line).

A� rhus Cathedral. His skeleton was removed from its crypt for two days
during the restoration of the church in 1998, making it possible to score the
bones according to the characteristics listed in Appendix 5.1. Figure 5.4
illustrates the moderating effect of using an informative f (a) schedule when
trying to estimate the age of a very old individual such as Herre Ebbesen.
But it should be noted that Ebbesen’s known age of 87 (in fact, 87 years, 3
weeks, and 5 days) falls within the 95% confidence intervals for both the
informative f (a) and the uniform age-at-death distribution.

Depending on the mix of skeletal characteristics, the use of an informa-
tive f (a) distribution in place of a uniform one does not always have such a
noticeable effect. For example, Figure 5.5 shows transition analysis results
for an archaeological skeleton of unknown age from medieval Denmark. In
this case, the point estimate of age was moved less than 1 year with the use
of the informative f (a) distribution, and the 95% confidence intervals are
essentially identical. In this particular case, discrepancies between the two
sets of estimates would be of no concern in either archaeological or forensic
applications.

To determine whether the age distributions of skeletal samples mimic
those of reference samples, we examined an additional 84 skeletons ran-
domly selected from that part of the Terry Collection not used in the
reference sample. Their ages were estimated using the uniform prior age
distribution, and point estimates of age were taken from the peaks of the
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Figure 5.5. Estimated likelihood curves for an adult of unknown age from
medieval Denmark. The age estimates using a uniform age distribution and one
from 17th century Denmark are so similar that they cannot both be distinguished
in this figure because they are almost completely superimposed on one another.

resulting likelihood curves. Figure 5.6 shows the distribution of known
ages in the reference sample and the validation study (target) sample, along
with the ages estimated by transition analysis for the validation sample. All
four sex and race groups are combined in this figure. The target and
estimated age distributions are similar to one another, and the latter bears
no obvious relation to the reference sample, which is weighted toward
younger ages. Thus age mimicry does not appear to be a problem for
transition analysis.

In all these analyses, it is important to keep in mind that we are not
really interested in point estimates of age-at-death, no matter how they
were obtained. Instead, we want the probability that death occurred at each
possible age, not just the single age when it was most likely to have
occurred. Thus we would argue that the distribution shown in Figure 5.5,
for example, is a better representation of an individual skeleton’s age at
death than is a single point estimate such as ‘‘36 years’’.

Discussion

The transition analysis results for both single and multiple skeletal traits
conform to what osteologists would expect: age ranges for skeletons from
old people are broader than for those of young ones. More importantly,
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Figure 5.6. Distribution of reported ages for the reference sample and the
validation study (target) sample, and of estimated ages for the validation sample.
The 84 age estimates for the four sex and race groups are combined.

they make sense in terms of what happens at the pubic symphysis, the
anatomical feature used most often in this chapter. Here some of the initial
bony changes that are scored, especially the formation of the ventral
rampart, are developmental in nature. Later changes in the pubic symphy-
sis are essentially degenerative. It can be expected that such senescent
changes would show considerable interindividual variation in their timing,
and that is precisely what happens.

The last stage of the dorsal margin of the pubic symphysis — breakdown
of the dorsal rim — turns out to be of special interest (Figures 5.1—5.3). It is
one of two ‘‘old age’’ traits coded in this study, the other being widely and
thickly distributed exostoses posterior to the iliac auricular surface where
ligaments attach during life. Not all of the elderly have the dorsal margin
breakdown of the symphyseal face, which can be seen from the transition
curves. That is true of the posterior exostoses on the ilium as well. But the
people whose skeletons do have these traits were old, particularly if dorsal
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rim breakdown is accompanied by thickly distributed bony projections on
the posterior part of the ilium. There are likely to be other skeletal indi-
cators of advanced age that can enhance our ability to estimate the
ages-at-death of elderly people. Until now, however, there has been little
reason to look for them.

An important point should not be missed when looking at the broad
likelihood curves late in life, such as those shown for Laurits Ebbesen
(Figure 5.4). Transition analysis can be used to estimate the ages-at-death
of old people, something that has long resisted the efforts of osteologists.
Osteologists usually know when they are looking at a skeleton from an old
person, but they cannot say with any assurance just how old that person
might have been at the time of death. This age estimation method not only
provides a likely age range, but also shows the uncertainty inherent in
estimating the ages of old people. It is now possible to deal with a part of
the mortality distribution that was once beyond the reach of paleodemo-
graphers. We are no longer forced to use an open-ended terminal interval
such as 50� years.

The close agreement between estimated and known ages in the A� rhus
case are due in part to the use of a nonuniform prior age distribution, one
derived from 17th century Danish records. But even with a uniform prior
and an abundance of error-prone estimates of the age of old individuals,
the reported and estimated age distributions looked roughly similar in the
validation study (Figure 5.6). At the very least, a better match has been
produced than has been possible with previous age estimation methods,
particularly when one considers that much of the validation sample consis-
ted of skeletons of individuals who are usually lumped into a category such
as 50� years. There is, however, one very old individual in the estimated
age distribution, a result of the use of the uniform prior distribution.

The quality of age estimates can be improved only by including multiple
indicators of age. Thus it is better to use the various components of the
pubic symphysis instead of any single part of it alone, such as the dorsal
margin. In fact, our approach — specifically the ability to combine informa-
tion from multiple skeletal indicators of age — should serve as incentive for
osteologists to continue the search for the considerable amount of age-
related morphological variation that surely exists in skeletons. There is a
real need to do this work because the subjective opinion of experienced
osteologists can perform as well as, if not better than, age estimation
techniques based on single anatomical units, such as the pubic symphysis
(judging by our Terry Collection experience).

The problem we face in dealing with such traits is that the information
content of these changes in normal bony structure is low. Many are
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basically presence or absence features, such as rounded instead of sharp
borders of the femoral fovea (the former is the younger condition). But if
these parts of the skeleton can be combined in some sort of rigorous
manner, such as in transition analysis, then age estimates will certainly
improve. In fact, we feel they will improve by a considerable amount
considering our experience with subjective estimates of age based on the
overall appearance of entire skeletons. It remains for osteologists to exam-
ine what they look at when they make subjective estimates of age, see how
these traits are distributed in a known-age sample (preferably the same
Terry Collection skeletons), and incorporate them as standard features of
the transition analysis computer program.

It is also essential to conduct further validation studies. Preferably this
work will be done on known-age samples as dissimilar to the Terry
Collection as possible. After all, it would be useful to know whether this
method is applicable to skeletal samples other than the indigents who died
during the early to mid 20th century in the USA. Our work to date with a
few archaeological specimens of known or suspected age suggests that it is
indeed useful.
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Appendix 5.1

Brief descriptions of the stages used in the transition analysis program are provided
below. It is occasionally difficult or impossible to distinguish between two sequen-
tial stages in a particular bony feature. This problem can arise because a bone is
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modified through a pathological process or damaged after death. Pathological
features should be treated as missing data because they do not correspond to the
defined stages. When bones are simply damaged, the features that are observable
should be recorded if possible, even when two-stage designations must be used (e.g.,
stages 2 and 3). By doing so, one makes use of the information that still exists in
combined scores. It will be immediately apparent that there is no substitute for
experience when classifying anatomical features. Like anything else that relies on
good judgment, researchers should know what they are doing before using this age
estimation method.

Pubic symphysis

The pubic symphysis is scored for age-related morphological changes in five
separate components. Many of the terms used here are derived from earlier work
with the pubic symphysis, especially that of McKern and Stewart (1957).

Symphyseal relief

1. Sharp billows: At least half of the entire symphyseal face is covered with sharply
crested billows. These billows consist of distinct ridges separated by deep
furrows, and they extend completely across the symphyseal face. The low parts
of furrows cut deeply into the ventral and dorsal margins of the symphyseal
face. In some specimens, great vertical relief is accompanied by rounded, not
sharp, crests on billows. Symphyseal faces are scored as having Sharp Billowing
if the distance between the high and low points of adjacent ridges and furrows is
3mm or more. This stage has only been noted in bones from teenagers,
especially young ones.

2. Soft, deep billows: At least half of the symphyseal face, typically the dorsal
demiface, is covered with softly crested to flat billows separated by deep
furrows. There is no obvious filling of furrows with bone.

3. Soft, shallow billows: Much of the symphyseal surface, typically the dorsal
demiface, is covered by shallow, but clearly visible and discrete, billows. Rem-
nants of the ridge-and-furrow system are clearly visible. The billows extend
most, or sometimes all, of the way across the face.

4. Residual billows: Billows blend into one another, and they form an important
element of the surface, but they are much less pronounced than in the previous
categories. The subtle billows do not fulfill the criteria for the previous catego-
ries. Two or more billows that conform to the residual category must be
present. They typically extend only part way across the symphyseal face,
usually no more than one-half the width of the face.

5. Flat: Over one-half of the symphyseal face is flat or slightly recessed. It
sometimes presents a pebbly appearance because of the presence of numerous
small, flat, pillows of bone. The rest of the symphysis does not indicate a billow
score (i.e., no more than one discrete billow is present).
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6. Irregular: Over one-half of the symphyseal surface is markedly irregular be-
cause of pitting, which is sometimes deep, often accompanied by small, sharp
exostoses scattered thickly across the face. Occasionally the entire surface of
what is otherwise a flat face is covered by the small knobs of bone (here pitting
is largely absent). None of the criteria used to define earlier symphyseal stages is
fulfilled.

Symphyseal texture

1. Smooth: Most, or all, of the dorsal demiface is covered by fine-grained or
smooth bone.

2. Coarse: More than one-third of the dorsal demiface consists of coarse-textured
bone.

3. Microporosity: More than one-third of the dorsal demiface is covered by bone
that has a porous appearance. The overall impression is of numerous, closely
packed, pin-pricks.

4. Macroporosity: More than one-third of the dorsal demiface is marred by
generally closely spaced, deep pits, which are 0.5mm or more in diameter. They
collectively give the face an irregular, porous appearance.

Superior apex

1. No protuberance: The surface of the cranial end of the symphyseal face displays
deep to shallow billowing. There is no evidence of a raised bony protuberance.

2. Early protuberance: A distinct knob of bone is present in the cranial end of the
symphyseal face. This rounded bony protuberance is clearly differentiated from
the immediately adjacent symphyseal face (i.e., the symphyseal face and the
ventral beveled area, which is often present).

3. Late protuberance: The cranial end of the symphyseal face immediately anterior
to the midline is raised somewhat above the rest of the articulation surface. The
margins of the protuberance are poorly defined, creating a raised area that is
more completely integrated with the remainder of the symphyseal face than in
the previous category. The raised area should not be confused with a narrow
elevated rim defining the cranial end of the symphyseal face. In some specimens
the cranial part of the face may be more or less isolated by breakdown pitting,
but these faces should not be coded as belonging to the Late protuberance stage.
That is to say, a raised area of bone must be visible on a rather smooth
symphyseal face.

4. Integrated: There is no raised area of bone on the cranial end of the symphyseal
face. The symphyseal face is flat and it has a smooth or pitted appearance. The
area where the protuberance was located is fully integrated with the rest of the
symphyseal face.
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Ventral symphyseal margin

1. Serrated: The ventral edge of the pubic symphysis is irregular because of an
uninterrupted extension of the ridges and furrows typical of pronounced bil-
lowing.

2. Beveled: There is a distinct flattening (or loss) of billows in the ventral portion of
the pubic symphysis. The beveling generally begins in the superior part of the
ventral demiface. It must extend over one-third or more of the ventral margin
to be scored as present.

3. Rampart formation: The ventral rampart refers to a distinct outgrowth of bone
defining the ventral margin of the symphyseal face. In this stage the bony
rampart is incomplete, it does not extend along the entire ventral edge, and
usually some ridges and furrows on the symphyseal face can be followed
uninterrupted to the ventral edge of the symphysis. Often the remnants of
billows can be seen dipping below the partially formed ventral rampart, which
looks like a roll of gum laid across a shallowly furrowed surface. An incomplete
ventral rampart often extends inferiorly from the bony protuberance defining
the cranial end of the face. An incomplete ventral rampart can also extend
superiorly from the caudal end of the pubic symphysis. In many specimens
there is a gap in the middle one-third of the ventral margin where bony
ramparts from the ends of the symphysis have not yet met. Specimens in an
early formation stage can have one or more bony knobs, which are often
located in the middle one-third of the ventral margin. These knobs occur with
or without the bony extensions from the cranial and caudal ends of the
symphysis. A well-developed bony protuberance at the cranial end of the face
that lacks a distinct inferiorly oriented extension of bone (the rampart) should
not be coded as Rampart formation; i.e., the cranially located knob is not alone
sufficient to score the ventral rampart as being present.

4. Rampart completion I: The ventral rampart is complete. There is, however, a
shallow sulcus that extends for much of the length of the ventral surface of the
pubis immediately lateral to the ventral edge of the symphyseal face. This
groove is a residual feature related to rampart extension over the original
symphyseal surface. Occasionally there is a gap in the ventral rampart, usually
in the superior half of the ventral margin; the ventral rampart, however, is
otherwise completely formed. The flat pubic symphyseal surface, which extends
uninterrupted from its dorsal to ventral margins, contrasts with the typically
furrowed Rampart formation stage.

5. Rampart completion II: The ventral rampart is complete. There is no shallow
sulcus as described in Rampart completion I. Occasionally there is a gap in the
ventral rampart, usually in the superior half of the ventral margin; however, the
ventral rampart is otherwise completely formed. The flat pubic symphyseal
surface, which extends uninterrupted from its dorsal to ventral margins, con-
trasts with the furrowed appearance of the typical Rampart formation stage.

6. Rim: There is a narrow bony rim on the ventral rampart that demarcates a
generally flat or irregular symphyseal face. The ventral rim can be incomplete
or complete, but it must be at least 1 cm long and readily identifiable as a
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distinct raised ridge bordering a slightly recessed symphyseal face. The pres-
ence of a rim meeting the length criterion is sufficient to score the pubis as being
in the Ventral rim stage, regardless of the ventral rampart configuration.

7. Breakdown: The ventral aspect of the symphyseal face shows signs of break-
down, which takes the form of pitting and an erosion of part of the ventral
margin. To be scored as present, the breakdown of the ventral margin must
exceed 1 cm (either in one place or when two or more areas of erosion are
combined).

Dorsal symphyseal margin

1. Serrated: The dorsal edge of the pubic symphysis is irregular because of an
uninterrupted extension of the ridges and furrows typical of pronounced bil-
lowing.

2. Flattening incomplete: There is a well-defined flattened area at least 1 cm long,
usually in the superior part of the dorsal demiface, where the articular surface
meets the dorsal surface of the pubis. Some residual billowing is present that
produces an undulating dorsal edge, which is not as extreme as that found in
the Serrated category. This undulating edge is typically found along the inferior
dorsal margin.

3. Flattening complete: There is a complete, or virtually complete, well-defined
area of flattening where the symphyseal face meets the dorsal surface of the
pubis. Occasionally there will be a small area at the inferior end of the dorsal
margin that still retains an undulating appearance.

4. Rim: There is a narrow bony rim at least 1 cm long demarcating a generally flat
or irregular face. The dorsal rim can be incomplete or complete, but it must be
readily identifiable as a raised ridge bordering a slightly recessed symphyseal
face. It generally appears first along the superior part of the dorsal margin.

5. Breakdown: The dorsal aspect of the symphyseal face shows signs of break-
down, which takes the form of pitting and erosion of the dorsal margin. To be
scored as present, the breakdown of the dorsal margin must exceed 1 cm in
length (either in one place or when two or more areas of erosion are combined).
Antemortem destruction of the dorsal margin attributable to large parity pits
that undercut the symphyseal face can occur in females, but it is not considered
breakdown, and it often results in this feature being unscorable.

Iliac portion of the sacroiliac joint

Many of the terms used here are derived from the pioneering work of Lovejoy et al.
(1985b). Different parts of the auricular surface are scored for the same morphologi-
cal features because bony changes do not necessarily take place simultaneously in
all parts of the joint.
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Superior and inferior demiface topography

The superior and inferior demifaces are divided by a line extending posteriorly from
the most anterior part of the apex to the posterior border of the joint surface.

1. Undulating: The surface is slightly undulating, especially in a superior to
inferior direction. The rise and fall of the bone surface is often best detected by
feel. There is no centrally located area of elevated bone (the Median elevation).
Surface billows superimposed on the wavy joint surface give it a somewhat
hummocky appearance. The superior demiface, especially the most cranial part
of it, is typically flatter than the inferior demiface.

2. Median elevation: In the middle of the demiface there is a broad raised area
where the middle part of the joint is elevated above the rest of the surface. This
bony elevation is flanked anteriorly and posteriorly by one or two long low
areas. The elevated area takes the form of an elongated ridge, particularly in the
inferior demiface, with the long axis paralleling the main orientation of the
joint. This ridge need not occupy the entire length of the joint surface.

3. Flat to irregular: The surface is essentially flat or recessed, a result of marginal
lipping, or it is irregular, a result of a degeneration of the joint or the formation
of low pillow-like exostoses. Sometimes the inferior demiface has a slight curve
to it so the inferior portion is located somewhat laterally to the superior part, a
result of the joint conforming to the general shape of the ilium in this area. In
such instances, the articulation surface does not have the softly rounded, wavy
appearance of the Undulating category.

Superior, apical, and inferior surface morphology

The joint surface is divided into three segments labeled, for convenience, as su-
perior, apical (middle), and inferior. The superior part of the joint extends from the
superior end to a point half of the way to the apex of the joint. The apical (middle)
portion stretches from that point to the apex and then beyond it for another 1 cm.
The inferior part of the joint is the remainder of the joint surface.

1. Billows over �2/3 of the surface: Low rounded and typically narrow ridges
separated by furrows, which have rounded bases, are clearly identifiable. The
ridge surfaces are curved from the depths of the furrows completely across their
crests. Most or all of the billowing is oriented roughly anterior to posterior, and
individual furrows sometimes run across much, or all, of the face. The billowing
covers most (� 2/3) of the auricular surface (i.e., it is a dominant element of the
surface).

2. Billows over 1/3 to 2/3 of the surface: About one-half of the surface is covered by
billows.

3. Billows over �1/3 of the surface: Billows are a noticeable, but minor, compo-
nent of the joint surface. The rest of the surface is flat or bumpy.
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4. Flat: The auricular surface is flat.
5. Bumps: Most, or all, of the auricular surface is covered by low, rounded areas of

raised bone, much like little irregular pillows. Part of the surface may be flat,
but over half of it is bumpy.

Inferior surface texture

This part of the joint surface is 1 cm long, as measured in a superior to inferior
direction. Its lowermost point is a line defined by the margin of the greater sciatic
notch on either side of the sacroiliac joint.

1. Smooth: Most or all of the bone comprising the auricular surface exhibits a
smooth to slightly granular appearance.

2. Microporosity: At least one-half of the surface has a porous appearance with
the apertures being less than 0.5mm in diameter. The surface appears to be
covered with numerous closely spaced pinpricks.

3. Macroporosity: At least one-half of the surface is porous, and most or all of the
apertures exceed 0.5mm in diameter.

Superior and inferior posterior iliac exostoses

The two areas examined are located on the medial surface of the posterior ilium
where ligaments attach during life. The superior area is superior to the sacroiliac
joint surface; i.e., to a line that passes from the anterior superior iliac spine to the
most superior point of the joint surface (the superior angle), and on through the
posterior part of the ilium. The inferior area is located inferior to that line. It is
immediately posterior to the middle of the sacroiliac joint; i.e., it lies behind the
most anteriorly projecting part of the joint’s posterior margin. Exostoses appear on
all but the bones of the youngest adults (with rare exceptions), and they tend to be
clustered together to form nicely defined and easily identifiable patches of rough
bone.

1. Smooth: The iliac surface is flat to slightly raised, but the surface is smooth. That
is to say, it shows no evidence of round to sharp bony elevations. At most there
are a few isolated and very small exostoses.

2. Rounded exostoses: Definite but low exostoses with rounded crests dominate
the scoring areas.

3. Pointed exostoses: Sharply pointed but still low exostoses dominate the scoring
areas.

4. Jagged exostoses: The scoring areas have a jagged appearance because of the
presence of high round to sharp exostoses.

5. Touching exostoses: There is a pronounced outgrowth of bone with a relatively
flat top, which is usually roughly oval, where the raised part of the ilium meets
the sacrum.

6. Fused: The ilium and sacrum are fused together.
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Posterior iliac exostoses

The area that is examined is the medial side of the ilium bordered posteriorly by the
iliac crest, anteriorly by the sacroiliac auricular surface, superiorly by a slightly
raised area often surmounted by exostoses (superior posterior iliac exostoses), and
inferiorly by a similarly raised area also typically covered by exostoses (inferior
posterior iliac exostoses). As opposed to the areas where the superior and posterior
iliac exostoses are located, the part of the ilium of interest here is much less likely to
have enough bony projections to be counted as present (i.e., rounded or pointed).

1. Smooth: The area posterior to the sacroiliac joint is smooth, except for the two
areas coded as the superior and inferior posterior iliac exostoses. Surfaces
interrupted by isolated projections of bone, either rounded or sharp, are still
considered as smooth. Such exostoses typically occur on all but the youngest
adults, yet much of the original smooth iliac surface is retained.

2. Rounded exostoses: Low, rounded, bony projections cover the entire bone
surface posterior to the sacroiliac joint, except for a ca. 1 cm band of smooth
bone immediately adjacent to the posterior edge of the joint. The entire surface
is rough because little, if any, of the original smooth iliac surface remains. The
exostoses are normally lower than the superior and inferior posterior iliac
exostoses.

3. Pointed spicules: Low, pointed bony projections cover the entire bone surface
posterior to the sacroiliac joint, except for a ca. 1 cm band of smooth bone
immediately adjacent to the posterior edge of the joint. The entire surface is
rough because little, if any, of the original smooth iliac surface remains. The
exostoses are normally lower than the superior and inferior posterior iliac
exostoses.

Cranial suture closure

Ectocranial suture closure, not endocranial suture closure, is scored for the coronal,
sagittal, and lambdoidal sutures because of problems with seeing into the interiors
of dirty archaeological crania. The names for the suture segments conform to those
in common use. Because it is difficult to identify the Juxtaposed category for the
interpalatine suture, it is not scored.

Coronal pterica, sagittal obelica, lambdoidal asterica,
zygomaticomaxillary, interpalatine (median palatine, posterior
portion)

1. Open: The suture is visible along its entire length, and there is a noticeable gap
between the bones.

2. Juxtaposed: The suture is visible along its entire length, but the suture is narrow
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because the bones are tightly juxtaposed. If bony bridges are present they are
rare and very small (�1mm), sometimes with a trace of the original suture still
evident.

3. Partially obliterated: The suture is partially obscured. There is no trace of the
original suture in the bony bridges.

4. Punctuated: Only remnants of the suture are present. These remnants appear as
scattered small points or grooves, each no more than 2mm long.

5. Obliterated: There is no evidence of a suture.
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Acsádi G and Nemeskéri J (1970) History of human life span and mortality.
Budapest: Akadémiai Kiadó.
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MY I� şcan and KAR Kennedy (eds.): Reconstruction of life from the skeleton.
New York: Alan R. Liss, pp. 23—40.

Jackes M (1992) Paleodemography: problems and techniques. In SR Saunders and
MA Katzenberg (eds.): Skeletal biology of past peoples: research methods. New
York: Wiley-Liss, pp. 189—224.

Jackes M (2000) Building the bases for paleodemographic analysis: adult age
estimation. In MA Katzenberg and SR Saunders (eds.): Biological anthropol-
ogy of the human skeleton. New York: Wiley-Liss, pp. 417—466.

Johansen HC (1998) Four early Danish parish registers. Research Report 6. Odense:
Danish Center for Demographic Research.

Johnson VE and Albert JH (1999) Ordinal data modeling. New York: Springer-
Verlag.

Konigsberg LW and Frankenberg SR (1992) Estimation of age structure in anthro-
pological demography. American Journal of Physical Anthropology 89, 235—
256.

Konigsberg LW and Frankenberg SR (1994) Paleodemography: ‘‘Not quite dead’’.
Evolutionary Anthropology 3, 92—105.

Konigsberg LW, Hens SM, Jantz LM, and Jungers WL (1998) Stature estimation
and calibration: Bayesian and maximum likelihood prespectives in physical
anthropology. Yearbook of Physical Anthropology 41, 65—92.

Konigsberg LW and Holman D (1999) Estimation of age at death from dental
emergence and its implications for studies of prehistoric somatic growth. In
RD Hoppa and CM FitzGerald (eds.): Human growth in the past: studies from
bones and teeth. Cambridge: Cambridge University Press, pp. 264—289.

Lindsey JK (1995a) Modelling frequency and count data. New York: Oxford Univer-
sity Press.

Lindsey JK (1995b) Introductory statistics: a modelling approach. New York: Ox-
ford University Press.

Long JS (1997) Regression models for categorical and limited dependent variables.
Thousand Oaks, CA: Sage.

Lovejoy CO, Meindl RS, Mensforth RP, and Barton TJ (1985a) Multifactorial
determination of skeletal age at death: a method and blind tests of its accuracy.
American Journal of Physical Anthropology, 68, 1—14.

Lovejoy CO, Meindl RS, Pryzbeck TR, and Mensforth RP (1985b) Chronological
metamorphosis of the auricular surface of the ilium: a new method for the
determination of adult skeletal age at death. American Journal of Physical
Anthropology 68, 15—28.

Lucy D and Pollard AM (1995) Further comments on the estimation of error
associatedwith the Gustafson dental age estimation method. Journal of Foren-
sic Science 40, 222—227.

105Transition analysis



Masset C (1989) Age estimation based on cranial sutures. In MS I� şcan (ed.): Age
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6 Age estimation by tooth cementum
annulation:
perspectives of a new validation study
 -   

Introduction

Discussions during the Rostock paleodemography workshops have shown
two areas that clearly suffer from severe problems in transforming a
skeletal sample into an historical population. First, more effort was needed
to establish a reliable mortality pattern for skeletal samples. Second,
although the Rostock Manifesto concentrated on the modeling of individ-
ual age and sex data, discussions frequently criticized the basic data,
especially the insufficiently large age ranges in individual age estimations
obtained from established morphological age estimation techniques. The
group therefore drew attention to the search for methods that are able to
determine age with higher accuracy.

Owing to recent significant improvements, a promising method for age
estimation is the evaluation of tooth cementum annulation (TCA). The
proposed procedure reduces time-consuming, and therefore costly, prep-
aration steps, so that larger samples can be observed with less expense. If a
few simple guidelines are followed, the method may be among the best and
most reliable of those used for age estimation of skeletal samples.

To validate this method for frequent use, a standard protocol and use of
confidence intervals are required, and these may be established by studying
a known-age reference sample. The aim of this chapter is to introduce the
concept and the methodological bases of an ongoing validation study, as
well as the preliminary results.

Morphological age estimation methods versus tooth cementum
annulation

Almost all established methods for age estimation in the skeleton suffer
from severe problems (see Kemkes-Grottenthaler, Chapter 4, this volume).
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In historical skeletons only biological age changes can be observed. The
reliability of an age determination method depends on the correlation
between biological and chronological age. With greater age, individual
variability of age-dependent changes in the skeleton increases. Thus, the
skeletons of older adults in particular are influenced by methodological
problems.

Only very few age-known historical skeletal samples exist. Owing to
their ecological, cultural, and chronological heterogeneity they are not
suitable for age validation studies (see Usher, Chapter 3, this volume).
Chronological variability of biological—chronological age correlations can
be calculated in only a few exceptional cases. Acceleration or delay of
biological aging processes during time cannot be detected. Another prob-
lem is that the deterioration of historical skeletons due to burial rites, soil
conditions, excavation, etc. limits the application of age estimation
methods. Reference populations are usually insufficient representations of
the age structure in skeletal samples, and often do not cover the necessary
age groups properly. So, an age determination method that is independent
of these continuous and nonquantified aging parameters is badly needed.

TCA promises a substantial improvement in age estimation for adult
skeletons as it relies on observation of the annual incremental lines in the
tooth cementum. These are not a continuously varying trait, as is, for
example, the age change in the surface of the pubic symphysis. They show
clearly distinct quantitative histological features, each probably corres-
ponding to one year of life, and thus they stand for a quasi-chronological
age.

Development of tooth cementum annulation age estimation

The TCA method for individual age determination has already been estab-
lished for age estimation among wildlife biologists for decades (Laws 1952;
Mitchell 1963; Geiger 1993). The annual apposition of cementum has been
established for more than 50 mammalian species (Grue and Jensen 1979),
following the detection of a seasonal rhythm of cementum apposition.
Since the initial investigations, there have been numerous studies, includ-
ing some on nonhuman primates (Wada et al. 1978; Stott et al. 1980;
Yoneda 1982; Kay et al. 1984), especially chimpanzees (Cipriano 1999). Up
to 1979, age determinationmethods in human teeth had included the width
of the tooth cementum layer (Gustafson 1950, 1955; Azaz et al. 1974;
Philipsen and Jablonski 1992). In the early 1980s the first study of three
human teeth showed that TCA was applicable to humans as well (Stott et

108 U. Wittwer-Backofen and H. Buba



al. 1982). Improved sample sizes in follow-up studies added preliminary
recommendations for the practical aspects of the method (Charles et al.
1986; Condon et al. 1986). But contradictory results concerning the use of
specific tooth types (canines versus premolars), the origin of a suitable
sample (fresh extractions versus forensic cases), as well as conflicting rec-
ommendations of methodology confused potential users (Lipsinic et al.
1986; Jackes 1992). In addition, the procedure was rejected as being time
consuming and cost intensive. Previously, studies were limited to freshly
extracted teeth and teeth from forensic cases, but Großkopf (1989, 1990)
was one of the first to test TCA for application in historical teeth and
cremations of unknown age. The age of historical skeletons was estimated
by morphological methods. Großkopf’s results, limited by the small
sample size of five cremated teeth in addition to 66 historical teeth, showed
that there was a general possibility of establishing the method for age
estimation. She concluded that the apposition of incremental lines seems to
be very stable, and not influenced by functional processes, the structure of
the teeth, nutrition, or other conditions of a specific ecosystem.

A subsequent study tested the hypothesis that severe periodontal dis-
ease might influence the process of cementum annulation by reducing or
even arresting the annual apposition process (Großkopf et al. 1996), but no
influence was found in a small sample of 15 teeth from 10 individuals. A
more recent study contradicts these results, observing that the degree of
periodontal disease correlates with the number of missing lines in an
age-known sample (Kagerer and Grupe 2001).

Apart from using Pearson’s correlation coefficients, none of these stu-
dies developed confidence intervals for age estimation in age-unknown
teeth. When compared with all previous studies, the method was recom-
mended for age estimation because of its high correlation between es-
timated and chronological age (for a review see Buba 1999). An overview of
the main indicators from previous studies of TCA in humans is shown in
Table 6.1.

All these studies leave unresolved several problems regarding the use of
TCA for age estimation. These are:

The estimation quality is not well known.
The method is not verified on known-age historical reference
samples.

The method is not verified by comparisons with morphological
age estimation methods.

The influence of periodontal disease on the TCA is not clear.
It is not clear whether the reasons for more precise estimation in
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younger ages, in comparison with older subsamples, lie in method-
ological problems or functional variabilities in line formation.

It is not clear why age estimation should be better in females than
males, as reported from a few studies.

Biological basis of tooth cementum annulation

The biological basis for cementum apposition in teeth is far from being
elucidated. The tooth cementum, which surrounds the dentin, extends from
the neck of the tooth, where it represents a small layer, to the apex of the
root, up to 0.5mm thick (Alt and Türp 1997).

The basis of the method came from the observation that the continuous
change in functioning teeth throughout life includes phasic cementum
apposition, which shows a regular yearly increment in cementum lines
(Klevezal 1970). It has been observed that dark zones of cementum apposi-
tion with high density, called incremental lines, alternate with light zones of
accelerated cementum apposition (Klevezal and Kleinenberg 1967; Morris
1972; Saar 1991). These layers have different optical properties, which may
be detected under a bright-field light microscope. They are assumed to be
added once yearly.

Seasonal climatic changes, as well as nutritional alterations, have been
suggested as possible reasons for the apposition of cementum in the light
and dark zones. In addition ecological conditions, such as temperature,
light, humidity, altitude, pollution, or nutrition are supposed to be respon-
sible for the varying width and density of the incremental lines (Grue and
Jensen 1979), as has been demonstrated in a case study by Cipriano (1999).
In captured chimpanzees in Europe and the USA, she was able to trace
back specific intensive line patterns to an extremely cold winter in the areas
where their zoos were located.

It was argued that this observation in previously wild animals reflected
a natural metabolic rhythm in mammals all over the world (Grue and
Jensen 1979). Seasonal changes in cementum annulation are connected
with the metabolism of parathyroid hormone and vitamin D, the former
being responsible for the regulation of calcium and phosphate levels in the
blood, and interacting with vitamin D, which regulates the resorption of
calcium. Thus both hormones and vitamins may interact in a circannual
rhythm via a complex mechanism of ecological and physicochemical ‘‘syn-
chronizers’’ (Halberg et al. 1983).

Cementum apposition has been observed not only in wild animals but
also in humans. Even in highly industrialized populations, where seasonal
alterations in climate and nutrition are minimized, cementum annulation is
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still observed. Thus it is argued that cementum annulation, to a certain
degree, is genetically ordered, but can be modified by external conditions
(Grue and Jensen 1979). The occasional presence of the ‘‘doubling’’ phe-
nomenon, where exactly twice as many incremental lines are present as are
predicted (Stein and Corcoran 1994; Jacobshagen 1999), as well as the fact
that incremental lines are produced also in impacted teeth (see below)
(Nitzan et al. 1986), supports this hypothesis.

The year of eruption of the tooth is when the first incremental line is
formed. Incremental lines have been observed even in deciduous teeth
(Verderber 1996). This phenomenon led to the suggestion that either the
mechanical use of the tooth in occlusion or the growth of the root to
two-thirds of its maximum length is an initiating factor for cementum
apposition (Kvaal and Solheim 1995). The use of the tooth, however, was
not necessarily connected with the presence of cementum annulation, as
has been demonstrated in impacted teeth where the same phenomenon
occurs but without mechanical stress.

As cementogenesis involves calcification of the root surrounding the
periodontal ligament, which contains growth factors and drives the metab-
olism of neighboring tissues, both the tooth and the periodontium have
to be regarded as an interactive system for cementum annulation
(Schumacher et al. 1990).

Currently, interactions between the tooth cementum and the surround-
ing tissues are far from being well understood. In particular, the influence of
periodontal disease is contradictory and has been described as having no
influence (Großkopf et al. 1996) to inflicting severe disturbance on the
cementum annulation process (Kagerer and Grupe 2001). Even an intra-
vital stop in cementum apposition has been proposed for severe periodon-
tal disease where the reduction of the alveolar attachment tissue causes it to
fall below a minimum amount (Kagerer and Grupe 2001).

In summary, many questions remain to be solved before the mechan-
isms of tooth cementum annulation and its influencing factors are known.
At the moment, we do not know much more than that the method is very
useful for age estimation, nor do we know why.

The concept of the current validation study

Improvements in the TCA method have enabled the investigation of
larger samples than was possible previously. Therefore we set out to do a
validation study. For this purpose, we use a large sample of known-age
teeth.

The fundamental significance of earlier studies of TCA was to show the
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suitability of the method for age estimation in humans. They also demon-
strated its advantage over other methods of age estimation, although on
more of a descriptive than a statistical level, and this led to its acceptance
for age evaluation in forensics (Stott et al. 1982).

However, sample sizes in these studies were too small to establish
significant statistical parameters, especially when the data were subdivided
according to age group, sex, periodontal disease, ethnic group, etc. The
main focus of the current study was therefore the age range estimations
within given confidence intervals of a reference sample. This has led to a
recommendation that the TCA method be applied to age estimation in
unknown skeletal samples — a requirement for the acceptance of TCA
measurement as a valid method for age estimation.

The results of the current study could be extended to several other
aspects of historical anthropology. Individual age estimation will be im-
proved by smaller confidence intervals, thus estimating individual ages
with high probability in smaller age ranges. This is especially useful for
older age groups, for which all other morphological methods fail. Addi-
tionally, the quality of age estimation is strongly dependent on the state of
preservation of the skeletal remains. Chemical or mechanical processes in
the soil, specific burial rites, excavation methods, etc. may create a wide
range of states of preservation, from a more or less complete skeleton to
very few small fragments. Teeth, especially the enamel crown, as the
hardest tissue in the human body, are significantly better preserved than
the bones of the skeleton. This applies to the tooth root as well, if preserved
in the alveolus embedded in the jaws. Application of the TCA method on
historical teeth, however, showed that some teeth were not suitable for the
technique. In these cases, the cementum was not preserved or did not
emerge as incremental lines.

This limitation aside, recent observations on large Bronze Age and
Medieval samples (Wittwer-Backofen 1998, 2000) more often revealed
specimens with preserved teeth than ones with skeletal fragments, the latter
being necessary for age estimations based on morphological traits. For
these skeletons the TCA method improved age estimation significantly, so
that the proportion of those individuals that were not suitable for estima-
tion of age within the whole adult age range was reduced.

Individual age estimations have strong effects on the reconstruction of
the overall population mortality pattern (M. Luy et al., unpublished data),
and hence influence significantly the quality of paleodemographic para-
meters. Until now, in paleodemographic analyses the oldest age group has
been subjective and varied significantly between 70 and 90 years in most
cases.

If the chronological age of the oldest old in a historical population
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can be estimated nearly exactly, the highest age group can be determined.
This will allow us to get an idea of what the maximum lifespan could
have been within the population under study. Certainly, we will not claim
to find the Bronze Age or Medieval Methuselah, but we might be able to
separate historical populations by their proportion of higher age classes.
This is a significant marker for paleodemographic calculations, as com-
pletely different mortality parameters result from different definitions of
the highest age group. If the highest age groups are defined without any
substantial idea of the real highest age groups, this may be a source of
fundamental error in paleodemography.

A population’s mean lifespan can be regarded as an indicator of ecologi-
cal stress factors, and, thus, allows conclusions to be drawn as to the
adaptation of the human population to its ecological conditions, a primary
focus in the field of prehistoric anthropology.

Thus, in the current validation study, as a first step we concentrated on
the calculation of confidence intervals useable as a standard in the practice
of age estimation in the skeleton.
We focused on the following questions:

What methods produce the best results, and are time efficient and
cost effective?

How can reproducible estimates by image analysis techniques be
established?

How can images be enhanced to improve results?
How many observers are necessary to produce reliable results?
How many counts are necessary to produce reliable results?
Does periodontal reduction influence the TCA and, if so, to what
extent? Can we calculate missing incremental lines by the
amount of periodontal reduction?

Does tooth type affect TCA age estimation? Do all teeth produce
the same quality of results?

Is there intra-individual variability between different teeth?
How can confidence intervals be calculated properly?

The sample in the validation study

The first validation step of the study was based on around 500 known-age
teeth from fresh extractions that were collected from several dentists and
clinics in Germany during January and July 2000. Besides the date of birth
of the individual and extraction date of the tooth, further informa-
tion concerning sex, ethnic group, and the medical reason for the tooth
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extraction were collected. The teeth cover an age range of individuals from
12 to 96 years, around 85% of whom are older than 35 years. Both sexes are
represented, two-thirds being males.

For more than 100 patients, teeth from multiple extractions are avail-
able. In these cases, loss of two or three teeth was most common, but even
up to 10 teeth from a single person, extracted for prosthetic reasons, are
included in the study. This allows the study of intra-individual correlations.

It may be argued that the validity of the method is limited because
around 90% of all teeth in the sample were extracted as a result of medical
intervention related to periodontal disease or dental caries. However, the
method is planned for application to historical teeth, whose owners suf-
fered from similar symptoms and also at younger ages, so that this issue is
relevant to the whole lifespan. Thus the validation study can infer the
amount of uncertainty due to periodontal disease and can express this in
the confidence intervals for age estimation in unknown teeth. Quantifying
the influence of periodontal diseases on TCA is therefore a major aspect of
the study.

Methods

The method of incremental line preparation is not standardized. The
choice of one of the various methods of preparation, staining, and micro-
scopic technique may influence the result. The wide variety of the reliability
of TCA for age estimation may be at least partly based on different
methods of preparation and documentation.With the proposed methodol-
ogy we are able to reduce time-consuming parts of the procedure without
information loss.

Directly after extraction, the teeth were stored in 70% (v/v) alcohol. To
quantify the degree of periodontal reduction, we stained whole teeth in
order to make the periodontal margin at the time of extraction visible.
Each tooth was stained for three to four minutes with 1% (v/v) Fuchsin
water solution at room temperature.� This resulted in the soft tissue
cytoplasts appearing blue to violet in color. The teeth were then rinsed in
distilled water to remove excess stain.

The distance between the enamel margin and the stained periodontal
line was measured with a microcaliper� at the labial, buccal, mesial, and
distal surfaces of the tooth (Figure 6.1). Until maceration, the teeth were

� Protocol after Professor Kocher, Centre for Odontology and Parodontology, University of
Greifswald, Germany. � Measuring precision 0.05mm.
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Figure 6.1. Stained teeth and measurement area of periodontal reduction.

fixed in a 10% (v/v) formalin solution. To remove the periodontal ligament
and to improve the stability of the acrylic sockets, the teeth were leached in
an alkaline solution of washing powder, pH 9.0, for five days at 45 °C. The
solution was changed twice during this procedure to improve enzymic
activities of proteases and lipases.

Since decalcification did not improve the microscopic contrast in a
small subsample, we omitted this time-consuming procedure and con-
tinued to work with mineralized teeth.

No embedding of the fresh teeth was necessary, only an acrylic socket
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Figure 6.2. Incremental lines in a 88-year-old male, 79 lines counted, tooth 33,
bright-field microscopy, �400 (white marker set every 10 lines, 9 lines for the last,
starting at the margin of the cemento-dentin margin at the bottom).

was needed to hold each tooth during the cutting procedure in the adapter
of the saw. We use a saw microtome� with a precision diamond wafering
blade. Around one-third of the root tip was removed with the first cut.
Three consecutive 70—80 �m thick cross-sections were cut from each tooth
root with low speed,� followed by a dehydration process in 70%, 96%, and
absolute alcohol,� cleaning in Xylene, and mounting using Microkit. Stain-

� Leitz saw microtome 1600. � 20—30 rotations per second.
� 2min in 70% alcohol, 30 s in 96% alcohol, 30 s in absolute alcohol.
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Figure 6.3. Incremental lines in a 43.5-year-old female, 32 lines counted, tooth 45,
bright-field microscopy, �400, digital camera imaging, graphic software applied
(white marker set every 10 lines, 2 lines more after the last, starting at the margin
of the cemento-dentin margin at the right).

ing of the sections did not improve the detection of the incremental lines,
and was therefore omitted.

The sections were evaluated under bright-field microscopy with a mag-
nification of 400—500 times. The number of dark lines were counted in the
variable region of dark and light lines between the cemento-dentin junction
and the periodontal ligament (Figures 6.2 and 6.3). In the three sections of
each tooth, the observers counted three suitable regions after having
looked at the whole area surrounding the root cross-section. Each of
the three observers counted the same teeth three times in randomly
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assorted order, so that 27 incremental line counts for each tooth were
available.

None of the observers had knowledge about the exact age of the teeth.
After registration, the teeth were given anonymous numbers, independent-
ly of the observers. The observers were trained with a set of 10 teeth of given
age, and another control set of 10 teeth of known, but not given, age until
consistent results were obtained.

During the first phase the sections were counted directly under the
microscope, a tiring procedure under the bright-field light, which may lead
to significant counting errors. During that phase, photographs were taken
of the sections.� Counting from these photos did not prove as accurate as
the direct microscopic counting, where the microscope focus was used to
reveal additional smaller lines that were not clearly visible in the photo-
graph. According to our experience, photographs without any image en-
hancement are unsuitable for counting.

Significant improvement will be reached through digital scanning or
digital photography, which directly connects the computer with the micro-
scope. Digital image equipment available today is vastly superior to earlier
apparatus and, as a result, can provide images of better quality to tradi-
tional film cameras, without the need for film and photographic processing,
while allowing for real-time imaging. Most importantly, graphic enhance-
ment procedures can be applied to the images. This part of the method-
ological study is not yet finished, but up to now has revealed promising
results, which improve the counting procedure and permit further investi-
gation of interobserver variability.

Preliminary results

As the current study is ongoing, only preliminary results are presented.
These are limited to a small subsample of 42 single-root teeth, which up to
now have been counted by two observers. Owing to this limited sample
size, sophisticated statistical test methods are not applicable. However,
showing the basic correlation of exact age and TCA age estimation is the
goal of this chapter.

Mean age of the subsample is 50.9 years with a range of 17 to 81 years,
the teeth having been obtained from 23 female and 19 male patients.
Calculated age estimations are based on the maximum of three counts by
each observer, remembering that counting errors may occur by incremen-

� With microscopic photoadapter tubes, Rolleiflex 3003 and Ilford FP4 film.
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Figure 6.4. Scatterplot of true age and age estimation by cementum annulation.
Lowess regression of a 50 teeth subsample: Lowess-regression lines (3 iterations
with 50% of the values) for two observer counts (broken lines) and overall means
(solid bold line). The solid line shows the expected regression in 100% fitting.

tal lines being missed rather than inclusion of nonexistent, additional lines.
Age estimation is based on the counted incremental lines added since
the eruption age according to an established worldwide variability
(Schumacher et al. 1990). Periodontal diseases (21 reported cases) are
evident in the subsample.

Results of TCA age estimation are given in Table 6.2. It presents the
mean age of the estimations for two observers separately as well as a mean
value over both observers. Pearson’s correlation coefficients approach 0.94
for the total subsample. All correlation coefficients are statistically signifi-
cant, almost all of them with less than 1% estimated error.

Figure 6.4 shows the single estimates versus the exact age in years for
both observers as well as for the mean estimates. From the Lowess re-
gression line with 50% of the counts for model adaptation it is seen that
there is a slight overestimation for younger ages up to 40 years and an
underestimation for ages above 40 years. Also, the error estimation shows a
higher mean difference of 5.8 years between reported and estimated ages in
the higher age group (�50 years of age), whereas the mean error in the
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Figure 6.5. Age and age estimation by cementum annulation, 95% confidence
intervals of a 50 teeth subsample for two observer counts (broken lines) and
overall means (solid lines).

younger age group (�50 years) is only 3.5 years (Table 6.2). Linear re-
gression estimates of mean age for both observers produces a slope of 0.94
and a y-axis intercept of 0.12. Considering the small size of the sample, the
model adjustment is extremely good, as it does not differ significantly from
the linear regression model fit.

Under the assumption of linear regression the calculated 95% confi-
dence intervals are still quite large, which is mostly an effect of the small
sample size (Figure 6.5). As the fit is better for younger ages, the confidence
intervals in these cases are unnecessarily wide.

Sex differences did not prove the same as in other studies. Here the fit for
males was slightly better than for females, but the age structure of both
sexes favored younger male individuals. This may have affected the ob-
served sex disparities.

Because of the practical limitations due to root bifurcation, and the high
intratooth variability of cementum apposition found in previous studies,
multiple-root teeth proved to be unsuitable for age estimation by TCA.
Hence the current study concentrates on single-root teeth exclusively.

123Age estimation by tooth cementum annulation



Basically, we have demonstrated that all single-root teeth are suitable for
the TCA method. In particular, incisors were excluded in previous studies,
but here they proved to deliver good results. Separation of two different
classes of tooth type — one of them all incisors and canines, the other one all
premolars — gave partially different results, especially when compared
between the two observers. This issue is being further explored in the final
large sample.

Perspectives

The methodologies described here for making tooth incremental lines
visible in mineralized sections of 70—80�m lead to significant savings in
time. The technique of visualizing the microscopic images on a computer
monitor and the use of image enhancement procedures and line marking is
also a second major advance, namely that of equalizing observer countings
and thus gaining reproducible count. Discrepancies can be discussed in
real time by specifying the area containing the lines under scrutiny. This
will lead to specific recommendations for an optimal counting procedure.

With these preconditions, we can give the basis for the recommendation
of confidence intervals for the TCA age estimation method. Out of a large
sample of more than 500 teeth, the first preliminary results of a small 10%
subsample demonstrated the validity of the method. Even this subsample
has already shown much better age estimations than have morphological
or other histological methods for age estimation (Jackes 1992; Stout 1992;
see also Kemkes-Grottenthaler, Chapter 4, this volume). As a result, the
detection of a wider age range in historical populations may be expected, if
we succeed in encouraging anthropologists in the use of TCA age estima-
tion, although it is more cost intensive and time consuming than other
methods (but not nearly as much as was anticipated with the first method-
ological studies several years ago).

One major objective is the detection of a realistic amount of older
individuals in historical skeletal populations and, thus, contributing to the
history of human aging by establishing a more reliable age structure. In this
context the relation of sex-specific mortality patterns will come to the
forefront again, since available datasets in historical demography and
anthropology have been proved to be full of errors (Wittwer-Backofen
1991).

Despite the results presented from the current study, as discussed above,
a number of questions still remain to be solved. Following discussions in
the Rostock workshops on paleodemography, there are very likely to be
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improvements in age estimates with the TCA method. Workshop dis-
cussions closed with agreement on a three-step procedure to establish TCA
age estimation as a major aging method:

1. The current validation study on recent age-known teeth shall establish
confidence intervals for the individual age estimation by TCA.

2. The second step shall be an evaluation of the TCA method in an age-
known historical reference sample in order to evaluate the TCA
method against the expression of morphological traits of aging.

3. The third step shall be the application of TCA to a historical sample
and the testing of the applicability of the suggested methodology,
resulting in a comparison of mortality profiles calculated on the basis
of the TCA age estimation with those based on morphological age
estimations.

Despite the promise that the TCA method shows for more accurate age
estimations, it will not be able to replace other morphological or histologi-
cal methods for several reasons. First, we should be careful to extract as
much information as possible from the skeleton, which is an important
historical source. It reflects a multitude of reactions to various ecological
conditions to which the former living individual was exposed. Our task, as
anthropologists, is to extract these markers from the bones and to contrib-
ute to an ecologically orientated interpretation of human population de-
velopment and adaptation. In this context it is essential that we apply all
methods to deliver the best estimates for the remains of each individual, be
it a single tooth, a few fragmented long bones, or more or less complete
skeletons. In most cases, teeth survive skeletal decomposition or selective
burial rites, but in many others, due to intravitam or postmortem tooth
loss, alternative methods become necessary. Preliminary age range esti-
mates by morphological methods avoid the misinterpretation of doubling
cases by TCA age estimation and help to reveal such instances.

Thus, at the present state of research, we have outlined an approach to
add to the established methods for age estimation; one which may lead to
more accurate individual age estimations than was possible up to now.
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schaftliche Hausarbeit, Universität Giessen.

Charles KD, Condon K, Cheverud JM, and Buikstra JE (1986) Cementum annula-
tion and age determination in Homo sapiens. I. Tooth variability and observer
error. American Journal of Physical Anthropology 71, 311—320.

Cipriano A (1999) Stress markers in tooth cementum annulation in non-human
primates. Presentation on the workshop of the section for prehistoric anthro-
pology and palaeanthropology. Göttingen, October 1999.

Condon K, Charles KD, Cheverud JM, and Buikstra JE (1986) Cementum annula-
tion and age determination in Homo sapiens. II. Estimates and accuracy.
American Journal of Physical Anthropology 71, 321—330.

Geiger G (1993) Vergleich verschiedener Methoden der Altersbeurteilung anhand von
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7 Mortality models for
paleodemography
  .  ,   .  ,
  .  ’ ,    . 

Introduction

Population scientists concerned with long-term trends in human mortality
ought to be interested in skeletal samples from extinct communities. Such
samples are, in principle, the only possible source of information for most
pre-industrial populations lacking written records — by far the most
common kind of human community that has ever existed. Samples of
skeletons provide two broad classes of information of potential interest to
demographers and other population specialists: frequency counts of bony
lesions that may reveal something about pathological processes active in
the population, and data on ages-at-death from which age patterns of
mortality may be inferred. Of these, the latter class of information has
generally been deemed to be the less problematic. It has been assumed that
skeletal age-at-death can be estimated well enough, albeit with some
inevitable degree of error, to support a few crude but revealing statistics
such as mean age-at-death, life expectancies, and age-specific mortality
rates. And so for decades it has been considered perfectly acceptable to use
skeletal data to compute ‘‘life tables’’, the traditional demographic tool for
investigating age patterns of mortality. All that is needed, in this view, are a
few simple modifications of standard life table techniques, modifications
that were laid down 30 years ago by Acsádi and Nemeskéri (1970:60—65).

Over the years, paleodemographers have computed innumerable life
tables, and they continue to do so to this day (for a few examples, see Green
et al. 1974; Lovejoy et al. 1977; Greene et al. 1986; Lanphear 1989; Mens-
forth 1990; Benedictow 1996:36—41; Alesan et al. 1999). But the life table
approach, so long the mainstay of paleodemographic mortality analysis, is
open to criticism on several grounds (Sattenspiel and Harpending 1983;
Konigsberg and Frankenberg 1992, 1994; Milner et al. 2000). First, paleo-
demographic studies do not produce the kinds of data needed to compute
life table mortality rates using standard methods — specifically, the
numbers of deaths among people at each (known) age and the number of
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person-years of exposure to the risk of death at that age during some
well-defined reference period. Instead, paleodemographers have been for-
ced to work with fuzzily defined, error-prone distributions of purported
ages-at-death, which can, under restrictive circumstances, be used to gener-
ate life tables — if, that is, one is willing to use methods whose statistical
properties are poorly characterized.

Second, the life table approach assumes that the target population being
studied was ‘‘stationary’’ in the technical demographic sense of the term.
That is to say, it assumes that the population was closed to migration and
had an intrinsic rate of increase equal to zero, age-specific schedules of
fertility and mortality that were unchanging over time, and an equilibrium
age distribution induced by those age-specific birth and death rates (Lotka
1922). Only in this special (and not necessarily realistic) case is the empiri-
cal age distribution of skeletons expected to have a simple, straightforward
relationship to the cohort age-at-death column in the life table. This
problem was recognized by one of the earliest advocates of formal
paleodemography life tables (Angel 1969) and has been discussed in several
more recent treatments (see e.g., Moore et al. 1975; Sattenspiel and
Harpending 1983; Johannson and Horowitz 1986; Wood et al. 1992b;
Konigsberg and Frankenberg 1994).

Third, the use of fixed age intervals in the life table implies that the ages
of all skeletons are known within the same margin of error, including those
of fragmentary skeletons that exhibit only a few, unreliable indicators of
age. Thus the life table approach is unacceptably procrustean: it tries to
force the complicated error structure of paleodemographic age estimates
into a rigid framework of a few discrete age intervals.

Fourth, and perhaps most seriously, the life table is a wasteful way to use
the small samples typical of paleodemographic studies — samples that are
often on the order of a few dozen or, at best, a few hundred skeletons. In
computing a life table we need to estimate one parameter (an age-specific
mortality rate) for each and every age interval in the table, often requiring
10 or more separate parameters to be estimated. Few paleodemographic
samples will support a method with such a gargantuan appetite for data.

For the past three decades, paleodemographers have attempted to
circumvent some of these problems by using so-called ‘‘model’’ life tables
(United Nations 1955, 1956; Coale and Demeny 1966; Weiss 1973). In this
approach, the investigator searches through published tabulations of the-
oretical age-specific mortality patterns to find an age-at-death distribution
that appears to mimic the empirical distribution being studied. In theory,
this approach allows the assumption of stationarity to be relaxed (Paine
1989). In practice, however, the methods for fitting model life tables have
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been ad hoc and informal, and the results are only good if the published
tabulations happen to include a table that corresponds closely to the
population under study — something that is inherently untestable.

The Rostock Manifesto (see Hoppa and Vaupel, Chapter 1, this volume)
— and the earlier work of Konigsberg and Frankenberg (1992), which
anticipates it (see also Konigsberg et al. 1997) — represents a major advance
in our thinking about how to estimate mortality statistics from skeletal
samples. Under the Rostock Manifesto, we never compute a life table —
although, as we show below, we can eventually compute something that
looks like a life table if we so desire. Indeed, we do not begin by classifying
skeletons by age at all, as we would have to do in the life table approach.
Instead, we directly estimate the age pattern of death from the total sample
of skeletons unclassified by age. Using c to indicate a vector of observed
skeletal traits that provide information about age-at-death a, the probabil-
ity of observing a particular c value — say, c

�
— out of the sample as a whole

is the marginal density of c
�
:

Pr(c
�
) ��

	

�

Pr(c
�
�a)Pr(a)da. (7.1)

Since Pr(c
�
) is the ‘‘likelihood’’ of observing a skeleton with characteristics

c
�
in our sample, the likelihood function for the entire sample of n skeletons

is

L�
�
�
��

Pr(c
�
) �

�
�
��
�

	

�

Pr*(c
�
�a)Pr(a)da, (7.2)

where the asterisk (*) denotes an empirical estimate from a reference
sample of skeletons whose ages-at-death are known (see Usher, Chapter 3,
this volume). The function Pr(a) is the age-at-death distribution in the
target sample whose mortality pattern we wish to estimate. It is Pr(a) that
tells us what we want to learn about mortality in the past. And maximiza-
tion of equation (7.2) provides the basis for maximum likelihood estimates
of the Pr(a) function from the target sample.

If the Rostock Manifesto is to be used in paleodemographic research, we
need to find a suitable parametric model for the age-at-death distribution
Pr(a). In other words, we need to boil all the complexities of age-specific
mortality down to a single, more-or-less simple set of equations — equations
containing constants (known as parameters) whose values we hope to
estimate from skeletal data. Although some paleodemographers might
balk at the notion of reducing all the manifold variability in human
mortality to naked mathematics, the parametric approach actually has a
number of virtues for paleodemographic analysis. As we show below, it
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allows us to correct for the confounding effects of nonstationarity — popu-
lation growth or decline — on the age-at-death distribution. It also permits
us to compare mortality patterns across populations in a straightforward
way by examining parameter estimates and their associated standard
errors. If we construct our parametric model wisely, it may even reveal
something interesting about the biological processes underlying the human
mortality curve.

The parametric approach does, however, have one profound limitation:
it is only as good as the model chosen for the age-at-death distribution. In
this chapter, we review parametric models of human mortality with an eye
toward identifying models that may be of use in paleodemographic estima-
tion. A secondary (but important) goal is to find models that facilitate
‘‘etiological’’ ways of thinking about paleodemographic mortality profiles;
that is, models that allow for some kind of meaningful biological interpre-
tation and insight. We examine the etiological foundations of current
models and develop extensions that provide insights into the mortality
processes experienced by past populations. Finally, we discuss some im-
portant issues, including heterogeneity in the risk of death, nonstationarity,
and the sex differential in mortality, that must be considered in reconstruct-
ing the demographic past.

Before we go into the details of the different model specifications, it is
worth asking what we are trying to accomplish in paleodemographic
mortality analysis. We also need to be honest about what we can never
accomplish, even with the best skeletal samples imaginable. Mainstream
demographers often have the luxuries of huge samples, known ages, and
information about specific causes of death (both primary and contribu-
tory). They can justify using some very complicated models that at once
require such data and take advantage of them (see e.g., Schoen 1975;
Manton and Stallard 1988; Nam 1990). As a result, they can examine the
fine details of human mortality with comparative ease. Paleodemographers
do not have — and never will have — any of these luxuries. Paleodemo-
graphic samples will almost always be small and subject to a number of
unavoidable taphonomic biases (Gordon and Buikstra 1981; Waldron
1987; Walker et al. 1988; Mays 1992). It is unreasonable, therefore, to
expect that paleodemographers will ever be able to reconstruct the fine
details of any set of mortality rates. At best, we can hope to learn something
about the overall level and age pattern of death in the distant past — and
perhaps something about the gross differences in material conditions that
led to the variation observed. This fact places a limit on the kinds of model
worthy of consideration by paleodemographers. In general, simple models
that reveal overall patterns are to be preferred over complicated models
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that purport to tell us about the detailed squiggles and bumps of the
age-at-death curve. It is on such simple models that we concentrate here.

What exactly do we need to model?

To implement the Rostock approach, we need to model Pr(a), the age-at-
death distribution of the past population under study. But what exactly is
this distribution? And what is its relationship to the underlying age pattern
of mortality? Intuitively, it might seem as if the relationship has to be
simple. In fact it is complicated, and we need to be clear about it if we are to
avoid going wrong.

For simplicity, imagine that we observe all the deaths that occurred in a
well-defined population during some specified period of time, and that we
know the exact age at which each and every death took place. (Needless to
say, we never have it so good in paleodemography; but for the moment we
are interested in theory, not reality.) How can we best characterize the
age-specific mortality pattern of our ideal population in a formal statistical
sense? And how can we model that pattern mathematically? Conceptually,
if not computationally, it is simplest to begin with �(a), the age-specific
mortality rate at exact age a (normally measured in years). If we treat age as
a continuously varying quantity — and throughout this chapter we will —
then �(a) is called the ‘‘force of mortality’’ (Keyfitz 1968:5) and is defined as

�(a)� lim
����

�
number of deaths at age [a, a��a)

person-years of exposure at age [a, a��a)� . (7.3)

This function defines a rate that is strictly nonnegative. It can be thought of
as the continuous-time analog of the central mortality rate, the usual
starting point for calculation of the life table. But we cannot compute �(a)
directly from a paleodemographic age-at-death distribution (even if we
know that distribution perfectly), so it behooves us to define some related
functions. One of these is the survival function, S(a), derived from the
age-specific mortality function as

S(a)� e����������. (7.4)

S(a) is the probability that an individual survives from birth to at least age
a. Since a cannot take on negative values, it follows that S(0)� 1. In
addition, S(a) is monotonically nonincreasing with a, i.e., it can only go
down (or remain the same) as age increases. As a��, S(a) approaches
zero. Thus S(a) is analogous to the survivorship column in the life table in
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all its particulars, save that age is reckoned continuously rather than in
discrete intervals.

We now inch our way toward something that starts to look like the
paleodemographic age-at-death distribution Pr(a) — but, in most circum-
stances, is not equivalent to it. This is the probability density function
(PDF) of ages-at-death in a birth cohort of individuals subjected to the
mortality function �(a) at each age. We will write this PDF as f

�
(a). (The

reason for the zero subscript will become clear presently.) It can be derived
from S(a) as

f
�
(a)�
dS(a)/da. (7.5)

If we were dealing with skeletons from a single cohort, f
�
(a) would indeed

be equivalent to Pr(a). But such is never the case in paleodemography, and
if, by some miracle, it were the case, we would never know it.

According to some basic results from renewal theory (Cox 1962), the
hazard, density, and survival functions are related to each other in the
following ways:

�(a)�

d lnS(a)

da
�


1

S(a)

dS(a)

da
�

f
�
(a)

S(a)
, (7.6)

S(a)��
	

�

f
�
(x)dx, (7.7)

f
�
(a)�

�(a)S(a)

�
	

�

�(x)S(x)dx

. (7.8)

The denominator in equation (7.8) rescales f
�
(a) so that it behaves like a

proper PDF and integrates to 1. These relationships will be useful at
several points in the following discussion. Because of these mathematical
relationships, once we know one of these three functions, we can immedi-
ately determine the other two.

It is important to emphasize the parallels that exist between �(a), S(a),
and f

�
(a), on the one hand, and certain columns in the classic life table on

the other. We have already mentioned that �(a) is analogous to the life
table central mortality rate, and S(a) to the survivorship schedule.
Similarly, f

�
(a) is analogous to the life table (cohort) distribution of ages-at-

death. Other ‘‘life-table-like’’ functions can be derived from �(a), S(a), or
f
�
(a). For example, �(a) can be converted into an age-specific probability of

death, q(a), during some small subinterval (a
�
�
�a, a ��

�
�a) around a by

solving

q(a)� 1
 exp�
�
�����

�����
�(x)dx� . (7.9)
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For �(a) in the interval [0, �), this expression constrains q(a) to fall
between 0 and 1. Another quantity related to �(a), f

�
(a), and S(a) is the ‘‘life

expectancy’’ e(a), or expected remaining lifetime for an individual alive at
age a,

e(a) �
�

	

�

S(x)dx

S(a)
. (7.10)

As these last two equations show, �(a), f
�
(a), or S(a) can be used to derive all

the information we would normally hope to learn from an old-fashioned
life table without ever requiring us to compute one. Or, rather, they would if
only we could estimate them.

Which brings us back to the age-at-death distribution Pr(a) — the nearest
we can get theoretically to paleodemographic data on skeletal age-at-
death. We have hinted that there is a close (if complicated) relationship
between Pr(a) and f

�
(a), and it is now time to make that relationship

explicit.
As already noted, f

�
(a) is the age-at-death distribution of a single birth

cohort exposed to the mortality function �(a). As it happens, it is also the
expected age-at-death distribution for all the deaths occurring in a station-
ary population over some delimitable period of time — for example, the time
span during which skeletons are deposited in a cemetery (see Appendix 7.1).
If we were sure that the population was stationary during the entire period
of deposition, we could substitute equation (7.8) into our likelihood func-
tion (equation 7.2) and — once we have specified a parametric model for �(a)
and S(a) — maximize it to obtain parameter estimates. But what if our target
population was not stationary? What, for example, if it was changing in
size, no matter how slowly? Then f

�
(a) is not the same as Pr(a), and we

cannot use equation (7.8) in our likelihood. What do we do?
Even if we cannot take it for granted that our target population was

stationary, it may still be reasonable to assume that it was ‘‘stable’’. In other
words, we may be able to make all the assumptions listed above for the
stationary population, except allowing for the possibility of a nonzero
growth rate. (Note, by this logic, that the stationary population is simply a
special case of the more general stable population.) As decades’ worth of
demographic analysis has shown, the assumption of stability is much
less restrictive than the assumption of stationarity; even when fertility
and mortality rates are changing and migration is occurring, most
human populations still closely approximate a stable age distribution at
any given time (Keyfitz 1968:89—94; Parlett 1970; Bourgeois-Pichat
1971; Coale 1972:117—61). This property, known as ‘‘weak ergodicity’’
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(Lopez 1961:66—68), ensures that stable population models almost always
fit well, unless the populations to which they are being fit have been
subjected to unusually rapid, cataclysmic change.

In a stable but nonstationary population, the age-at-death distribution
is only partly a function of age-specific mortality; it is also influenced by the
number of living individuals at risk of death at each age, which is influenced
in turn by population growth. More precisely, the number of deaths at age
a is proportional to the product of the force of mortality, �(a), and the
fraction of the total population that is age a, conventionally labeled c(a). In
a stationary population, c(a) is proportional to S(a), the probability of
surviving from birth to age a, which makes the age-at-death distribution a
reflection of mortality alone — but only in that special case. In a stable
population with a nonzero-growth rate equal to r, the value of c(a) is
proportional to S(a)e���. The quantity e��� corrects for the fact that the
absolute number of newborns entering the population each year is chang-
ing as a result of population growth, thus distorting the age distribution
that would have been expected under conditions of stationarity. For a
positive growth rate, for example, there are more individuals born this year
than, say, 10 years ago: if B babies are born this year into a stable
population, then B � e���� babies must have been born 10 years ago.

This change in the number of individuals entering the population at
a� 0 means that the number of people dying at each subsequent age must
be a function not only of the force of mortality, but of the growth rate as
well. The number of people surviving to each age is proportional to
S(a)e���; those survivors are then exposed to the age-specific mortality rate
�(a). Thus the probability density function for deaths in a stable population
with growth rate r is

f
�
(a)�

�(a)S(a)e���

�
	

�

�(x)S(x)e���dx

�
f
�
(a)e���

�
	

�

f
�
(x)e���dx

. (7.11)

(Compare equation (7.8). It should now be clear why we mark f
�
(a) with a

subscript zero: it represents Pr(a) only if the population’s growth rate is
zero — or in the profoundly unlikely event that we are dealing with a single
cohort.) As shown in Appendix 7.1, this same expression applies to all the
skeletons accumulated by a stable population over some more or less
protracted span of time. In principle, then, we can treat f

�
(a) as the Pr(a)

function in our likelihood (equation (7.2)) and estimate r as an additional
parameter of the model — if we can assume that the population was stable.
If it was not stable, at least approximately, we have probably reached the
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outer limits of what we can ever hope to learn about age-specific mortality
from skeletal samples.

This correction for nonstationarity still requires us to specify a paramet-
ric model for the age pattern of mortality. In other words, we still need to
write down an equation for either �(a), f

�
(a), or S(a). And we should try hard

to choose an equation that is flexible enough to approximate all known
human mortality distributions in order to be reasonably confident that the
model will accommodate the unknown mortality distribution that we are
trying to reconstruct. At the same time, the model must be sufficiently
bounded that growth rates are uniquely identifiable, since identifiability of
the growth rate is not guaranteed for some possible parametric models
(Holman et al. 1997, 1998). So we need the simplest possible model that is
still complicated enough to capture most of what we know about human
mortality patterns. Which immediately raises the question: what do we
know about human mortality patterns, including their common features
and their range of variation?

What does the human mortality curve look like?

Mortality trends and patterns have been well characterized for many
contemporary human populations and some historical ones (mostly
European, mostly confined to the past four centuries) (Coale and Demeny
1966; Keyfitz and Flieger 1968, 1990; Preston 1976; Gage 1990). Much less
is known about mortality conditions among the types of population typi-
cally studied by anthropologists: the small foraging or horticultural socie-
ties characteristic of most of human existence. Nonetheless, work to date
suggests that the mortality profiles of these populations tend to conform to
a generalized human pattern, although often at a level of mortality near the
upper end of the range typically observed in national and historical popu-
lations (Weiss 1973; Gage 1988). It thus seems meaningful to talk about the
‘‘common’’ age pattern of human mortality.

The basic pattern of the age-specific force of mortality is, in some
respects, strikingly similar across a wide range of human populations,
whether characterized by high mortality or low (Figure 7.1). The general
pattern appears to be one of excess mortality at the youngest ages of the
lifespan, with a rapid, monotonic decline to a lifetime low at around 10—15
years of age. This low point is followed by an accelerating rise in mortality
at later ages, a rise that appears to be roughly exponential. Because this
age pattern of mortality looks rather like the cross-section of an old-
fashioned clawfoot bathtub, it is sometimes referred to as the ‘‘bathtub
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Figure 7.1. Age-specific force of mortality in four human populations with widely
differing levels of mortality: Sweden 1985, females (Keyfitz and Flieger 1990); El
Salvador 1950, males (Keyfitz and Flieger 1968); Bangladesh 1978, both sexes
(Chowdhury et al. 1981); Gainj (highland New Guinea) 1970—77, males (Wood
1987b). Note that the Gainj, a small horticultural group, was the only one of the
four without regular access to modern medical care at the time of data collection.
In addition, the Gainj curve is based on a small sample (�150 deaths) and
therefore appears somewhat more ‘‘jagged’’ than the other examples.

curve’’. Figure 7.2 shows the survival function and the cohort PDF asso-
ciated with the bathtub curve.

The principal variations on this common theme that are observed in
historical and modern populations include wide differentials in the excess
mortality occurring at the youngest and oldest ages and, in some popula-
tions, marked differences in the timing of the decline in juvenile mortality
or the rise in adult mortality (Coale and Demeny 1966; Keyfitz and Flieger
1968, 1990; Preston 1976). All these phenomena are illustrated in Figure
7.1. These are, we suggest, the minimal kinds of variation we should expect
our model to be able to capture.

Types of variation in the age pattern of human mortality that are less
commonly observed — perhaps because they are of much smaller magni-
tude and thus require uncommonly good data to show through — include
the so-called ‘‘accident hump’’ at late juvenile and early adult ages and an
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Figure 7.2. Survival, force of mortality, and cohort PDF curves associated with
the ‘‘typical’’ human age pattern of mortality.

apparent slowing down of the rate of increase of mortality among the
oldest of the old. The accident hump, as Gage and Mode (1993) have noted,
is most clearly observed in males from European-derived populations with
low mortality (most notably the USA, Canada, and Australia). Luder
(1993) has suggested that it also occurs in nonhuman primates, although
inadequate data make this claim difficult to evaluate. Even if the accident
hump is a widespread phenomenon in human populations, the actual
magnitude of the mortality rise associated with it appears to be miniscule, a
point rightly emphasized by Gage and Mode (1993).

The deceleration of mortality among the oldest old is sometimes ob-
served in populations for which exceptionally good data on the elderly are
available (Horiuchi and Coale 1990; Kannisto 1994; Thatcher et al. 1997;
Vaupel 1997; Vaupel et al. 1998). One possible explanation for this deceler-
ation of mortality at the oldest ages is selective mortality, which might be
expected to eliminate all but the least vulnerable individuals by the time the
oldest segments of the lifespan are reached (Vaupel et al. 1979; Brooks et al.
1994; Himes 1994). Recent work on other organisms also highlights the
possibility that the deceleration in mortality is real at the individual level,
and not just an artifact of selectivity (Carey et al. 1992; Fukui et al. 1993;
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Vaupel et al. 1994). From a paleodemographic perspective, these issues
seem moot for the simple reason that the deceleration of mortality, what-
ever its cause, is only observed at ages so advanced (after, say, 90 years of
age) that it cannot have been an important feature of mortality in any
pre-industrial population.

In our opinion, then, the accident hump and the senescent deceleration
in mortality exemplify just the sorts of ‘‘bumps and squiggles’’ in the
mortality curve that paleodemographers will never be able to resurrect
with any credibility. It would seem sufficiently challenging to try to recon-
struct the general shape and level of the bathtub curve.

Ways of modeling mortality

As the previous section suggests, the mortality patterns of human popula-
tions can all be regarded as variations on a common, species-wide theme,
where both the variations and the commonalities are of interest. The
challenge in modeling mortality consists in capturing the underlying ‘‘uni-
versal’’ age structure of death while allowing for at least the principal kinds
of variation in its detailed realization observed in the real world. Past
attempts to model mortality can be classified in several different ways; one
way that is especially telling in the present context is to subdivide them into
‘‘semi-parametric’’ (or perhaps ‘‘semi-empirical’’) and ‘‘fully parametric’’
forms. Semi-parametric models start with empirically observed mortality
schedules and generalize them, usually by subjecting them to some form of
regression analysis. For example, the pioneering work on model life tables,
published by the United Nations (1955, 1956), involved regressing esti-
mates of the infant mortality rate on the rest of the age schedule of
mortality across 24 different populations. No attempt was made, beyond
the regression model itself, to reduce all the empirical complexities to a
simple mathematical form. But reduction to a simple mathematical form is
precisely what the fully parametric approach seeks to do. In this approach,
empirical data are examined rather informally to get a sense of what the age
pattern of mortality ought to look like, and then an equation is found that
mimics that pattern to some acceptable degree of approximation.

It might be thought that the semi-parametric approach is always prefer-
able because, from its very outset, it hews more closely to real data. But, as
we detail in the rest of this chapter, this is far from being the case.
Particularly when parametric models are simple and allow some etiologi-
cal interpretation, they can be much more enlightening about real-world
processes affecting mortality.
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In the following sections, we discuss one semi-parametric model and
several fully parametric ones. The semi-parametric model we have chosen
is one of several known as relational models (Zaba 1979, 1981; Heligman
and Pollard 1980; Ewbank et al. 1983; Aalen 1989), so called because they
are all based on statistical relationships among empirical mortality pat-
terns. Relational models, in some respects, represent a compromise
between traditional life tables and fully parametric models, hence our
description of them as semi-parametric.

Relational models

The development of relational models was originally inspired by a quest to
find the minimal number of parameters needed to capture all the variation
in the level and shape of the human curve of age-specific mortality. A
preliminary solution to this problem was provided by Ledermann and
Breas (1959), who performed a factor analysis of estimated age-specific
mortality rates from a large number of populations, showing that two
latent factors (apart from sex) accounted for more than half of the observed
variation in mortality. This result inspired Brass (1971) to develop a
two-parameter model of mortality, one that underlies what has come to be
called the Brass (or logit) approach to mortality estimation. The Brass
model is the prototype for all later relational models (e.g., Zaba 1979;
Ewbank et al. 1983), and it can be used to exemplify the approach as a
whole.

The logic of the Brass system starts with the theoretical survival function
S(a). Imagine for the moment that two populations (denoted by the sub-
scripts 1 and 2) differ only in the level of mortality, so that �

�
(a) ���

�
(a)

for all a, where � is a constant. From equation (7.6) it follows that

1

S
�
(a)

dS
�
(a)

da
�

�
S
�
(a)

dS
�
(a)

da
. (7.12)

By inspecting a large number of empirical mortality schedules, Brass
discovered that the scalar � relating different schedules is not in fact a
constant, but declines toward unity with advancing age. For example, in
one extreme comparison �(a) was more than 16 times higher in one
population than in another in the age interval 1 to 4 years, but dropped to
about 1.5 times higher at ages 75 to 79 years (Brass 1971). Brass found that
this pattern could be closely approximated by a function of the form
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Solving for S
�
(a),

ln�
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1
S
�
(a)

S
�
(a) � , (7.14)

where � and 	 are new constants.
If the number x lies between 0 and 1, then ln[x/(1
x)] is known as the

‘‘logit transform’’ of x, often written logit(x). Thus, we can rewrite equation
(7.14) as logit(1
S

�
(a))� ��	 logit(1
S

�
(a)). This equation is the basis

of the Brass relational model, and � and 	 are its two parameters. Roughly
speaking, a choice of � sets the overall level of mortality (as reflected in, say,
the life expectancy at birth) while 	 sets the ‘‘tilt’’ of mortality curve 1
compared with curve 2.

Now suppose that ‘‘population 2’’ is a well-studied reference population
whose survival schedule has been estimated properly from high-quality
data, and ‘‘population 1’’ is some target population whose survival sched-
ule is only poorly known. Then a linear regression of logit (1
S(a)) from
the target population on that of the reference population, in the form of
equation (7.14), can be used to smooth the target population’s mortality
curve and fill in any gaps (for technical details see Brass 1975). In this way,
information on part of the target population’s survival schedule can be
used to generate the entire schedule.

In his original article on the subject, Brass (1971) showed that the logit
approach is reasonably flexible and provides plausible results when ap-
plied to data from a wide variety of national populations. In the same
chapter, Brass provided a reference life table that has proven useful in
analyses of mortality data from Africa and Asia (see Brass and Coale 1968;
Carrier and Hobcraft 1971). It is important to emphasize, however, that
neither the logit approach in general nor the Brass reference table in
particular has been able to cover all known human mortality patterns, and
both may be especially bad for the small, high-mortality populations
commonly studied by anthropologists (Wood 1987a). In addition, the form
of equation (7.13), and hence (7.14), was not derived from theoretical
considerations, but is purely empirical. Nonetheless, relational models
provide a simple system for mortality estimation that is flexible enough to
warrant more attention by paleodemographers than they have hitherto
received.
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Fully parametric models

An alternative to model life tables and relational models are parametric
models of the age pattern of mortality (Wood et al. 1992a). If constructed
properly, these models reduce the numerous life table age classes into a
small number of biologically meaningful parameters that can all be es-
timated from data on the target population being studied (Gage and Dyke
1986; Gage 1989; Gavrilov and Gavrilova 1991). Parametric models have
begun to be widely applied in demographic research only in the last two
decades as advances in computer technology have facilitated the develop-
ment, testing, and application of complex statistical models (Mode and
Busby 1982; Mode and Jacobsen 1984; Gage 1988, 1989; Wood et al. 1992a;
Gage and Mode 1993). These models are extremely promising for use with
small paleodemographic samples because of their parsimony in describing
mortality patterns with the smallest possible number of parameters.

Like relational models, fully parametric models of mortality can be used
to smooth and correct inadequate mortality data. But they can be much
more flexible than relational models. All mortality models impose a certain
amount of a priori age structure onto the data being examined, but good
parametric models make the fewest assumptions about what the detailed
age pattern of mortality ought to be. In theory, this permits us to come
closer to the ‘‘true’’ underlying age structure of mortality in the population
being studied — assuming that we have selected the right parametric model.

A number of parametric models of the age patterns of mortality have
been developed over the years, as attempts have been made to formulate a
general ‘‘law of mortality’’ applicable to all human populations (for re-
views, see Mode 1985:35—74; Gage 1989; Gavrilov and Gavrilova 1991;
Wood et al. 1992a). In the following sections, we discuss models that we
consider to be especially promising for paleodemography. Since
paleodemographic cause-of-death analysis is (and will probably remain)
poorly developed, all the models we consider deal with mortality from all
causes simultaneously.

Weibull, Rayleigh, and bi-Weibull models

The two-parameter Weibull model (Weibull 1951) is widely used in indus-
trial reliability testing, mainly to model the effects of accumulated damage
on product breakage (Thompson 1988). By analogy, it may provide a
reasonable model for human aging, which is a kind of ‘‘wear-out’’ process.
The force of mortality in the standard Weibull model is
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�(a)�	a	��/�	. (7.15)

The associated survival function is

S(a)� exp[
(a/�)	], (7.16)

and the cohort PDF of ages at death is

f
�
(a)� (	a	��/�	)exp[
(a/�)	]. (7.17)

As Nordling (1953) first noted, the two-parameter Weibull specification
can be used to model so-called multi-hit or multi-stage processes, in which
a fixed number of insults or disease stages must be experienced before
death ensues. Examples for which such models may be relevant include:
cancer, in which two or more somatic mutations must occur before a cell
line becomes malignant and metastatic; diabetic nephropathy, which is
preceded by a fairly regular sequence of diabetic stages; and the formation
of arterial plaques, for which multiple, sequential lesions in the arterial wall
appear to provide a starting point (Whittemore and Keller 1978; Andersen
1988; Weiss and Chakraborty 1990).

Recently, a special case of the Weibull has been used for paleodemo-
graphic mortality analysis (Konigsberg and Herrmann 2000). This is the
Rayleigh model, which is obtained from the Weibull by setting 	� 2. By
fixing one parameter, this model gains some efficiency in estimation, albeit
at the cost of a corresponding loss in generality and flexibility.

A related model that has found some application in reliability testing is
the bi-Weibull model (Evans et al. 2000:199—200). Reliability specialists
have used this model to capture complex processes with both ‘‘burn-in’’
and ‘‘wear-out’’ stages, roughly paralleling the maturation and senescent
phases of the human lifespan. The bi-Weibull is formed by adding together
two Weibull mortality functions: the first a Weibull with two-parameters, �
and �, that applies to all ages and the second a three-parameter Weibull
that is added to the baseline hazard after a� �, the earliest age at which
wear-out affects the risk of death. To specify the force of mortality in the
bi-Weibull, we need two separate equations:

�(a)� ��(�a)
��, 0� a��, (7.18)

and

�(a)� ��(�a)
����
	
���

a
 �
� �

	��
, a� �. (7.19)
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Figure 7.3. An example of the bi-Weibull model of human mortality.

The corresponding survival function is given by

S(a)� e�����
, 0� a��, (7.20)

and

S(a)� exp(
 �(�a)
 � [(a
 �)/�]	�), a� �. (7.21)

The bi-Weibull model does a quite decent job of mimicking the bathtub
curve of human mortality (Figure 7.3). So far as we know, however, it has
never been used in paleodemography— or any other branch of demography
of which we are aware. If we were willing to rely on evolutionary theory
that suggests that senescent causes of death do not begin to be important
until about the time of sexual maturation (Hamilton 1966), we could reduce
the standard bi-Weibull specification to a four-parameter model by setting
� equal to, say, 15 years of age. One unfortunate feature of the bi-Weibull,
incidentally, it that its force of mortality may be undefined at age zero if
�� 1 (because it involves division by zero), making it impossible to esti-
mate neonatal mortality.

The Gompertz model

The very first attempt to develop a parametric model of mortality was that
of Gompertz (1825). Gompertz modeled the aging or senescent component
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of mortality with two parameters: a positive scale parameter � that sets the
overall level of adult mortality, and a positive shape parameter 	 that
determines how the risk of death accelerates with advancing age. The force
of mortality in the Gompertz model is

�(a)� �e	�. (7.22)

The corresponding cohort PDF is

f
�
(a)� � exp�	a�

�
	

(1 
 e	�)� , (7.23)

and the survival function is

S(a)� exp�
�
	

(1
 e	�)� . (7.24)

Gompertz, who was concerned exclusively with mortality associated with
aging across the adult lifespan, assumed that the observed increase in adult
mortality with age is a result of a negative exponential decline in physio-
logical capacity (Gage 1989). A variety of other parametric models of aging
have since been developed, some of them based on different assumptions
about the aging process (e.g., linear rather than exponential decline in
physiological capacity with age, or models of accumulated damage with
age). Most of these ultimately reduce, or approximate, to the Gompertz
equation (Wood et al. 1994; for reviews of these models, see Mode 1985;
Gage 1989; Gavrilov and Gavrilova 1991).

The Gompertz–Makeham model

The earliest modification to the Gompertz model, proposed by Makeham
(1860), involves adding a single parameter to capture age-independent
adult mortality. This parameter represents mortality resulting from causes,
such as accidents or sexually transmitted diseases, unrelated to either
maturation or senescence. The Gompertz—Makeham model specifies the
force of mortality as

�(a)� �
�
� �

�
e	�. (7.25)

The �
�

parameter in this expression represents the constant, age-indepen-
dent component of mortality; the �

�
exp(	a) term is just a Gompertz

function describing the senescent component.
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The cohort PDF for the Gompertz—Makeham model is

f
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and the Gompertz—Makeham survival function is

S(a)� exp�
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�
a�

�
�
	

(1
 e	�)� . (7.27)

The Gompertz—Makeham model fits well to empirical mortality dis-
tributions between the ages of 30 and 85 years (Finch 1990). Nearly all
subsequent models of the age pattern of mortality have been extensions of
the Gompertz—Makehammodel, primarily intended to cover the rest of the
lifespan — for example, by allowing for an early-adult accident hump
(Thiele 1871; Heligman and Pollard 1980; Mode and Busby 1982; Mode
and Jacobsen 1984; Gage 1989; Gavrilov and Gavrilova 1991). As we have
already suggested, it is probably pointless for paleodemographers to con-
cern themselves with a detail as small as the accident hump.

The Siler model

One of the most parsimonious parametric models of mortality across the
entire lifespan, including pre-adult ages, is the Siler competing hazards
model (Siler 1979, 1983). This model fits as well as or better than most other
models to human mortality data (Gage and Dyke 1986; Gage and Mode
1993). Siler added a third component to the Gompertz—Makehammodel to
represent the earliest segment of life, when the risk of death often starts out
high but then declines rapidly. The force of mortality in Siler’s model is

�(a)� �
�
e�	��� �

�
� �

�
e	��. (7.28)

Note that the parameters of equation (7.25) have been renumbered here.
Now �

�
is the level of neonatal mortality and 	

�
is the rate of decline in

early mortality with age. The second term is the constant (Makeham)
component of the model, and the third term the senescent (Gompertz)
component. The structure of the Siler model invites a simple interpretation
of mortality as the sum of three components:

�(a)� �
�
(a)��

�
� �

�
(a), (7.29)

where each � represents a distinct set of competing causes of death. Indeed,
Siler (1979) called his model a competing hazards model precisely because
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Figure 7.4. An example of the Siler model of human mortality.

he interpreted its three components as sets of risks that compete simulta-
neously throughout life. Because of the 	 parameters, however, the first
component is unimportant after the earliest juvenile years, and the third
component does not become dominant until adulthood.

The cohort PDF and survival function of the Siler model are

f
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Figure 7.4 shows an example of the Siler model with parameters chosen to
reflect a typical human mortality pattern. Despite the fact that the Siler
model does not include an accident hump, it still fits reasonably well to
human populations, including those that do have this feature (Gage and
Mode 1993).

The three components of the Siler model — immature, age-independent,
senescent — are assumed to be competing but noninteracting causes of
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death (or, somewhat more realistically, clusters of distinct causes of death).
That is to say, individuals who survive one set of potential causes (e.g.,
age-independent ones) are just as susceptible as all other individuals to
other causes (say, senescent ones).

Although the Siler model was not originally developed with much
detailed etiology in mind (especially with regard to its immature compo-
nent), Gage (1991) has shown empirically that the model has considerable
etiological coherence. For example, mortality attributable to infectious
diseases such as pneumonia and diarrhea is highly correlated with the
immature and senescent components; degenerative causes of death are
primarily associated with the senescent component; and accidents and
maternal mortality fall largely into the age-independent component of the
Siler model (Gage 1991). Maternal mortality is not, of course, truly age-
independent; it simply is not associated with either immaturity or ad-
vanced age.

Gage, who pioneered the application of parametric mortality models in
anthropological demography (Gage and Dyke 1986; Gage 1988, 1989), has
used the Siler competing hazards model extensively for both empirical and
theoretical investigations of the age patterns of mortality. He has examined
international variation in human mortality (Gage 1990), the relationship of
covariates to this variation (Gage 1994; Gage and O’Connor 1994), the age
pattern of mortality in anthropological populations (Gage 1988, 1989), and
even the age pattern of mortality in nonhuman primates (Gage and Dyke
1988; Dyke et al. 1993; Gage 1998). He has also examined hypotheses
regarding the underlying etiology and epidemiology of disease processes
and their relationships to the age pattern of mortality (Gage 1991, 1994).
And one of his former students has used the Siler model extensively in
paleodemographic analysis (O’Connor 1995; O’Connor et al. 1997).

Although the Siler model is unquestionably useful for investigating
human mortality, it does have some limitations. Its immature component,
for example, is often difficult to estimate and interpret. There are two
distinct reasons for this difficulty. First, although the negative exponential
specification of juvenile mortality fits most human data fairly well, it is not
etiologically derived (Gage 1989). Second, juvenile mortality is difficult to
estimate reliably from small samples because information on it comes
primarily from a tiny subset of the data — those from the first five years or so
of life. In most populations, mortality during this segment of the lifespan is
high but declines rapidly with small increments in age; thus almost all the
information about juvenile mortality must be extracted from an extremely
narrow age range. With small samples, the scale of the juvenile component
can sometimes be estimated reasonably well, but capturing the shape is
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more problematic (Gage 1989). This problem is worsened in paleodemog-
raphy because of the common underrepresentation of infants and young
children in skeletal samples owing to differential preservation (Gordon and
Buikstra 1981; Waldron 1987; Walker et al. 1988). This whole issue is
important because early juvenile deaths make up a large fraction of all
deaths in most human populations, especially pre-industrial ones, and
much of the variation in mortality among human populations falls in
infancy and early childhood (see, e.g., Figure 7.1). For these reasons a better
theoretical model of mortality at juvenile ages would be useful.

A second limitation of the Siler model is that it assumes individuals in a
population to be homogeneous with respect to their genetic, physiological,
environmental, and behavioral risks of death (Gage and Dyke 1986; Gage
1989). Variation in risk factors among individuals or subgroups in a
population may influence the age pattern of mortality in ways that make
comparative analyses difficult to interpret (Vaupel et al. 1979; Vaupel and
Yashin 1985a,b; Gage 1989; Wood et al. 1992a,b; Himes 1994). We expand
this point in the next section.

Interpreting competing hazards models when mortality is
heterogeneous

In this section, we show that the competing hazard interpretation of the
Siler model implies that the population being studied is homogeneous in
mortality risk — that is, the population is made up of individuals who are all
subject to exactly the same causes of death and are equally susceptible to
them. In the presence of heterogeneity, the model’s parameters cannot be
interpreted in the conventional way proposed by Siler (1979). In other
words, models like the Gompertz—Makeham and Siler are implicitly
models of homogeneous risks. With heterogeneity among individuals in
the risk of death, interpretation of the � values on the right-hand side of
equation (7.28) is not possible except under some not-very-plausible cir-
cumstances, as shown below.

Generally speaking, we do not believe that the members of any natural
population, human or nonhuman, have exactly the same age-specific risks
of death (for a discussion of this point, see Milner et al. 2000). For example,
some individuals may be constitutionally frailer than others, a subset of
individuals may engage in risky behavior, or some individuals may simply
live in riskier environments, such as those associated with poverty. A
number of recent advances in statistical methodology provide a framework
for modeling heterogeneity among individuals in a population (see e.g.,
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Heckman and Singer 1984; Manton et al. 1992). Another section of this
chapter discusses several different methods for incorporating heterogeneity
into parametric mortality models in ways that improve our ability to
interpret the estimated parameters.

The simplest imaginable form of heterogeneity is one in which variation
in risk comes packaged in the form of two distinct subgroups — but we
observe only the mixture of the two. As we show in Appendix 7.2, the Siler
model cannot be interpreted under this scenario as representing indepen-
dent competing hazards. We will refer to models that are mixtures of two or
more nonoverlapping subgroups as ‘‘mixed-hazardsmodels’’ to distinguish
them from competing-hazards models. Are there any possible two-
component mixed-hazards models that can be interpreted in terms of
independent competing causes? Appendix 7.2 shows that there are (see
equations (A7.11)—(A7.12)), but also that they make little if any biological
sense. If we believe that heterogeneity was likely to have existed in our
target population — and it has almost certainly existed in every human
population — then we should probably abandon models that purport to be
competing-hazards models and replace them with specifications that can
be interpreted explicitly in terms of mixtures of heterogeneous subgroups.

The mixed-Makeham model

In this section we develop a mixed-hazard model of human mortality that
fits as well as the Siler model — and, just as importantly, has no more
parameters. Consider a population made up of two subgroups, and assume
that each subgroup has a different constant (Makeham) hazard but that
both subgroups have the same senescent (Gompertz) hazard. The model is
thus a mixture of two Gompertz—Makeham models, but constrained so
that the two senescent components are identical. Accordingly, we call it the
‘‘mixed-Makeham model’’. The force of mortality in the mixture as a whole
is

�(a)� p(a)(�
�
� �

�
e	��)� (1
 p(a))(�

�
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�
e	��) (7.32)

� p(a)�
�
� (1
 p(a))�

�
� �

�
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where �
�

now represents the constant hazard in the first, high-risk sub-
group and �

�
represents the constant hazard in the second, low-risk

subgroup. The term p(a) is the fraction of high-risk individuals among all
the individuals alive at age a, given by
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Figure 7.5. An example of the mixed-Makeham model of human mortality. The
broken and dotted curves show the force of mortality in the low- and high-risk
subgroups, respectively, whereas the solid curve shows the aggregate-level force
of mortality in the mixture as a whole. Although neither subgroup curve has a
distinct juvenile component, the aggregate curve displays a decline in juvenile
mortality, reflecting selective mortality against the high-risk subgroup. As
high-risk individuals are selected out of the population, the aggregate curve
converges on the low-risk pattern.
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where p is the initial fraction of individuals in the high-risk subgroup (i.e.
the fraction at birth). From the starting point p, p(a) declines as high-risk
individuals are selectively removed by death. As a result, the p(a)�

�
term in

equation (7.32) becomes smaller and smaller with age, and the overall force
of mortality declines accordingly. Thus, even though there is no distinct
juvenile component of mortality under the mixed-Makeham model, mor-
tality declines during the early years of life as the aggregate mixture comes
more and more to reflect the low-risk portion of the population (Figure
7.5). After a while, however, the shared senescent component begins to
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dominate the overall force of mortality, and the risk of death increases
correspondingly at later ages in both subgroups.

The cohort PDF and survival function of the mixed-Makeham model
are

f
�
(a)� p exp�
 �

�
a�

�
�
	
�

(1
 e	��)� (�
�
� �

�
e	��) (7.34)

� (1
 p)exp�
 �
�
a�

�
�
	
�

(1
 e	��)� (�
�
� a

�
e	��),

and

S(a)� p exp�
 �
�
a�

�
�
	
�

(1 
 e	��)� (7.35)

� (1
 p)exp�
 �
�
t�

�
�
	
�

(1
 e	��)� .

We have shown elsewhere that this model usually fits paleodemographic
mortality profiles at least as well as the Siler model does (O’Connor 1995;
Holman et al. 1997, 1998; O’Connor et al. 1997). The difference between
this model and the Siler is that its parameters are easier to interpret and
may provide clues about the existence of important forms of intrapopula-
tion variation in material conditions that affect the risk of death. In
addition, the �

�
and �

�
parameters of the mixed-Makeham model are

estimated from observations drawn from the entire lifespan and are thus
less sensitive to deficiencies in data on the very young than are the Siler
parameters �

�
and 	

�
.

A more general approach to modeling heterogeneity

The above discussion has focused on discrete heterogeneity in which
individuals can be assigned to one of two subgroups, each subgroup
differing from the other but containing members who all share common
mortality risks. This approach can be extended to any number of discrete
subgroups. Subgroups may have risks of death that are all drawn from the
same distribution but with different parameter values, or they may have
different distributions altogether. Mixtures of different distributions have
been used for a number of models in demography, for example to describe
the postpartum resumption of menses (Ford and Kim 1987) and pregnancy
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loss (Wood 1989; Holman 1996). Recently, Louzada-Neto (1999) has pro-
posed a ‘‘polyhazard’’ mortality model along these same lines.

A reasonable question to ask is whether we can justify adding risk
groups without limit. Additional subgroups are perfectly easy to handle
mathematically, but parameter estimation becomes increasingly difficult
with each latent subgroup thrown into the pot. Most paleodemographic
samples would not be able to cope with more than two or three subgroups.
With many subgroups, moreover, we begin to lose the straightforward
interpretation associated with the simple two-subgroup model. And once
we forfeit the ability to interpret parameters, we descend from etiological
modeling to empirical curve fitting.

Rather than blindly subdivide the population into hypothetical sub-
groups, we might consider a population that consists of such a large
number of subgroups that the risk of death appears to vary continuously
among individuals. We can then think in terms of a continuous probability
density function of underlying risk rather than proportions falling into
discrete categories of risk. If z is the individual-level component of the risk
of death — that is, the part of the risk that varies among members of the
population — then we can write g(z) for the continuous distribution of risk.
The age-at-death distribution that we observe is then the expectation over
all values of z:

f�
�
(a)��

	

�	

g(z) f
�
(a �z)dz. (7.36)

We can specify z in f
�
(a �z) in a number of ways, including as a covariate on

a particular parameter or on the force of morality as a whole, as in the
proportional hazards model (Cox 1972; Manton et al. 1986).

Several researchers have shown that parameter estimates can be dis-
turbingly sensitive to the precise choice of equations for g(z) or f

�
(a �z)

(Heckman and Walker 1987; Manton et al. 1992; Moreno 1994; Rodrı́guez
1994). Consequently, specification of these terms should be based, when-
ever possible, on some theory about the underlying mechanisms that
generate the heterogeneity in risk (see e.g., Weiss 1990; Wood 1998). The
gamma, beta, and log-normal distributions are frequently used to model
heterogeneity. For example, Gage (1989) has explored the behavior of the
Siler model with gamma-distributed heterogeneity. But these specifications
are often based on mathematical convenience rather than on any estab-
lished biological principles.
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Capturing the sex differential

There is one form of heterogeneity that can reasonably be captured by a
simple dichotomous model: the difference between males and females.
Since the one thing we know about human mortality is that it always differs
between the sexes — and sometimes markedly so — it makes little sense to
apply a single, homogeneous parametric model of mortality to a combined
sample of male and female skeletons. Moreover, sex differences in mortality
are interesting in their own right, and we would like to be able to say
something about them. But to examine these differences using the Rostock
Manifesto in its present form we must, in effect, cut our sample size in half
by applying the method to the two sexes separately. Even worse, we have to
throw out some important biological constraints on our parameter values:
no matter what the difference in mortality between the sexes, the male and
female segments of the population have to be growing or declining at the
same rate r (Coale 1972:53—58), and meiosis re-establishes a sex ratio at
birth that is always close to one-half. In addition, male and female age-
specific mortality rates are not completely unrelated to each other, but
differ in quite limited and specific ways (Keyfitz 1985:54—76). It would be a
fine thing if we could make use of these universal constraints in estimating
our model.

Imagine that our vector of skeletal traits c contains measures that
provide information about sex as well as age in a sample made up both
male and female skeletons. What is the probability, over the sample as a
whole, of observing a particular c value — say, c

�
? It is just the marginal

density of c
�
:

Pr(c
�
) � �

	������
�

	

�

Pr(c
�
�a, k) f

�
(a �k)Pr(k)da (7.37)

� �
	������

�
	

�

Pr(c
�
�a, k) f

�
(a, k)da,

where k is an indicator variable for sex (k� 0 for females, 1 for males), and
f
�
(a, k) is the joint distribution of deaths by age and sex in the target

population. (The fact that this distribution is subscripted with an r indi-
cates that it has been corrected for nonstationarity.) The likelihood func-
tion for the whole sample is �Pr(c

�
), where the product is taken over all n

skeletons.
To use this likelihood we need two new quantities: an estimate of

Pr(c
�
�a, k) from a reference sample in which both age and sex are known,

and a parametric expression for f
�
(a, k). The first is a purely statistical
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problem, and we ignore it here. We focus instead on finding an expression
for f

�
(a, k).

We begin with the elementary relationship Pr(a, k)� Pr(k �a)Pr(a). It
follows that

f
�
(a, k)��

(1 
�(a)) f
�
(a),

�(a) f
�
(a),

if k� 0

if k� 1
, (7.38)

where �(a) is the proportion of surviving people at age a for whom k � 1.
That is, �(a)�Pr(k� 1 �a). This quantity can be found as

�(a)�
�(0)S

�
(a)

�(0)S
�
(a)� (1
 �(0))S

�
(a)

, (7.39)

where �(0) is the sex ratio at birth expressed as a proportion and the
subscripts 0 and 1 refer to females and males, respectively. Now, everyone
knows that �(0) is not exactly equal to �

�
, but it never strays very far from it

(in some populations it soars to 0.51, in others it plunges to 0.49). So we
assume from now on that �(0)��

�
. Thus, equation (7.39) reduces to

�(a)�
S
�
(a)

S
�
(a)� S

�
(a)

. (7.40)

Since the numbers of both sexes in a stable population must be changing
at the same constant rate r, it must be the case that

f
�
(a)�

�� (a)S� (a)e���

�
	

�

�� (x)S� (x)e���dx

. (7.41)

In equation (7.41), the bars denote weighted averages over the two sexes.
That is,

�� (a)� (1 
�(a))�
�
(a)��(a)�

�
(a) (7.42)

and

S� (a)� (1 
�(0))S
�
(a)��(0)S

�
(a) (7.43)

��
�
(S

�
(a)�S

�
(a))

if �(0)��
�
.

How should we model �
	
(a) and S

	
(a) themselves? As a general strategy,

we propose treating the mortality of one sex as a baseline and letting the
other sex differ from it in what might be called ‘‘quasi-proportional’’
fashion:

�
�
(a)�baseline hazard, (7.44)
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and

�
�
(a)��

�
(a)e����, (7.45)

where (a) is some function of age that models the sex differential ln(�
�
(a)/

�
�
(a)). We have tested several specifications of (a) against data from the

empirical life tables compiled by Keyfitz and Flieger (1968, 1990). Although
we find that (a) is positive at all ages in almost all human populations
(male mortality is almost always greater than female mortality), neither a
constant difference (a)� � nor the linear function (a)� ��	a captures
the real age pattern of the sex differential. Instead, the empirical differential
is typically bimodal by age, peaking at ages 20—25 years and again at 55—65
years (sometimes one mode is higher than the other; sometimes a mode is
missing). If our quasi-proportional model is to be implemented, we will
eventually need to identify a simple function that duplicates this pattern.

What happens from this point on depends in its details on the precise
way we decide to specify (a). For the present, we will assume that (a) acts
as a true proportional hazard so that we can sketch out the rest of the
method as simply as possible. If we can also assume that �(0)� �

�
, then

�� (a)�
�
�
(a)

2S(a)
(S

�
(a)� S

�
(a)e����). (7.46)

Consequently,

�� (a)S� (a)��
�
�
�
(a)(S

�
(a)�S

�
(a)e����), (7.47)

which is what we need to substitute in equation (7.41).
Combining all these results and rearranging, the likelihood of a set of

observed age- and sex-related traits in a sample of n skeletons is

L�
�
�
��

�
	������

�
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�
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where, as before, the asterisk (*) denotes an estimate made from data on a
reference sample, and

f
�
(a)�

�
�
(a)(S

�
(a)�S

�
(a)e����)e���

�
	

�

�
�
(x)(S

�
(x)�S

�
(x)e����)e���dx

. (7.49)
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Once we specify parametric models for �
�
(a) and (a), we can use equations

(7.48) and (7.49) to estimate f
�
(a, k) from the target sample by maximum

likelihood. And once we have that in hand, we have both the mortality
profile (by sex) and the population growth rate of the target population.
We can also say something about how old an individual skeleton in the
target population is likely to be and what its probable sex is — things we
would like to know for paleopathological purposes — by plugging our
estimates of f

�
(a, k) into the multivariate generalization of Bayes’s theorem:

Pr�(a, k �c
�
)�

Pr*(c
�
�a, k) f�

�
(a, k)

�
�������

�
	

�

Pr*(c
�
�x, y) f�

�
(x, y)dx

(7.50)

�
Pr*(c

�
�a, k) f�

�
(a, k)

Pr�(c
�
)

,

where the hats ( � ) denote maximum likelihood estimates from the target
sample. This expression, which is a straightforward extension of the orig-
inal Rostock Manifesto, ought to provide us with the proper error struc-
ture for both our age estimates and our classifications by sex.

Discussion

In this chapter, we have reviewed several parametric models of mortality
processes that can be used in conjunction with the Rostock approach to
paleodemographic mortality analysis. Since paleodemographers will never
be able to fit complicated models to their skeletal data, we have empha-
sized simple models that still do a reasonable job of capturing the main
features of the human mortality curve. (The fact that the equations descri-
bing these models often look dauntingly complicated should not obscure
their underlying simplicity.) At the same time, we have tried to focus most
of our attention on models that support at least a certain amount of
etiological interpretation, so that we may actually stand to learn something
interesting from our skeletal samples instead of just fitting meaningless
curves to them.

On biological grounds, we believe that within-population heterogeneity
in health and the risk of death ought to be a central theoretical concern of
paleodemography (see Wood et al. 1992b; Wood 1998; Milner et al. 2000).
Accordingly, we have spent a fair amount of effort in exploring the implica-
tions of heterogeneity for etiological models of mortality. One form of
heterogeneity that is always with us — viva la hétérogènéité! — is the
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difference between males and females. As it happens, sex is also one of the
fundamental dimensions along which we would like to be able to classify
our skeletons. Therefore, we have proposed an extension of the Rostock
approach that estimates the sex differential at the same time as it prob-
abilistically assigns age and sex to our skeletons. One of the challenges in
applying this extension will be to find a simple parameterization of the sex
differential in risk of death. In other words, we need even more parametric
models, not fewer.
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Appendix 7.1

The age-at-death distribution for skeletons deposited over time

In a series of famous papers, Lotka (1907, 1922, 1931) worked out the characteris-
tics of the stationary and stable population at any instant in time. In examining
skeletons from archaeological sites, however, we are never dealing with a single
instant of time, but rather with some more or less prolonged (and usually unknown)
period during which skeletons are laid down. How do we go from the stable or
stationary age-at-death distribution at one time to the corresponding distribution
over the entire period of deposition?

If skeletons are accumulated over a span of time equal to �, then

Pr(a)���
�

�

f
�
(a, t)

�
	

�

f
�
(x, t)dx

dt, (A7.1)

where f
�
(a, t) is the age-at-death distribution (corrected for nonstationarity) at time

t, and � is a normalizing constant ensuring that Pr(a) integrates to 1. If the
population is stationary, r� 0 and
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�
(a, t)�

�(a)S(a)

�
	

�

�(x)S(x)dx

(A7.2)

(Lotka 1907). Since nothing on the right-hand side of equation (A7.2) varies with t,
its integral is simply a constant equal to f

�
(a, t) itself:

Pr(a)� ��
�

�

f
�
(a, t)

�
	

�

f
�
(x, t)dx

dt�
�(a)S(a)

�
	

�

�(x)S(x)dx

. (A7.3)

Note that the right-hand portion of this expression does not contain �. Thus, the
fact that we usually do not know the exact period over which skeletons were
deposited is of no concern.

If the population is stable but not stationary (r 0), we must take into account
the fact that the number of skeletons being deposited each year changes in propor-
tion to population growth or decline. In general, the number of deaths of age a at
time t is n(a, t)�(a), where n(a, t) is the number of living individuals age a at risk of
death at time t. But since a stable population is closed to migration, n(a, t) �
n(0, t
 a)S(a). And since f

�
(a)� �(a)S(a), the number of deaths at a in t, n(a, t)�(a),

becomes n(0, t
 a) f
�
(a). Lotka (1907) showed that the number of births changes

exponentially in a stable population. Thus, the number of deaths age a at t can be
rewritten as

n(0, 0)e������f
�
(a)� n(0, 0)e��f

�
(a)e���. (A7.4)

Substituting in equation (A7.1), we have

Pr(a)� ��
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f
�
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f
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(x, t)

dt (A7.5)
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n(0, 0)e�� f
�
(x, t)e���dx

.

Since the term n(0, 0)e�� in the denominator of the right-hand side of equation (A7.5)
does not vary with x, we can pull it out of the inner integral and cancel it from the
numerator and denominator. We are left with the relation

Pr(a)�
�(a)S(a)e���

�
	

�

�(x)S(x)e���dx

(A7.6)

in a stable population with growth rate r. Again, this expression does not contain�,
so we do not need to know its value. If r � 0, this equation reduces to equation
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(A7.3), which highlights the fact that the stationary population is just a special case
of the stable population. It also shows that we can use equation (A7.6) in our
likelihood function to estimate r whether it is zero or nonzero, positive or negative.

Appendix 7.2

The implications of heterogeneity for competing hazards models

Can models such as the Siler model, which are normally interpreted as models of
competing hazards, support such an interpretation when the population involved is
heterogeneous in the risk of death? Consider a population for which there are only
two types of individuals. Individuals of type 1 are all at hazard �

�
(a) and individuals

of type 2 are all at hazard �
�
(a). Assume that, within the two subgroups, individuals

are homogeneous for mortality risk, and let the proportion of newborns in group 1
be p and in group 2 be (1
 p). Since f

�
(a) and S(a) are probabilities, they can be

found for the mixture of the two groups by using the law of total probability:

S(a)� pS
�
(a)� (1
 p)S

�
(a) (A7.7)

and

f
�
(a)� pf

���
(a)� (1
 p) f

���
(a). (A7.8)

Using equation (7.6), we can now write the mortality function for the entire popu-
lation as
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(a)
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. (A7.9)

Clearly, equation (A7.9) does not take the form �
�
(a)��

�
(a). It does not even take

the form of a simple weighted average of the two subgroups: p�
�
(a)� (1
 p)�

�
(a).

The proper total hazard in terms of both the subcomponent hazards is �(a)�
p(a)�

�
(a)� (1
 p(a))�

�
(a). In this expression, p(a) is the fraction of those individ-

uals surviving to age a who belong to group 1, equal to

p(a)�
pS

�
(a)

S(a)
�

pS
�
(a)

pS
�
(a)� (1
 p)S

�
(a)

. (A7.10)

The numerator is the fraction of survivors in group 1 at age a and the denominator
is the fraction of all survivors at age a.

The above exercise shows that interpreting the individual components of a
‘‘competing-hazards’’ model as if they really were independent competing causes of
death may be inappropriate when the population consists of two subgroups. Can
the parameters of a two-subgroup mixed-hazards model ever be interpreted as a
competing hazards model? Some algebra reveals that this is permissible if
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Since f
�
(a)�
dS(a)/da, the equivalencies in equation (A7.11) hold when

p�
f
���

(a)S
�
(a)�

f
���

(a)S
�
(a)�� f

���
(a)S

�
(a)�

, (A7.12)

or in the trivial case in which each subgroup experiences exactly the same risk,
�
�
(a)��

�
(a). If one of these conditions — the first of which is completely arbitrary

and the second not a model of heterogeneity at all — is not met, competing-hazards
models such as the Siler model are inappropriate and cannot be interpreted
properly. It can be shown that similar conditions hold when more than two
heterogeneous subgroups exist in the population.
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Alesan A, Malgosa A, and Simó C (1999) Looking into the demography of an Iron
Age population in the western Mediterranean. I. Mortality. American Journal
of Physical Anthropology 110, 285—301.

Andersen PK (1988) Multistate models in survival analysis: a study of nephropathy
and mortality in diabetes. Statistics in Medicine 7, 661—670.

Angel JL (1969) The bases of paleodemography. American Journal of Physical
Anthropology 30, 427—438.

Benedictow OJ (1996) The medieval demographic system of the Nordic countries,
revised edition. Oslo: Middelalderforlaget.

Bourgeois-Pichat J (1971) Stable, semi-stable populations and growth potential.
Population Studies 25, 235—254.

Brass W (1971) On the scale of mortality. In W Brass (ed.): Biological aspects of
demography. London: Taylor and Francis, pp. 69—110.

Brass W (1975) Methods for estimating fertility and mortality from limited and
defective data. Chapel Hill, NC: Carolina Population Center, University of
North Carolina.

Brass W and Coale AJ (1968) Methods of analysis and estimation. In Brass W (ed.):
The demography of tropical Africa. Princeton, NJ: Office of Population Re-
search, Princeton University, pp. 88—150.

162 J. W. Wood et al.



Brooks A, Lithgow GJ, and Johnson TE (1994) Mortality rates in a genetically
heterogeneous population of Caenorhabditis elegans. Science 263, 668—671.

Carey JR, Liedo P, Orozco D, and Vaupel JW (1992) Slowing of mortality rates at
older ages in large medfly cohorts. Science 258, 457—461.

Carrier NH and Hobcraft J (1971) Demographic estimation for developing socie-
ties. London: Population Investigation Committee, London School of
Economics.

Chowdhury MK, Becker S, Razzaque A, Sarder AM, Shaikh K, and Chen LC
(1981) Demographic surveillance system — Matlab: vital events and migration
1978. Scientific Report no. 47. Dhaka, Bangladesh: International Centre for
Diarrheal Disease Research.

Coale AJ (1972) The growth and structure of human populations: a mathematical
investigation. Princeton, NJ: Princeton University Press.

Coale AJ and Demeny P (1966) Regional model life tables and stable populations.
New York: Academic Press.

Cox DR (1962) Renewal theory. London: Chapman & Hall.
Cox DR (1972) Regression models and life-tables (with discussion). Journal of the

Royal Statistical Society (Series B) 34, 187—220.
Dyke B, Gage TB, Ballou JD, Petto AJ, Tardif AD, and Williams LE (1993) Model

life tables for the smaller New World monkeys. American Journal of Primatol-
ogy 29, 269—285.

Evans M, Hastings N, and Peacock B (2000) Statistical distributions, third edition.
New York: John Wiley and Sons.

Ewbank DC, Gomez de Leon JC, and Stoto MA (1983) A reducible four-parameter
system of model life tables. Population Studies 37, 105—127.

Finch CE (1990) Longevity, senescence, and the genome. Chicago: University of
Chicago Press.

Ford K and Kim Y (1987) Distributions of postpartum amenorrhea: some new
evidence. Demography 24, 413—430.

Fukui HH, Xiu L, and Curtsinger JW (1993) Slowing of age-specific mortality rates
in Drosophila melanogaster. Experimental Gerontology 28, 585—599.

Gage TB (1988) Mathematical hazard models of mortality: an alternative to model
life tables. American Journal of Physical Anthropology 76, 429—441.

Gage TB (1989) Bio-mathematical approaches to the study of human variation in
mortality. Yearbook of Physical Anthropology 32, 185—214.

Gage TB (1990) Variation and classification of human age patterns of mortality:
analysis using competing hazards models. Human Biology 62, 589—614.

Gage TB (1991) Causes of death and the components of mortality: testing the
biological interpretations of a competing hazards model. American Journal of
Human Biology 3, 289—300.

Gage TB (1994) Population variation in cause of death: level, gender, and period
effects. Demography 31, 271—296.

Gage TB (1998) The comparative demography of primates, with some comments
on the evolution of life histories. Annual Review of Anthropology 27, 197—221.

Gage TB and Dyke B (1986) Parameterizing abridged mortality tables: the Siler
three-component hazard model. Human Biology 58, 275—291.

163Mortality models for paleodemography



Gage TB and Dyke B (1988) Model life tables for the larger Old World monkeys.
American Journal of Primatology 16, 305—320.

Gage TB and Mode CJ (1993) Some laws of mortality: how well do they fit? Human
Biology 65, 445—461.

Gage TB and O’Connor KA (1994) Nutrition and the variation in level and age
patterns of mortality. Human Biology 66, 77—103.

Gavrilov LA and Gavrilova NS (1991) The biology of life span: a quantitative
approach. London: Harwood Academic Publishers.

Gompertz B (1825) On the nature of the function expressive of the law of human
mortality, and on a new mode of determining the value of life contingencies.
Philosophical Transactions of the Royal Society of London (Series A) 115,
513—585.

Gordon CC and Buikstra JE (1981) Soil pH, bone preservation, and sampling bias
at mortuary sites. American Antiquity 46, 566—571.

Green S, Green S, and Armelagos GJ (1974) Settlement and mortality of the
Christian site (1050 A.D.—1300 A.D.) of Meinarti (Sudan). Journal of Human
Evolution 3, 297—316.

Greene DL, Van Gerven DP, and Armelagos GJ (1986) Life and death in ancient
populations: bones of contention in paleodemography. Human Evolution 1,
193—207.

Hamilton WD (1966) The moulding of senescence by natural selection. Journal of
Theoretical Biology 12, 12—45.

Heckman JJ and Singer B (1984) Econometric duration analysis. Journal of
Econometrics 24, 63—132.

Heckman JJ and Walker JR (1987) Using goodness of fit and other criteria to
choose among competing duration models: a case study of Hutterite data. In C
Clogg (ed.): Sociological methodology 1987. New York: American Sociological
Association, pp. 247—307.

Heligman L and Pollard JH (1980) The age pattern of mortality. Journal of the
Institute of Actuaries 107, 49—80.

Himes CL (1994) Age patterns of mortality and cause-of-death structures in
Sweden, Japan, and the United States. Demography 31, 633—650.

Holman DJ (1996) Fecundability and total fetal loss in Bangladesh. Doctoral
dissertation, Pennsylvania State University, University Park, PA.

Holman DJ, O’Connor KA, Wood JW, and Boldsen JL (1997) Correcting for
nonstationarity in paleodemographic mortality models [abstract]. American
Journal of Physical Anthropology, Supplement 24, 132.

Holman DJ, O’Connor KA, Wood JW, and Boldsen J (1998) Estimating popula-
tion growth rates from skeletal samples. Paper presented at the annual meet-
ing of the American Anthropological Association, Philadelphia, PA.

Horiuchi S and Coale AJ (1990) Age patterns of mortality for older women: an
analysis using age-specific rate of mortality change with age. Mathematical
Population Studies 2, 245—267.

Johannson SR and Horowitz S (1986) Estimating mortality in skeletal populations:
influence of the growth rate on the interpretation of levels and trends during
the transition to agriculture. American Journal of Physical Anthropology 71,
233—250.

164 J. W. Wood et al.



Kannisto V (1994) Development of oldest-old mortality, 1950–1990: evidence from 28
developed countries. Odense, Denmark: Odense University Press.

Keyfitz N (1968) Introduction to the mathematics of population. Reading, MA:
Addison-Wesley.

Keyfitz N (1985) Applied mathematical demography, second edition. Berlin: Spring-
er-Verlag.

Keyfitz N and Flieger W (1968) World population: an analysis of vital data. Chicago:
University of Chicago Press.

Keyfitz N and Flieger W (1990) World population growth and aging: demographic
trends in the late twentieth century. Chicago: University of Chicago Press.

Konigsberg LW and Frankenberg SR (1992) Estimation of age structure in anthro-
pological demography. American Journal of Physical Anthropology 89, 235—
256.

Konigsberg LW and Frankenberg SR (1994) Paleodemography: ‘‘Not quite dead’’.
Evolutionary Anthropology 3, 92—105.

Konigsberg LW and Herrmann NP (2000) Estimation of age-at-death distribu-
tions: further examples from Indian Knoll. Presented at the Workshop on
Paleodemographic Age Estimation, Max Planck Institute for Demographic
Research, Rostock, Germany.

Konigsberg LW, Frankenberg SR, and Walker RB (1997) Regress what on what?
Paleodemographic age estimation as a calibration problem. In RR Paine (ed.):
Integrating archaeological demography: multidisciplinary approaches to prehis-
toric population. Carbondale, IL: Center for Archaeological Investigations,
Southern Illinois University, pp. 64—88.

Lanphear KM (1989) Testing the value of skeletal samples in demographic re-
search: a comparison with vital registration samples. International Journal of
Anthropology 4, 185—193.

Ledermann S and Breas J (1959) Les dimensions de la mortalité. Population 14,
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8 Linking age-at-death distributions
and ancient population dynamics:
a case study
  .     . 

Introduction

Skeletal series recovered by archaeologists frequently display patterns of
death that differ from those of typical living, or historically documented,
populations. Some of these prehistoric patterns are extremely widespread.
Widespread patterns include notably small proportions of infants (see e.g.,
Acsádi and Nemeskéri 1970; Lovejoy et al. 1977; Buikstra et al. 1986), high
proportions of older children and young adults (see e.g., Acsádi and
Nemeskéri 1970; Weiss 1973; Lovejoy et al. 1977; Keckler 1997; Paine
1997), and an apparent excess of female death during the young adult years
(Acsádi and Neméskeri 1970; Boldsen and Paine 1995, 1999). Most
paleodemographers would agree that the small proportion of infants is
primarily an issue of preservation and recovery (e.g., Buikstra et al. 1986).
The other patterns have produced a wide range of explanations ranging
from concerns about the archaeological process and paleodemographic
methods (Bocquet-Appel and Masset 1982, 1996; Walker et al. 1988;
Konigsberg and Frankenberg 1994; Konigsberg et al. 1997), to epi-
demiological ones (e.g., Lovejoy et al. 1977).

Relationships between demographic characteristics of a living popula-
tion and a skeletal series recovered from it are not straightforward (Satten-
spiel and Harpending 1983; Wood et al. 1992; Paine 1997). If we wish to
understand the demography of the living population, we must develop
explicit, testable models (see e.g., Keckler 1997; Paine 1997, 2000) that
clearly define relationships between the two (Howell 1982; Wood et al.
1992). This chapter outlines preliminary attempts to develop a model to
test one possible explanation of two persistent trends in the shape of
childhood death.
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The problem

The Historical Perspectives on Human Demography Database

The Historical Perspectives on Human Demography Database (HPHD)
was compiled from existing site reports and more widely published data. It
includes 14 089 anatomically aged individuals, 2 years of age and older at
death, from more than 75 sites in central Europe, primarily Germany,
Austria, Hungary and the Czech Republic. The database is large, but,
because of difficulties of data control and compatibility, it is better used
as a source of hypotheses than definitive data. Skeletal age-at-death esti-
mates in the database were produced by a large number of osteologists
using a variety of techniques. Despite recent and ongoing attempts to
better quantify estimation techniques (Boldsen 1988, 1997; Konigsberg and
Frankenberg 1992; Skytthe and Boldsen 1993; Konigsberg et al. 1997;
Milner et al. 1997) traditional methods rely on unquantifiable, often inves-
tigator-specific, weightings of categorical observations (Maples 1989). In-
terobserver differences are an obvious problem in aggregated samples such
as this. The sample also includes skeletons from a wide range of preserva-
tion conditions. Age estimates for subadults, which are based on develop-
mental stages (e.g., dentition, epiphyseal union) are generally considered to
be the most accurate. We believe the age categories used in the analysis that
produced Figure 8.1 (2—5 years, 5—18 years, 18� years) are sufficiently
conservative as to minimize the problem of interobserver differences in age
estimation.

Preliminary examinations of the HPHD database (Boldsen and Paine
1995, 1999, unpublished data; Paine and Boldsen 1997) have yielded a
series of age-at-death patterns that diverge from modern or historical
patterns, but resemble paleodemographic patterns found elsewhere. These
include a general lack of infants, which probably results from factors of
preservation and recovery, the often cited mid-age bulge, apparent sex
differences in adult mortality (Boldsen and Paine 1995), and two very
persistent trends in childhood death, which were to be the focus of the
modeling exercise presented in this chapter.

Between the Mesolithic period and the Iron Age, the weight of child
mortality, as measured by the death rate ratio� or DRR (JL Boldsen and
RR Paine, unpublished data), shifts toward older childhood (Figure 8.1).

� The death rate ratio (DRR) is computed as d
�

—
��

/d
�

—
�

where d
�

—
�

is the mean death rate from age
2 to 5 years: d

�
—
�
� 1
 [S(5)/S(2)]��� and d

�
—
��

is the mean death rate from age 5 to 18 years:
d
�

—
��

� 1
 [S(18)/S(5)]����. Children under 2 years were omitted from the analysis to avoid the
influence of differential preservation and recovery of infant skeletons.
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Figure 8.1. The death rate ratio (DRR) tracks the ratio of late childhood (5—18
years) to early childhood (2—5 years) death, by archaeological period. Higher
DRR indicates relatively higher death rates among older children. Error bars are
bootstrapped 95% confidence intervals.

After the Iron Age, the trend reverses and child death becomes concen-
trated in earlier ages. The DRR is a good statistic for paleodemographic
cross-period comparisons; it is limited to broad age categories, and is
relatively insensitive to changes in population growth (JL Boldsen and RR
Paine, unpublished data).

The consistency of the pattern, both before and after the reversal point
in the Iron Age, led us to believe that the pattern implied more than
changing archaeological recovery conditions or biases in skeletal aging
techniques. We sought an explanation that would be biologically meaning-
ful, fit with archaeologically and historically derived records of population
change, and be testable. Relationships between the growth of large settled
populations and increases in disease have long been a focus of paleodemo-
graphic interest (e.g., Cohen 1977; Cohen and Armelagos 1984; Wood et al.
1992). We decided to test the hypothesis that the frequency of epidemic
events increased as the European population grew and became increasing-
ly connected to the larger Old World population system.

The hypothesis makes biological sense. The microorganisms that cause
epidemic diseases require a constant supply of new hosts to survive. Both
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population size and density increased in Europe during the period covered
by the HPHD. Though this growth was not necessarily even over either
time or space, the overall pattern is clear. Connections between the north-
ern and central European populations represented by the HPHD and the
larger Old World population system, particularly Asia and the Mediterra-
nean, also increased. Specific historical instances, including the intrusions
of such groups as the Romans and the Avars, are dramatic illustrations of
this process, which culminated in the highly integrated trade economy of
the later Middle Ages. These factors would have combined to expand the
pool of new hosts available to maintain epidemic diseases.

One of the best tools paleodemographers have for testing hypotheses is
computer modeling. Computer models enable us to link demographic
processes in living populations to the skeletal record (see e.g., Keckler 1997;
Paine 1997, 2000). The purpose of the analysis presented here was to test
whether increasing the frequency of epidemic events, and obeying some
very basic assumptions, can create the general pattern of child death we
observed in the HPHD. Future research will refine the model, making it
more biologically realistic, but staying within the bounds of paleodemo-
graphic data (J.L. Boldsen and R.R. Paine, unpublished data).

Modeling procedure

We decided to simulate the effects of epidemic events, occurring at de-
creased intervals, through a series of Leslie matrix projections.Contempor-
ary demographers use Leslie matrices (Leslie 1945) to project population
size and age structure forward in time. Data from a Leslie matrix projec-
tion can be used to compute vital rates, as well as full life tables, for
projected populations at any stage of the projection. This is particularly
interesting when, as part of the projection, a model population is perturbed
and becomes unstable. The short- and long-term effects of the perturbation
can then be tracked through the projection (for a paleodemographic
example, see Paine 2000).

A Leslie matrix projection requires three pieces of data: (a) a set of
age-specific fertility rates (ASFRs) for the projected population; (b) age-
specific probabilities of survival (P

�
); and (c) a population to project. The

ASFRs comprise the top row of the matrix. The P
�
values are found on the

subdiagonal. All remaining cells of the matrix are zeros. The population to
be projected is entered into a column vector, which is postmultiplied by the
matrix to produce a new population structure. For particularly clear
discussions of Leslie matrices see Bradley and Meek (1986) and Caswell
(1989).
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Table 8.1. Demographic characteristics of the model stable population used
in the projection. The first two columns are parameter values for the Brass
(1971) relational model life tables. The other demographic values were
derived from the model life table

� 	 e
�

TFR CBR CDR r

0.65 0.95 22.05 6.1 45.23 44.49 0.00074

e
�
, life expectancy at birth; TFR, total fertility rate; CBR, crude birth rate; CDR, crude

death rate.

The base population was designed for general utility (Paine 2000). It is
not intended as a precise estimate of past conditions, rather it is intended to
present a possible picture that is broadly acceptable enough to allow the
focus of attention to remain the analysis of epidemic intervals. We used the
Brass (1971) logit life table models to define the parameters of the basic
population matrix. The Brass standard model fertility schedule was set to
yield a total fertility rate (TFR) of 6.1. This corresponds to the average TFR
for natural fertility populations surveyed by Campbell and Wood (1988).
The survivorship probabilities were produced from a Brass standard
model with �� 0.65, and 	� 0.95. This yields mortality characteristics
close to anthropologists’ stereotypes of pre-industrial agrarian populations
(Table 8.1; Paine 2000).

The Leslie matrix generated from these population characteristics
(labeled S for stable) serves several purposes. It is the source of the stable
population distribution used to initialize each projection (see below). It
provides a baseline for constructing the matrices to represent epidemic
years. Finally, it represents the model population’s demographic behavior
for all the nonepidemic years in each projection.

Given very loose conditions,� which are met in the Brass models, any
Leslie matrix that is projected long enough will produce a stable age
distribution with stable demographic rates, regardless of the initial popula-
tion. The number of intervals required to approach stability varies with the
size of the matrix (the number of intervals of lifespan). The initial popula-
tion vector was generated by projecting the Leslie matrix (S) described
above for 100 cycles (representing 100 years). At that point the population
vector was stable. The crude rates in Table 8.1 are those of the stable

� These conditions are set out in the theorem of Perron and Frobenius (summarized by Pollard
(1973)). The primary condition is that two consecutive F

�
values (the age-specific fertility rates,

represented in the top row of the Leslie matrix) be positive. This is true of virtually all models of
human fertility.
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population. Note that, though the model population is stable, it is growing
slowly.

Epidemic cycles

Exposure to an acute, epidemic disease typically results in one of two
outcomes: (a) the host dies, or (b) the host successfully defends itself against
the disease and develops long-term resistance. It is also reasonable to
assume that individuals who survive repeated insults are less frail than
those who succumb to them. Resistance is a central assumption of our
hypothesis.

During the projection, plague years, represented by their own matrices,
are interspersed at regular intervals from 3 years to 96 years. Nonepidemic
years are represented by the same base matrix (S), regardless of projection.
Each projection represents 75 years (75 cycles). Arbitrarily, the first epi-
demic year is always year 2 of the projection. Epidemic cycles then repeat
according to the interval being simulated. For example, in the six-year
interval projection, the stable population vector is postmultiplied by the
stable matrix S in the first year. The new population vector is postmulti-
plied by the six-year interval epidemic matrix (E

�
), which perturbs the

population structure. The new population vector is then postmultiplied by
S for six intervals, followed by E

�
again, etc. Each new population vector is

recorded on a spreadsheet where crude birth rates, death rates and popula-
tion growth, as well as the age structure of death can be tracked.

The rules for the projections were purposely kept simple. In each
projection, the first time a cohort was subjected to an epidemic year each
member’s probability P of surviving that year was reduced by 30%, for
example in the 12-year interval projection (represented by matrix E

��
) the

P of 9-year-olds decreases from 0.993 to 0.693. During subsequent epi-
demic years, survivors of those cohorts that have been subjected to a single
epidemic year have their probability of survival reduced by 10%, so in the
six-year interval projection the P of 9-year-olds decreases from 0.993 to
0.893. If a cohort is subjected to more than two epidemic years, the
probability of survival is not affected. So, our same 9-year-olds are unaffec-
ted in the three-year interval, because 9-year-old survivors in the living
population vector have been subjected to two previous epidemic years.

We do not envision the epidemic matrices as the result of singular
epidemic events. It would be naive to suggest that there was only one
disease active in a population during a given period. The epidemic matrices
are intended as proxies for the cumulative effect of all acute, epidemic
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Figure 8.2. The ratio of older child deaths (5—18 years) to younger child deaths
(2—5 years) for seven population projections. Deaths are cumulative over the
course of 75-year projections. The x-axis indicates the interval length between
epidemic years in each projection.

diseases active in the given time. The cycle length represents the average
cycling length for the suite of diseases. One alternative would be to include
multiple, less virulent diseases in the same projection. If the diseases had
the same interval, the overall pattern of death would not vary appreciably
from patterns produced under the present assumption, but the conse-
quences for the living population might be different.

Results

Decreasing the interval between epidemic years does mimic the changes in
child age-at-death seen in the HPHD (Figure 8.2). The projections capture
both the shift toward later childhood death and the later recompression of
death into early childhood. As long as the interval between epidemic years
is longer than 18 years, shortening it increases the proportion of older child
death by increasing the number of intervals where subadult (for present
purposes 2—18 years) mortality is dominated by age-independent death
(Figure 8.3). When the interval is shortened below 18 years, childhood
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Figure 8.3. Comparison of proportion of deaths, by age, between a normal
mortality year and an epidemic year (96-year interval model). The distribution of
deaths for childhood ages (under 18 years) is the same as shown in all models
where epidemic interval is �18 years.

mortality is slowly compressed into younger ages as epidemic mortality in
childhood is no longer age independent (Figure 8.4).

Discussion

The goal of this study was, before investing more resources in it, to provide
a quick-and-dirty test of the hypothesis that the childhood mortality trends
observed in the HPHD resulted from changes in the frequency of epidemic
events. The projection could have effectively refuted the hypothesis by
producing a conflicting pattern of childhood death (as in Paine 1997). We
cannot refute other hypotheses with this projection study. Eliminating
alternatives and testing more refined versions of hypotheses about the
impact of epidemic events will be the subject of future studies.

Future versions of the model will add biological realism, but within the
limitations of the data. Several areas need to be addressed. How should
very young (�2 years) children be affected by epidemic events? Wrigley
and colleagues (1997) reported that very young children had a low risk in
epidemic events of the 16th—18th centuries. This may result from immuni-
ties associated with lactation or it may reflect the importance of competing
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Figure 8.4. Proportion of child deaths for six population projections, based on
cumulative deaths at the end of the projection.

causes of death among the very young. What is a reasonable level of
mortality from epidemic causes? Levels of epidemic mortality presented in
this analysis represent a worst-case model, based primarily on levels of
death attributed to the Black Death (e.g., McNeil 1977). They are useful
because they produce clear patterns. They are also unrealistic. If extended
for longer periods, all the epidemic interval models presented here produce
demographic collapse. It is both a historical fact, and an underlying
assumption of our hypothesis, that populations (in the long run) were
growing throughout the period represented by the HPHD.

One problem with the short projection presented here is that when the
projection is started with a stable age structure the short-interval scenarios
take longer to fully affect the population and their demographic implica-
tions are underestimated. This is because it takes more (between 2 and 12)
projected years for the first cohorts that were reduced by epidemic mortal-
ity to reach reproductive age. In scenarios where the interval between
episodes is longer than the prereproductive period crude birth rates are
affected immediately. Therefore, the projections will have to be longer, and
the analysis more sophisticated, when the goal of the projection study is to
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compare the demographic consequences of epidemic mortality rather than
to search for general patterns.

We do not believe the data justify trying to tie specific epidemic interval
lengths to specific time periods based on child age-at-death ratios. The
ratios presented in Figure 8.1, where older children appear to have higher
death rates than younger ones during some periods, are highly improbable
from a demographic standpoint. Other factors, especially issues of preser-
vation and recovery, probably influence these ratios to a large but un-
measurable extent. Even if the interval between epidemic events does
explain the overall trends, the actual ratio values are most likely the result
of epidemic cycles in combination with other factors, including preserva-
tion and recovery.

Paleodemography aspires to be taken seriously by both anthropologists
and contemporary demographers. To do so we must possess a credible
body of theory (Wood 1999), reliable data (Bocquet-Appel and Masset
1982, 1996; Walker et al. 1988; Konigsberg and Frankenberg 1994; Konigs-
berg et al. 1997), and the means to evaluate our hypotheses effectively,
which includes testable models of population processes (Wood et al. 1992;
Keckler 1997; Paine 1997, 2000). Other chapters in this volume address one
of the most vexing problems associated with paleodemographic data, the
bias introduced by the age distribution of our reference samples (Bocquet-
Appel and Masset 1982). However, even if we can eliminate bias in age
estimates and improve their accuracy (even to the point of perfect accu-
racy), we will still be faced with the problem of linking living population
processes to skeletal age distributions (Wood et al. 1992 among others).
Practical models of living population processes, which include their effects
on patterns of death, are a means of establishing those links.
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9 A solution to the problem of
obtaining a mortality schedule for
paleodemographic data
   - ̈

Introduction

In this chapter, we present some thoughts on how to think about age
estimation problems in paleodemography. After this has been addressed,
we offer statistical solutions to the problems that arise, expanding on the
results of Müller et al. (2001). Finally, we point out several problems that
may be of future interest to researchers, both in practice and in theory.

The problem

One problem that arises from paleodemographic data is that they do not
lend themself to the typical methods of demography. Since the age-at-death
is not known, classical demographic and statistical methods encounter
problems when the aim is the construction of a mortality schedule.

The available data typically consist of a classification of age indicator
stages from skeletal remains. Such characteristics are scored by the physi-
cal anthropologist, and are often assigned to categorical stages or classes.
Ideally the mapping from skeleton to stage is such that each age class is
assigned to a unique stage. In practice, however, stages overlap substan-
tially and are fraught with error, and information is sparse. The only
information available to the paleodemographer is the observed frequency
counts resulting from the classification by the physical anthropologist.

For the proposed approach we require two distinct datasets. The first
dataset, the reference or training set, contains both actual age-at-death and
the age indicator stage to which the skeletal remain is assigned. Ideally
there would exist a standard reference/training set, i.e., a scoring technique
would be evaluated based on a single reference set. Of course the standard
training set is hard to obtain in reality, since the classification or stage
assignment will depend not only on the scoring or staging method but also
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on the person who is doing the scoring. It is not easy to deal with evaluator
effects, and problems with inter- and intra-observer error will render many
reference datasets less than ideal. One idea is that each physical anthropol-
ogist develops his or her own reference sample for each scoring method. In
a perfect world, every anthropologist using the same staging method would
make the same assignment into a stage for given skeletal remains. In
practice we can only hope for the probabilities of assigning into the same
stage being the same. A worse scenario comes into place if anthropologists
differ systematically in their assignments. Reference samples can be ob-
tained from anatomical collections such as the Terry and the Hamman—
Todd collections or from historical collections that include documented
age-at-death records, e.g., Spitalfields, St Bride’s Crypt, etc. (see Usher,
Chapter 3, this volume).

The second dataset is the actual target sample. This is the dataset that is
of interest to the paleodemographer or physical anthropologist and for
which the mortality schedule, i.e., the distribution of the lifetimes, is desired.
This dataset contains only the observed frequency counts of the stages,
obtained according to the chosen scoring technique. The reference and the
target datasets are independent of each other, and we will take advantage
of this fact in the statistical analysis.

To formalize the notation, suppose that an age indicator state has I
distinct categories. These I categories will be labeled by 1, 2, . . ., I, and the
indicator state by C. For example, C � i means that the i-th category is
assigned. The actual age-at-death will be denoted A and is assumed to be a
continuous random variable. The number of observed subjects, i.e., skeletal
remains, will be denoted n, where n

�
, n

�
, . . ., n

�
denotes the number of

observations in categories labeled by 1, . . ., I, respectively. Note that
n
�
� n

�
� . . .� n

�
� n. To minimize confusion over the two datasets we

will superscript ages, categories and frequencies with either R, for the
reference population, or T, for the target population.

Of main interest is the unknown mortality schedule of the population to
which the available skeletal remains belong. The mortality schedule can be
quantified in one of the following formats: force of mortality (hazard
function), density function, or survival function, all pertaining to the life-
time distribution. We chose to characterize the mortality schedule via
estimation of the probability density function of the time of deaths for the
target sample. We will denote this function f �(a). It is useful to note that the
probability density function can be expressed in many ways,

f �(a) �
dF�(a)

da
, (9.1)
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�

dS�(a)

da
,

� h�(a)S�(a),

where F�(a) is the cumulative distribution function, S�(a) is the survival
function, and h�(a) is the force of mortality (hazard function). It can be
shown that with one of these functions identified, all other forms are
determined as well. For example, estimating the probability density func-
tion will also provide an estimate for the hazard function.

The reference dataset can be viewed as a bivariate dataset (A�
�
, C�

�
) for

j� 1, 2, . . ., n�, where C�
�

denotes the indicator stages of subject j in the
reference sample and A�

�
denotes the age-at-death of subject j in the

reference sample. The target dataset is a univariate dataset consisting of C�
�
,

the assigned categories, for j � 1, 2, . . ., n�, or can be equivalently represen-
ted as the observed frequency counts n�

�
, n�

�
, . . ., n�

�
, of those observations

falling into category j, where 1� j� I. Note that the age-at-death is
unobserved.

The scoring techniques and their complications deserve some dis-
cussion. Assigning ages into categories constitutes a large loss of informa-
tion regarding the age-at-death of the individual. Since many different ages
are assigned into the same category, it is impossible to differentiate between
various ages given the assigned category. Furthermore, the category as-
signments typically overlap with respect to the ages that are assigned into
the categories. This means that skeletal remains of a given age-at-death A
have a good chance to be assigned to each of several categories.

Ideally, available data would include the actual age-at-death for the
target sample, i.e., A�

�
, A�

�
, . . .,A�

��
, so that commonly available methods for

estimating f �(a), such as maximum likelihood for parametric models or
smoothing methods under nonparametric assumptions, could be used. It is
worth mentioning that new and more accurate age determination methods
are emerging that will allow physical anthropologists to construct im-
proved estimates for age-at-death from skeletal remains (see other chapters
in this volume).

The primary aim of reconstructing age-at-death has led many re-
searchers down the incorrect path of constructing a demographic mortality
schedule from individual age-at-death estimates. If indeed the actual age-
at-death were known, then one could proceed to estimate the probability
density function parametrically with maximum likelihood or nonparamet-
rically with smoothing techniques (see Lehmann and Casella 1988; Fan
and Gijbels 1996). But, in the available data for the target sample, the
actual age-at-death is unknown. A flawed but often used procedure is the
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following. In a first step one uses the reference sample to obtain an
individual age-at-death estimate for each individual from the incomplete
data of the target sample for each individual. One then proceeds as if
complete age-at-death data were available. The problem with this method
of analysis is that it assumes that the prediction of age-at-death can be
based on the mortality schedule as observed in the reference sample, which
requires that the mortality schedule of the target sample be the same as that
for the reference sample. Then, when the probability distribution function
is estimated from the predicted age-at-death data, the phenomenon of ‘‘age
mimicry’’ arises, namely that the observed age-at-death distribution in the
reference sample inappropriately influences the estimated age-at-death
distribution in the target sample.

A better solution is as follows. First, we define invariant weight func-
tions that can be estimated from the reference sample, quantifying the
chance that a skeleton with given age-at-death is assigned to a specific
category. Second, we use these weight functions and the observed data to
estimate a probability density function for the mortality schedule of the
target sample. Only in a third and final step do we use the estimated
probability density function and the observed data to estimate individual
age-at-death. Note that individual age estimation is a last step rather than
a first step as in the incorrect solution to this problem. In addition we
include methods of statistical model checking, a critical step that is all too
often ignored.

Solution: Part I The weight functions

An alternative name for this section would be ‘‘extracting relevant informa-
tion from the reference dataset’’. Weight functions provide us with insight
into the nature of the scoring method, i.e., the assignment of skeletons of
age A� to the stage C�, as well as with the first step of our proposed
solution.

Some theory behind the weight functions

Weight functions emerge as a relevant measure of the association between
the age-at-death and the categories that are assigned on the basis of
skeletal characteristics. The weight functions are the conditional probabili-
ties that a skeletal remain with age-at-death A is assigned into category C.
Formally, the i-th weight function is defined as
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w
�
(a)�Pr(C� i �A� a) (9.2)

for i � 1, 2, . . ., I. This implies

�
�
��

w
�
(a)� 1 (9.3)

for all ages a, so that there are I 
 1 weight functions that characterize the
chances of assignment of categories to remains of specific age-at-death.

Furthermore, we assume that the weight functions are invariant, i.e.,
that the weight functions solely represent a characteristic feature of the
osteological staging procedure. In particular, the weight functions do not
depend on the population that is being studied. This is an assumption
similar to that made by Howell (1976). In essence it means that a skeletal
remain with age-at-death A has the same probability of being assigned into
category C for all populations, and the population from which the skeletal
remain is derived does not influence the assignment. This is a minimal
assumption that must be made to analyze the target data. Any assumption
that is weaker would make the analysis virtually impossible.

To gain a better understanding of the information contained in the
weight functions, we apply Bayes’ theorem to obtain

w
�
(a)�Pr(C� i �A� a) (9.4)

�
f (a �C � i)P(C� i)

f (a)
,

where f (a �C � i) is the conditional density of lifetime a given an assigned
category C, and f (a) is the density of the distribution of ages-at-death, the
mortality schedule. Then

E(w
�
(A))��w

�
(a) f (a)da (9.5)

��
f (a �C � i)Pr(C� i)

f (a)
f (a)da

�Pr(C� i)� f (a �C � i)da

�Pr(C� i)

�

�
.

The last line of equation (9.5) represents the prevalence of the i-th category
in the population. In terms of our problem this gives,

�w
�
(a) f �(a)da�
�

�
, (9.6)
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for i � 1, 2, . . ., I. We refer to these equations as the estimating equations for
the mortality schedule or target density f �(a). The estimating equations
provide an inverse problem. This is because we can estimate the weight
functions from the reference data, and 
�

�
can be estimated from the

observed frequency counts of the target data. This provides constraints for
the unknown density f �(a) of the target distribution and the resulting
estimating equations provide the basis for inference for f �(a).

Estimating the weight functions

Actually estimating the weight functions from the reference data is not a
trivial task. Different people will use different methods to do this, the main
choice being between parametric and nonparametric approaches (there are
various methods included in this book). Here we will attempt to describe a
very general approach requiring as few assumptions as possible to estimate
the weight functions. Furthermore, from our experience of analyzing of
actual data, it appears that simple parametric models for the weight
functions generally do not work, as they do not fit observed datasets. In
Konigsberg and Frankenberg (1992), Gaussian densities were proposed for
what corresponds to the weight functions in our approach. But our data
cannot be fitted with such relatively simple weight function models.

Considering estimation of the weight functions, note that

w
�
(a)�Pr(C� i �A� a) (9.7)

�E(1
���	

�A � a),

where E is the expected value. The indicator variable has the property that
1
���	

� 1 if C� i and 1
���	

� 0 if C i. Expressing the weight function as
a conditional expectation allows us to view the problem of estimating a
weight function as a regression problem.

Making as few assumptions as possible, we will use a nonparametric
regression procedure to estimate the weight function. We suggest that
using nonparametric regression should always be the first step when ex-
ploring new weight functions for various scoring techniques. The main
reason for this is that the functional form of the weight functions is
unknown, and in fact varies widely. The estimation procedure should not
be biased by the method chosen, as is the case for parametric fitting
whenever the model is not adequate for the data at hand. Due to the
peculiar nature of the weight functions this will be the case more often than
not.
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The strength of the nonparametric regression approach is that it is
always unbiased for large samples, but the downside is that it is computa-
tionally more complex and difficult and that one does not gain a simple
functional form that can be written down in the end. The nice part with this
type of analysis is that it works extremely well as an exploratory tool. If the
nonparametric forms look similar to some known parametric model, one
can then go forward with a parametric analysis, suggested by this prelimi-
nary step. In practice, quite often one will, however, be stuck with the
nonparametric approach, as it is often impossible to find a satisfactory
parametric model.

There are many different forms of nonparametric regression available
such as smoothing or regression splines, wavelets or various kernel es-
timators (see Müller 1988; Fan and Gijbels 1996; Simonoff 1997). Here we
will focus on using the Nadaraya—Watson kernel estimator (Nadaraya
1964; Watson 1964; Bhattacharya and Müller 1993) to estimate weight
functions. The formula reduces to

ŵ
�
(a)�

��
�
��

K �
a
A�

�
h � 1

���
�
�	

��
�
��

K�
a
A�

�
h �

, (9.8)

where

K�
a
A�

�
h ��

1
�
a
A�

�
h �

�
if �

a
 A�
�

h �
�
� 1

0 otherwise
(9.9)




and h is the bandwidth or smoothing parameter. There exists a whole body
of literature on how to choose the correct h, including cross-validation
schemes. A very rough rule is simply to set h as 10% of the range of the
data. Additional details on smoothing can be found in Bhattacharya and
Müller (1993), Fan and Gijbels (1996) or Simonoff (1997).

Solution: Part II Estimating the mortality schedule

The probability density of age-at-death for the population from which the
target sample is derived is the goal of our inference. The information
provided in the target sample, which consists of assigned categories, will be
combined with the estimated weight functions, i.e., the knowledge that
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we have about the scoring method, in order to estimate the mortality
schedule.

The target dataset consists of frequency counts, resulting from applying
the scoring scheme. In our notation these counts are n�

�
, n�

�
, . . ., n�

�
. Accord-

ingly, the frequency counts follow a multinomial distribution with para-
meters n�, 
�

�
, 
�

�
, . . .,
�

���
, where n� is the total number of observations in

the target sample and 
�
�

is the true unknown proportion of the skeletal
remains in the target population that would be assigned to the i-th cate-
gory, according to the true weight functions. Note that here we do not

include 
�
�

as a parameter, since
�
�
��


�
�
� 1. For the multinomial distribu-

tion, denoting (N�
�
, . . .,N�

�
) as the random variable of the counts and

(n�
�
, . . ., n�

�
) as the observed counts,

Pr(N�
�
� n�

�
,N�

�
� n�

�
, . . ., N�

�
� n�

�
) (9.10)

�
n�

n�
�
!n�

�
! . . . n�

�
!

����
�

���

�

. . .
���
�

.

Using maximum likelihood methods we can estimate the unknown
multinomial parameters


�
�
, 
�

�
, . . ., 
�

�
by 
̂�

�
�

n�
�

n�
, 
̂�

�
�

n�
�

n�
, . . ., 
̂�

�
�

n�
�

n�
.

Notice that


̂�
�
� 1
 
̂�

�

 . . .
 
̂�

���
.

We will now assume that the mortality schedule follows a parametric
distribution. This means that f �(a)� f �(a ��), where � are the parameters of
the mortality schedule. The functional form of the lifetime distribution is
determined once the parameter � is known. Note that � can be a univariate
or multivariate. The number of parameters can be at most the number of
categories minus 2.

Using the fact that the frequency counts are multinomially distributed
and combining this with the estimating equations,


�
�
��w

�
(a) f �(a ��)da (9.11)

for i � 1, 2, . . ., I, will lead to the proposed solution, see Müller et al. (2001).
We plug the estimating equations into equation (9.10) and use maximum
likelihood techniques (9.11), to solve for the unknown parameter �. Of
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course, instead of using w
�
(a) we will have to use the estimates ŵ

�
(a),

constructed in part I of the solution.
Once the likelihood for � has been maximized at �� , the estimate for the

morality schedule is simply f (a ��� ).
Computationally, this poses the task of maximizing an estimated likeli-

hood. This is nontrivial because of the nonparametric nature of the esti-
mates of the weight functions. Since we have estimated the weight functions
nonparametrically, we must solve for the likelihood function (if � is only
one parameter) or surface (if � is more than one parameter) numerically.
We implement this step by means of Broyden’s method for maximizing a
computed surface. (For more information about this technique see Press et
al. 1996.)

Solution: Part III Estimating age-at-death for an individual

Since it is often of interest to estimate an individual’s age-at-death from a
skeletal remain, we will provide a method for doing this, utilizing the
framework developed here. The conditional expectation for age-at-death,
given an individual has been assigned to the i-th category, is

E(A��C�� i)�� af �(a �C�� i)da. (9.12)

This corresponds to the average age-at-death of a skeletal remain that
has been assigned to category i. Thus we have reduced the age-at-death
estimation problem to estimating f �(a �C�� i). Recall that the weight
functions can be expressed as

w
�
(a)�

f �(a �C�� i)P(C�� i)

f �(a)
, (9.13)

from equation (9.4). We can then solve the above equation for f �(a �C� � i)

and, using P(C�� i) ��w
�
(a) f �(a)da via the estimating equations, obtain

f �(a �C�� i) �
w
�
(a) f �(a)

�w
�
(a) f �(a)da

. (9.14)
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Plugging this result into equation (9.12) we arrive at

E(A��C�� i)�
� aw

�
(a) f �(a)da

�w
�
(a) f �(a)da

. (9.15)

The quantities on the right-hand side can be estimated, using the
estimates ŵ

�
(a) for the weight functions w

�
(a) from part I of the solution, and

f �(a ��� ) for f �(a) from part II. We then arrive at the age-at-death estimates,

E� (A� �C�� i)�
� aŵ

�
(a) f �(a ��� )da

� ŵ
�
(a) f �(a ��� )da

. (9.16)

Again the problem is a little more difficult than stated, since we have
estimated the weight functions nonparametrically, and hence have to
numerically estimate the integrals. But this is a fairly straightforward
numerical calculation (see Press et al. 1996). For example, using the ex-
tended Simpson’s method is a good option here.

Also note that we have in essence flipped the customary approach
around. Previously, individual age estimates were estimated first, and then
from these age estimates the distribution of lifetimes was obtained. The
problem with this technique is that, when individual age-at-death is es-
timated first, this implicitly assumes that the target data come from a
population with the same mortality schedule as the reference population.
In contrast, in our solution we use the information contained in the
frequency counts for the target dataset to estimate the mortality schedule
first. The estimated mortality schedule then is a prerequisite for estimating
individual age-at-death.

Solution: Part IV Goodness-of-fit

Of course it is never correct to apply a model and not to check whether the
assumed model actually fits the observed data. All too often models are
fitted and never checked for accuracy. In order to construct a goodness-of-
fit test, we first observe that the model predicted frequency counts are

n̂�
�
� n�Pr�(C�� i)� n�� ŵ

�
(a) f �(a ��� )da. (9.17)
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Here the weight function ŵ
�
(a) is estimated from part I of our solution and ��

is obtained from part II of our solution. We then use the Pearson goodness-
of-fit �� statistic, defined as

G�
�
�
��

(n�
�

 n̂�

�
)�

n̂�
�

. (9.18)

Under the null hypothesis that the model adequately explains the
observed data, this statistic has a �� distribution with I
 p 
 1 degrees of
freedom, where I is the number of categories and p is the number of
parameters used for the distribution of lifetimes in the target data.

This means simply that if we want to carry out a goodness-of-fit test at
level �, let G* be the value for 1
 � from the inverse distribution function
of a �� distribution with I
 p 
 1 degrees of freedom. If G�G* then the
goodness-of-fit of the model is rejected at level �.

An application of our solution

Here we will discuss the example used by Müller et al. (2001). For this
example the reference set was made up of 744 skeletal remains using the
Suchey—Brooks pubic symphysis method (Suchey et al. 1988). To estimate
the weight functions we used a bandwidth of 8. When we look at the
resulting plots for the weight functions, we note that there are four primary
forms: monotone decreasing, monotone increasing, unimodal and bi-
modal. Because of these, we conclude that nonparametric forms are the
best way to characterize the functional forms of the weight functions.

We simulate a population from a Gompertz distribution with para-
meters �� 0.0008 and 	� 0.06, with 300 death times. The simulation
resulted in the following target sample: 12 observations for category 1; 9 for
category 2; 5 for category 3; 24 for category 4; 131 for category 5; and 119
for category 6. The resulting parameter estimates are �̂� 0.000758 and
	� � 0.0621.

When we estimate the average age-at-death by stage information from
this model we have the following: 14.679 years old for category 1, 27.440 for
category 2, 33.835 for category 3, 45.248 for category 4, 63.935 for category
5 and 73.078 for category 6. The largest difference between the theoretical
average age-at-death and the estimated age-at-death is 1.2 years. With this
example, the method can be shown to produce very accurate age-of-death
estimates.

Finally, when we calculate the goodness-of-fit statistic we get G � 4.695
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with 3 degrees of freedom. The corresponding p value is 0.196, therefore
goodness-of-fit is not rejected, i.e., the estimate gives a good fit to the
observed data and therefore one may proceed with the analysis.
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10 Estimating age-at-death distributions
from skeletal samples:
multivariate latent-trait approach
  .  ,   .  , 

  .  ’

Introduction

Most approaches to age estimation currently used in paleodemography
and forensic science are not based on formal (or even informal) statistical
methods. Instead, various ad hoc procedures have been developed, based
frequently on simple tabulations of skeletal markers by age. The classic
methods of Todd (1920) and McKern and Stewart (1957), for example,
involve a nonstatistical assignment of a skeleton’s age-at-death according
to documented changes in the pubic symphysis. These methods produce
either a nonstatistical age range or a point estimate of age, without any
assessment of the error structure of the estimate based on formal probabil-
ity arguments. The individual ages produced in this way are then ag-
gregated to estimate the age-at-death distribution for an entire sample. As
discussed elsewhere in this volume, the age-at-death distribution produced
by this procedure will usually be biased in the direction of the age distribu-
tion of whatever reference sample was used to generate the individual
estimates in the first place. In addition, we are left with little understanding
of the degree of estimation error involved, either in the individual age
estimates or the estimate of the aggregate-level age-at-death distribution as
a whole.

In this chapter we explore some statistical methods for estimating
age-at-death distributions from skeletal samples, with special emphasis on
recovering the parameters of parametric models of the age-at-death dis-
tribution (see Wood et al., Chapter 7, this volume). Only methods compat-
ible with the Rostock protocol, described elsewhere in this book, are
discussed. We begin by examining univariate methods — those that use a
single skeletal age indicator — and then go on to examine multivariate
methods. We introduce a new multivariate method for estimating a para-
metric age-at-death distribution from a skeletal sample. The method at
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least partially corrects for the correlations that almost inevitably exist
among skeletal traits, and handles missing observations on particular
traits.

Estimation of an age-at-death distribution

The data used for paleodemographic reconstruction of a population’s
age-at-death distribution are macro- and microscopic morphological indi-
cators of age-at-death from individual skeletons. A considerable body of
work has appeared over the past 80 years on the identification and quan-
tification of age-related morphological changes in the human skeleton for
use as indicators of age-at-death. Despite this work, the correlation of
skeletal indicators with true chronological age, and the accuracy and
reliability of most indicators, remain far from ideal (Bocquet-Appel and
Masset 1982, 1985; Buikstra and Konigsberg 1985; Jackes 1992). The
limitations are partly biological, and, aside from developing new and more
biologically informative indicators, little can be done to improve upon
them. There is considerable room, however, for improvement in the statis-
tical methods used for paleodemographic reconstruction.

Methodological advances are needed in at least three areas. First,
methods are needed that produce a target age-at-death distribution that
does not mimic the age-distribution of the reference sample.� This ‘‘age
mimicry’’ bias was empirically demonstrated by Bocquet-Appel and Mass-
et (1982) and mathematically explained by Konigsberg and Frankenberg
(1992; Konigsberg et al. 1997), who also proposed a statistical solution to
the problem. We build on the methods of Konigsberg and Frankenberg in
this chapter.

The second area concerns how age estimates are produced for individ-
ual skeletons in an archaeological target sample. Traditionally, ages have
been assigned to a skeleton directly from that individual’s skeletal age
indicators. As discussed by Love and Müller (Chapter 9, this volume), ages
produced in this way are usually biased. In most applications, accurate
individual ages can be found only after the age-at-death distribution has

� As in the rest of this book, ‘‘reference’’ is used throughout this chapter to indicate an individual
skeleton or sample of skeletons of known age used to calibrate our age estimation procedure.
‘‘Target’’ refers to the archaeological or forensic skeleton(s) whose age(s) at death we wish to
estimate. These usages follow Konigsberg and Frankenberg (1992). As emphasized by Usher
(Chapter 3, this volume) the ‘‘known’’ ages reported for many famous reference collections are
often quite approximate. We ignore this problem and treat reference sample ages as if they were
known without error.
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been estimated for the entire target sample. Even then, the resulting age for
each target skeleton should be reported as a distribution of probable ages,
not merely a point estimate.

The third area is the development of multivariate aging methods that
accommodate missing skeletal age indicators. The ideal method would
allow multiple aging indicators to be combined in a way that makes
statistical sense. Clearly, one motivation for developing such a method is to
wring as much reliable aging information as possible from every skeleton.
Another compelling motivation is that, in real skeletal collections, most if
not all skeletons will be missing one or more aging indicators for
taphonomic reasons.

Konigsberg and Frankenberg (1992) proposed a multivariate method
for estimating age-at-death distributions using continuous age indicators.
An extension to discrete age indicators was given by Konigsberg and
Holman (1999). Both methods estimate a series of means from a multivari-
ate normal (or Gaussian) distribution for the joint distribution of all age
indicators, along with the entire variance—covariance matrix among indi-
cators. Using this method with a set of 10 indicators, all distributed as
multivariate normals, would require us to estimate a total of 65 para-
meters: 10 means, 10 variances, and 45 covariances. As the number of age
indicators increases, the method becomes even more parameter-heavy,
which, in turn, requires larger and larger sample sizes. In addition, numeri-
cally intensive methods must be used for multivariate integration, since the
method always requires integration in one more dimension than there are
age indicators. The strength of the method is that it does not require us to
assume statistical independence among age indicators.

Boldsen and colleagues (Chapter 5, this volume) propose a related
method, called ‘‘transition analysis’’, that generates an age-at-death dis-
tribution from the joint distributions of a series of skeletal age indicators.
This approach makes the simplifying assumption that the indicators are
independent of each other once they have been conditioned on chronologi-
cal age. For 10 binary indicators, each with an independent distribution
(normal, logistic, etc.), the method yields 20 parameters: 10 location para-
meters and 10 scale parameters. Boldsen et al.’s approach is considerably
simpler than Konigsberg’s, if only because no integration is necessary for
estimating the parameters from the reference sample. Similarly, sample size
is less of a problem because fewer parameters are estimated. But Boldsen et
al.’s method comes at a price: we are required to make the possibly
erroneous assumption that the indicators are independent of each other
conditional on age.

In this chapter, we develop an alternative approach to estimating

195A multivariate latent-trait approach



a multivariate age-at-death distribution — an approach we call the
‘‘latent-trait’’ method for reasons that will become clear presently. Our
method represents something of a compromise between the two methods
discussed above. Age indicators are not considered conditionally indepen-
dent of each other as in Boldsen et al.’s transition analysis, but neither do
they require estimation of the entire variance—covariance matrix as in
Konigsberg’s multivariate probit method. Our method also falls between
the others in numerical complexity: numerical integration is required in a
single dimension for parameter estimation from a reference sample and in
two dimensions for recovering the age-at-death distribution from a target
sample. The advantages of this method are threefold: we do not need to
assume that age indicators are independent of each other, the number of
parameters to be estimated grows linearly (not exponentially) with the
number of indicators, and the method is numerically tractable. In addition,
our model is motivated by some simple biological principles, so that some
parameters may be of genuine biological interest.

Statistical age-at-death estimation can be separated logically into two
distinct stages. The first stage is the generation of one (or more) standard
age distributions from a known-age reference sample. The second stage is
the estimation of an age-at-death distribution from some target sample,
making use of the reference distribution(s) found in the first stage.
Throughout this chapter, we explicitly divide every method into these two
parts and provide the corresponding likelihoods for both. Maximum likeli-
hood methods are then used to estimate parameters. The basic idea of
maximum likelihood estimation is to compute a probability (or an individ-
ual likelihood) for each observation, given some underlying probability
model of the process. The overall likelihood of the model, given a series of
independently sampled cases, is the product of the individual likelihoods.
The parameter values that globally maximize the overall likelihood are the
maximum likelihood estimates (MLEs). Useful introductions to maximum
likelihood estimation are provided by Edwards (1972), Pickles (1985), and
Eliason (1993).

Missing skeletal observations

Because of differential preservation and recovery, few skeletons display all
possible indicators of age. In almost every collection of skeletal material,
there will be missing indicators for at least some of the individual skeletons.
As an example, Table 10.1 shows the distribution of multiple age-at-death
indicators in human skeletons from the archaeological site of Tipu in
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Table 10.1. Number of individuals in the Tipu collection by number of
age-at-death indicators

No. of age indicators No. of individuals� %�

1 166 31
2 152 29
3 149 28
4 45 8
5 15 3
6 5 1

�N� 532 juveniles and adults. Indicators for adults are given in Table 10.2; indicators for
subadults include tooth development and eruption, epiphyseal union, diaphyseal length,
and tooth wear.
�Percentage of individuals with the specified number of age indicators. From O’Connor
1995.

Table 10.2. Number out of 255 adult individuals with particular aging
indicators in the Tipu skeletal collection

Age indicator N

Cranial suture closure 143
Tooth wear 139
Auricular surface 128
Cemental annulation 37
Pubic symphysis 33
Vertebral osteophytosis 33

From O’Connor 1995.

Belize. In this case, most skeletons (318 of 532 juveniles and adults) could
be aged by only one or two indicators. Only five could be aged by all six
indicators. When using multivariate aging methods, missing observations
for one or more indicators are likely to be the norm. Any serious multivari-
ate aging method must be able to accommodate such missing data.

The particular adult age-at-death indicators used at Tipu are listed in
Table 10.2. The skeletal material from this site is, comparatively speaking,
reasonably well preserved. Nonetheless, while the pubic bone is one of the
most common (and one of the best) indicators of adult age, only 33 of 255
adults had pubic bones in sufficiently good condition for aging purposes.
For the Tipu collection, we would have four options for age-at-death
reconstruction: we could drop the pubic bone from our suite of age
indicators, we could base our age-at-death methods on only 33 skeletons
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(!), we could somehow combine multiple univariate methods for different
indicators, or we could use a genuinely multivariate method that accom-
modates the fact that the pubic bone is missing in most skeletons.

Because individual skeletons vary in the age indicators they display —
and because each indicator varies in its reliability and accuracy — skeletons
will differ in the quality and quantity of information they contribute to any
estimate of an age-at-death distribution. Most investigators have not
addressed this problem except with ad hoc solutions. For example, sum-
mary age-at-death, a simple unweighted average of all indicators available
for an individual skeleton, is a common method for combining multiple
univariate age-at-death estimates to come up with a single point estimate
of individual age (Acsádi and Nemeskéri 1970). Simple averaging is clearly
improper for several reasons: (a) the different age indicators do not provide
exactly the same amount of information, (b) the indicators may not be
independent, (c) all information about the error structure of the individual
age estimates is thrown away, and (d) the age-at-death distribution for a
target sample must be estimated by aggregating the individual age esti-
mates, introducing the risk of reference sample age mimicry (Konigsberg
and Frankenberg 1992).

Some researchers have advocated weighting indicators, but there is no
agreed-upon, statistically valid method currently available for selecting the
weights. One popular method, ‘‘multifactorial aging’’ (Lovejoy et al. 1985),
weights each age indicator according to its loading on the first principal
component estimated from the correlation matrix of all indicators (on the
assumption that the first principal component represents true chronologi-
cal age). In theory, the principal components analysis is supposed to be
performed on the target sample, not the reference sample. However, princi-
pal components analysis requires complete information for each individ-
ual, and the numbers of complete individuals in most skeletal samples are
far too small to support such an analysis. In the Tipu sample, for example,
only five skeletons display all six indicators (Table 10.1).

The problem of missing data cannot be ignored for any real skeletal
sample. It is essential, therefore, to develop a systematic multivariate
method for handling missing skeletal data without resorting to ad hoc
procedures and adjustments. In the multivariate methods we discuss be-
low, we pay particular attention to dealing with missing data. Our general
approach is to assume that data are ‘‘missing at random’’, by which we
mean that the parameters defining the probability of an indicator being
missing are independent of the parameters for the age-at-death distribution
itself. This assumption may not always be a good one for skeletal data. For
example, postmortem preservation of skeletal age indicators may vary with
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age-at-death, since the bones of very young and very old individuals often
do not survive as well as those drawn from the middle portion of the age
range (Walker et al. 1988). This differential preservation by age is poten-
tially an important source of bias, since it is likely to result in a dispropor-
tionate number of missing observations for older adults and young
children. But the assumption that data are missing at random still allows
for a more satisfactory treatment of missing observations than has been
possible in the past.

Univariate methods

As already mentioned, traditional methods for using age standards derived
from a reference sample to compute point estimates of age-at-death for
individual skeletons in a target sample can be seriously biased. There are
two circumstances, however, when the traditional methods actually work
(Konigsberg and Frankenberg 1992). The first is when the age indicator is
almost perfectly correlated with chronological age, as in the case of annual
tree rings.� The second circumstance is when the skeletons making up the
reference sample are uniformly distributed by age. If one of these condi-
tions is not satisfied, then the more complex procedures described below
must be used in order to avoid age mimicry — bias in the estimated target
age-at-death distribution reflecting the age distribution of the reference
sample.

The life table method

One of the simplest procedures for generating a life table age-at-death
distribution was given by Konigsberg and Frankenberg (1992). In this
section, we briefly review their method in order to set the stage for the more
complicated methods that follow.

We begin with a reference sample made up of N� skeletons whose
ages-at-death are known and who have been scored for a single age
indicator (the superscript R denotes the reference sample). The indicator
might be pubic symphysis stage, osteon count, suture closure stage, or
dental root development stage. The age indicator is assumed to have m
nonoverlapping states. For an indicator such as suture closure, m might be

� Cemental annulations are sometimes touted as such indicators by human osteologists, but — as
the validation study presented by Wittwer-Backofen and Buba (Chapter 6, this volume) shows —
their correlation with true age is actually much lower than that of tree rings.
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closed or unclosed. For features of the pubic symphysis, m will usually be
some larger number (e.g., six for one component of the Gilbert and
McKern pubic system).

Our goal is to use this known-age reference sample to estimate an
age-at-death distribution for a target sample of N� individuals whose ages
are unknown but for whom we have scored the relevant age indicator. The
result of our analysis, in this particular case, will be an age-at-death
distribution in the form of a life table with w discrete age intervals.

Estimating the parameters of the reference distribution
We begin by computing each element p

��
of the matrix P as the relative

frequency in the reference sample of individuals in indicator state i given
age a (where a, in this case, denotes a single age interval). This array is
constructed from simple cross-tabulations. The resulting estimated el-
ements, called p̂

��
, are the probabilities of observing indicator stage i for

some age a in the reference sample. We use carets ‘‘hats’’ ( � ) over para-
meters to denote values estimates from a sample — which differs from the
way in which Konigsberg and Frankenberg (1992) use this notation.

Estimating the target age-at-death distribution
The probability of someone in the target population dying in the a-th life
table age interval is denoted d

�
. Initially we do not know the value of each

d
�
. The goal is to estimate the age-at-death distribution d� � d�

�
, . . ., d�

�
subject to the constraint

�
�
��

d
�
� 1, 0� d

�
� 1. (10.1)

As shown by Konigsberg and Frankenberg (1992), we can find maximum
likelihood estimates of d� as follows. Given p̂

��
, we can compute p

�
, the

probability of observing indicator stage i assuming a target age distribu-
tion. For convenience, we define

p
�
�

�
�
��

p̂
��
d
�
. (10.2)

Then, the likelihood function for a given p̂
��

and some target distribution d
�

is

L�
��

�
��

p���
�

p���
�

p���
�

. . . p���
�

, (10.3)

where 
��

is an indicator variable that is equal to 1 if the j-th target
individual is in stage i and 0 otherwise. We can rewrite this likelihood as
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��

p̂
��
d
��

���
. (10.4)

All the life table probabilities in d are estimated simultaneously as the set of
numerical values that maximizes the likelihood in equation (10.3) or (10.4).
Additional discussion of this method, along with paleodemographic
examples, can be found in Konigsberg and Frankenberg (1992) and
O’Connor (1995).

As outlined by Wood et al. (Chapter 7, this volume), describing an
age-at-death distribution with a life table is not ideal. Most human mortal-
ity distributions can be well described using five or fewer parameters, so
that a parsimonious parametric model should be used in place of life tables.
In what follows, we discuss methods that are fully parametric, both for the
distribution of age indicators as well as for the age-at-death distribution.

A parametric univariate method

In this section we discuss univariate methods for estimating a parametric
age-at-death distribution when age (a) is continuous. For simplicity, we
initially focus on age indicators that undergo a single transition (e.g., a
suture that makes a transition from opened to closed). Discussion of the
more complicated ‘‘staged’’ indicators (which can be viewed as multivariate
data) is postponed for a later section.

Estimating parameters for the reference distribution
As before, we begin with some reference sample of N� individuals for whom
exact ages-at-death are known. For each skeleton in the reference sample,
we observe an indicator state. In what follows, the indicator can be either
present or absent. For example, we might have recorded whether a particu-
lar suture is opened (absent) or closed (present) in a known-age reference
sample of skeletons.

Following Boldsen and colleagues (Chapter 5, this volume), we will refer
to the age at which the indicator went from absent to present as the
‘‘transition age’’. Let f (a ��,�) denote the probability density function
(PDF) for the age at which the transition occurs in all human populations —
the assumption of invariance discussed by Love and Müller (Müller et al.
2001; Love and Müller, Chapter 9, this volume). It is often reasonable to
assume that f (a ��,�) is either a normal, log-normal, or logistic distribution,
but it could be any parametric PDF — preferably one that somehow mimics
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the underlying biological processes.� And we will make frequent use of
both the cumulative distribution function (CDF) associated with f (a ��,�),

F(a ��,�) ��
�

�

f (x ��,�)dx, (10.5)

and the corresponding survival function:

S(a ��,�)� 1
F(a ��,�)��
	

�

f (x ��,�)dx. (10.6)

The goal at this point is to find �̂ and �̂, the estimates of � and � from the
reference sample. These two parameters completely describe the distribu-
tion of transition ages.

Reference samples are usually observed cross-sectionally. That is to say,
the aging indicator is observed only once, at the age-at-death.�On the basis
of the state of the indicator, the skeleton has, at the time of death, either
made the transition or has not. The likelihood for a skeleton that has made
the transition is constructed by specifying the probability that reference
individual j aged a

�
made the transition to the indicator state at some

unknown age between birth and a
�
. This probability is given by the entire

area under the PDF to the left of age a
�
, equal to F(a ��,�), the cumulative

distribution at age a.
For a reference skeleton that did not make the transition by observation

age a, the likelihood is the area under the PDF from age a to infinity; that
is, the survival function at a, S(a ��,�). We will assume that all individuals
who live long enough will eventually make the transition (an assumption
that can be relaxed if needed; see Holman and Jones 1998).

An overall likelihood can be computed from a sample of N� cross-
sectionally sampled reference individuals, some who have made the transi-
tion (

�
� 1) and some who have not (

�
� 0) made the transition by the age

at which they are observed, a
�
. Taking the product of the individual

likelihoods, we get

L�
��

�
��
���

	

��

f (x ��, �)dx�
����

��
��

�

f (x ��, �)dx�
��
� (10.7)

� Throughout this chapter � and � are used to represent the location and scale parameters of a
two-parameter distribution. The distribution may have more than two parameters as well.
Although not strictly necessary, many of the likelihoods that follow assume that the PDF is
zero for negative ages.

� In fact, this need not be the case. Depending on the specific age indicators being used, it might
be possible to observe a living sample longitudinally. Methods for finding reference parameters
from mixtures of interval-censored, right-censored, and cross-sectionally observed reference
individuals are given by Wood et al. (1992) and Holman and Jones (1998).
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Estimating the target age-at-death distribution
Now assume that we have already found parameters �̂ and �̂ for f (a ��,�)
from an appropriate reference sample. For a target sample of N� individ-
uals, we want to estimate the parameters of a continuous age-at-death
distribution, g

�
(a ��), where � is a vector of parameters (for a review of

parametric age-at-death distributions, see Wood et al., Chapter 7, this
volume). Assume that only cross-sectional observations are made on indi-
cators of the target sample, and that these indicators denote the state at
death. When 

�
� 0 the j-th target subject has not yet made the transition

(the trait is absent), and when 
�
� 1 the j-th target subject has completed

the transition (the trait is present). We can rewrite equation (10.4) for this
continuous case with indicator states ‘‘absent’’ and ‘‘present’’ as

L�
��

�
��
��

	

�

F(a � �̂, �̂)��S(a � �̂, �̂)����g
�
(a ��)da� . (10.8)

Maximizing equation (10.8) over � yields maximum likelihood estimates, �� .

Parametric methods with ‘‘stage’’ or ‘‘phase’’ data

Many traditional aging methods are based on a series of stages or phases
rather than single transitions. While these methods are useful in the non-
statistical context for which they were developed, they add serious compli-
cations when we adapt them for the statistical methods discussed here.
When the indicator of interest is not a present/absent indicator but has
ordinal states (as in pubic symphysis stages), the above parametric method
must be modified.

Most adult (senescent) age-at-death indicators are based on phases or
stages, including the pubic symphysis (Todd 1920; McKern and Stewart
1957; Gilbert and McKern 1973), the auricular surface (Lovejoy et al.
1985), ectocranial suture closure (Meindl and Lovejoy 1985), and mor-
phological changes in the ribs (I� şcan et al. 1984, 1985), proximal femur
(Walker and Lovejoy 1985), or clavicle (Walker and Lovejoy 1985). Todd
(1920) was the first to study the relationship between chronological age and
metamorphosis of the articular face of the pubic symphysis in a systematic
way. Using the Todd Collection,� Todd described 10 modal phases for

� Consisting of the skeletons of 465 indigenes from the Cleveland, Ohio, area (306 white males, 47
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Table 10.3. The Todd pubic phases (Todd 1920)

Modal phase Age range (years)

I 18—19
II 20—21
III 22—24
IV 25—26
V 27—30
VI 30—35
VII 35—39
VIII 39—44
IX 45—50
X 50�

adults between the ages of 18 and 50 years, each phase corresponding to a
specific age range (Table 10.3). Each Todd phase is defined by several
different features of the pubic symphysis scored in combination, including
the dorsal plateau, ventral rampart, symphyseal face, symphyseal rim,
furrows, pitting, and so on. Todd eliminated any pubic symphysis in the
sample that did not conform to what he considered to be the ‘‘normal’’
modal phases of development. Brooks (1955) modified Todd’s phases by
shifting the age range for the phases covering 26—45 years downward three
years to correct for a tendency to overestimate age.

McKern and Stewart (1957) used a reference sample of American sol-
diers killed in the Korean War to develop a three-component system for
estimating age from the pubic symphysis. Although reported ages are much
more accurate in this sample than in the Todd Collection, the McKern—
Stewart collection has a much more restricted age distribution, with few
skeletons over the age of 30 years.

Each of the three McKern—Stewart components has six stages. To
estimate age, each component is ranked on a scale of 0 to 5; then a sum of
scores for the three components is totaled and compared with a table of
scores and associated chronological ages (Table 10.4). Although a large
number of combinations is theoretically possible, only 21 of these occur
with any frequency. Because of the restricted age distribution, this system
does not work well for ages beyond 30 or 40 years (O’Connor 1995).

It is important to realize that most ‘‘stage’’ or ‘‘phase’’ methods are
trying to code for multiple morphological changes in a variety of

white females, 90 black males, and 22 black females). While this collection covers a broad range
of reported ages, ages are often poorly known and display abundant heaping at years ending in
0 or 5 (see Usher, Chapter 3, this volume).
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Table 10.4. McKern and Stewart sum of three pubic component
scores (Snow 1983)

Total score Age range (years) Mean age (years)

0 17 17.2
1—2 17—20 19.04
3 18—21 19.7
4—5 18—23 20.8
6—7 20—24 22.4
8—9 22—28 24.1

10 23—28 26.1
11—13 23—39 29.2
14 29� 35.8
15 36� 41.0

structures. This is clear from reading the description of the first two Todd
stages:

(1) Symphysial surface rugged, traversed by horizontal ridges separated by well
marked grooves; no ossific nodules fusing with the surface; no definite delimit-
ing margin; no definition of extremities.

(2) Symphysial surface still rugged, traversed by horizontal ridges, the grooves
between which are, however, becoming filled near the dorsal limit . . .. Ossific
nodules fusing with the upper symphysial face may occur; dorsal limiting
margin begins to develop, no delimitation of extremities; foreshadowing of
ventral bevel.

(Bass 1971:155)

Clearly, this is a multifactorial indicator involving many different types of
surface remodeling on the pubic symphysis, with an occasional nod toward
future changes. Similarly, the McKern—Stewart method uses multiple com-
ponents to assign a score. For example, scores 3 and 4 of component 3 are
described as follows:

(3) The symphyseal rim is complete. The enclosed symphyseal surface is finely
grained in texture and irregular or undulating in appearance.

(4) The rim begins to break down. The face becomes smooth and flat and the rim
is no longer round but sharply defined. There is some evidence of lipping on
the ventral edge.

(Stewart 1979:163)

These stages do not represent a single biological trait that changes with age
in a straightforward way. Rather, the stages are based on an entire suite of
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Table 10.5. Stage-specific transition variables (T
�

to T
�
) defined for a

six-phase marker such as a McKern—Stewart pubic symphysis component

Stage (phase) T
�

T
�

T
�

T
�

T
�

0 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 1 1 1 1 0
5 1 1 1 1 1

traits that are packaged together for descriptive convenience. Unfortunate-
ly, the convenience evaporates when we try to develop formal multivariate
parametric methods for age-at-death estimation. We strongly recommend
that new reference age indicators be developed that are based only on
single transitions (or continuous measures for continuous indicators). Our
reasons are twofold. First, it makes the mathematics much easier and more
logical. But, more importantly, it discourages us from developing methods
that treat complex traits as if they resulted from a single process.

Estimating parameters of the reference distribution using staged
indicators

For each skeleton in the reference sample, we observe an indicator variable
that includes m� 2 ordered stages. As before, the reference sample com-
prises N� skeletons of known age-at-death. One way to treat these data is
to define m 
 1 transitions that occur from one phase to the next, and use
f
�
(a ��

�
,�

�
), f

�
(a ��

�
,�

�
), . . ., f

���
(a ��

���
,�
���

) to denote the PDFs for the
ages at which each transition occurs in the population. The multivariate
methods described in the following sections can then be used to estimate all
m
 1 distributions.

To estimate the distributions, we define a set of m 
 1 stage transition
variables T

�
to T

�
(or T

�
to T

���
if the phases are numbered from zero)

that are set equal to 1 if the transition has been made for that stage and 0 if
not. Consider, for example, one particular McKern—Stewart pubic sym-
physis component. Table 10.5 shows how to convert component phases 0
to 5 into the five transition variables T

�
to T

�
. We can find the �̂ and �̂

values corresponding to these transition variables by maximum likelihood
using one of the multivariate methods described later in this chapter. The
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results can then be used to estimate the target age-at-death distribution
using the corresponding multivariate method.

Alternative methods for staged indicators
Alternative methods for handling staged data that can be found in the
statistical literature include the ordered probit or logit method, which
treats the entire set of phases as a single ordered process. The model was
introduced by McKelvey and Zavoina (1975) and McCullagh (1980), and is
commonly used in the social sciences (Long 1997). An example of the
method applied to the estimation of an age-at-death distribution can be
found in Chapter 12 (Hermann and Konigsberg, this volume).

Multivariate methods

Independent age indicators

Now consider the case in which multiple age indicators are observed. Each
individual has one or more of these indicators. Initially, we assume these
indicators are completely independent of each other. Later we will discuss
ways of treating nonindependence among indicators.

Estimating parameters of the reference distribution
For n independent age indicators scored in our reference sample, we can
simply take the product of the individual likelihoods for each indicator. A
sample of N� reference individuals thus yields the likelihood:

L�
��

�
��
�

�
�
��
��

	

��

f (x ��
�
, �
�
)dx�

����������
��

��

�

f (x ��
�
,�
�
)dx�

������
� , (10.9)

�
��

�
��
�

�
�
��

S(a
�
��
�
, �
�
)����������F(a

�
��
�
, �
�
)�������

where 
��

is an indicator variable that is equal to 1 if the j-th reference
individual for the i-th age indicator is present and 0 if it is absent. The
indicator variable �

��
denotes that the age indicator is available for scoring.

It is set to 0 when the i-th age indicator is missing for the j-th individual,
and 1 if it is not. This, in effect, yields a likelihood of 1 for each missing
observation so that it makes no contribution to the overall likelihood.

It is important to realize that equation (10.9) assumes that the probabil-
ity of each transition is independent of all other transitions in the same
individual. If some age indicators are correlated, then estimates for the �
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and � values could be biased. The degree of bias is an empirical question for
any combination of age indicators and reference sample.

Estimating the target age-at-death distribution
The extension for estimating the age-at-death distribution in the target
sample is straightforward. Again we assume indicators are independent,
and we have estimated the parameters �̂ and �̂ for the distributions
f
�
(a ��

�
, �
�
), i� 1 . . . n, from the reference sample. The transition indicator 

��
is now equal to 1 if the j-th target individual has made transition for age
indicator i, and 0 otherwise. The likelihood is a straightforward multivari-
ate extension of equation (10.8), in which we place all the independent
reference distributions inside the integral:

L�
��

�
��
�

	

�

g
�
(a ��)

�
�
��

(S
�
(a � �̂

�
, �̂
�
)����������F

�
(a � �̂

�
, �̂
�
)������)da. (10.10)

Missing age indicators are handled by setting �
��

to 0.

Non-independent indicators: the full multivariate method

Estimating parameters of the reference distribution
The full method for handling multiple age indicators is to treat them as
following some multivariate distribution that includes all covariance
terms. If, for example, the indicators are assumed to be multivariate log-
normal, then we use a multivariate log-normal distribution, including all
covariances. For n independent age indicators, let m be the array of n
means (�

�
, �

�
, . . .,�

�
) and V the n� n variance—covariance matrix. For a

sample of N� reference individuals, the likelihood is

L�
��

�
��
�
����d����

���1�d
����

f(x �m,V)dx. (10.11)

Note that this likelihood requires us to integrate the array of ages over all
dimensions of the multivariate distribution f(a �m,V). The array d

�
consists

of n indicator variables for the j-th individual: element 
��

is equal to 1 if the
i-th transition has occurred in that individual, and 0 if it has not occurred.
Then 1
 d

�
is the array of complements of d

�
and �

�
is a vector of n

indicators denoting missing observations (�
��

is 0 if missing, 1 if not). The
upper limit of integration is set to infinity whenever an observation is
missing or the age indicator is absent (but not missing) in any given
dimension. The lower limit of the integral goes to 0 for a missing indicator
or when the age indicator is present in a dimension. In this way, a missing
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age indicator results in a marginal likelihood of 1 (integration from 0 to
infinity in that dimension). When the indicator is not missing, the limits of
integration in one dimension will be from a

�
to infinity if the transition has

not been made, and from 0 to a
�
if the transition has been made. This

method of estimating m̂ and V� is identical to multivariate probit analysis
(Bock and Gibbons 1996; Chib and Greenberg 1998; Konigsberg and
Holman 1999).

There are two practical difficulties with this full multivariate method.
First, it is extremely numerically intensive. Multivariate integration over
more than about five dimensions takes a great deal of computing time, even
using very fast computers. To circumvent this difficulty, one of several
methods of stochastic integration can be used, such as the Gibbs sampler
or the Markov chain Monte Carlo method (see Konigsberg and Holman
1999; Herrmann and Konigsberg, Chapter 12, this volume). These methods
make it feasible to integrate multivariate integrals to fairly high dimen-
sions.

The second difficulty is posed by the number of parameters that must be
estimated. As the number of age indicators increases, the number of para-
meters that must be estimated grows as (n�� 3n)/2. For example, with two
indicators we estimate two means, two variances, and one covariance term
— a total of five parameters. For five indicators we must estimate 20
parameters (5 means, 5 variances, 10 covariances). And for 10 indicators
there are 64 parameters to estimate. If we wanted to use 20 indicators (e.g.,
by observing the emergence of all the deciduous teeth), we would need to
estimate 230 parameters! Alas, as the number of indicators grows, the
reference sample size needed to estimate the parameters with any certainty
increases. In response, we might be tempted to reduce the number of
indicators we use for age estimation by throwing out data — not an
appealing strategy.

Estimating the target age-at-death distribution
Estimation of the target age-at-death distribution for the multivariate case
uses all the information from the full multivariate distribution f(a �m, V). If
we have already estimated m̂ (the n means) and V� (the n � n variance—
covariancematrix) from the reference sample, we can find the likelihood for
the N� target individuals as a simple multivariate extension of equation
(10.8):

L�
��

�
��
�

	

�

g
�
(a ��)�

���d� ���

��1�d
����

f(x �m̂,V� )dxda. (10.12)
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Nonindependent indicators: the latent-trait method

The latent-trait method is intended as a compromise between the extremes
of assuming that age indicators are independent of each other and trying to
estimate the full multivariate distribution. The method is based on a model
of a particular type of nonindependence among age indicators, one that is
of much lower dimensionality than the full variance—covariance matrix.
Integration is required over only one dimension for finding parameters
from the reference sample, and two dimensions for finding the age-at-death
distribution from the target sample. The major advantage of this model as
compared with the full multivariatemodel discussed in the previous section
is that the number of parameters increases linearly with the number of age
indicators, not as the square of that number.

The method is based upon a simple biological model for the underlying
developmental or senescent process that affects the skeletal indicators of
interest. For simplicity, we discuss the method assuming that the indicators
are developmental (growth-related) rather than senescent in nature. For
concreteness, we use the first emergence of various deciduous teeth as our
example of the skeletal indicators of interest. The principles apply equally
well to senescent traits.

The method supposes that each child has its own individual growth rate
z, and that the value of z acts to accelerate or decelerate emergence of all the
child’s teeth simultaneously (Figure 10.1). In a child with a low value of z —
and thus a slow underlying growth trajectory — all teeth will emerge later,
on average, than in a child whose z value is high. Under this model, the
correlations among the various emergence times within a child reflect both
the child’s age and the value of its underlying growth parameter z

�
.

The effect of z can be different for each tooth. For some teeth z may have
almost no effect, for others the effect may be strong. The different effects of z
can be seen as different slopes across z for the teeth in Figure 10.1. We use a
series of parameters 	

��
to describe the strength of association between

latent trait z and age indicator i.
Although the model assumes that each child has its own unique growth

trait, we do not attempt to measure the value of z for each child. This value
is not directly observable, but rather is concealed or ‘‘latent’’.� We assume

� We use ‘‘latent trait’’ in a biological sense to denote a continuous unmeasurable trait that affects
a series of binary indicators. Konigsberg and Herrmann (Chapter 11, this volume) use the term
‘‘latent variable’’ in the statistical sense to denote an underlying continuous variable that is
revealed as a binary or staged indicator. Thus the method we discuss here is a latent-variable
model (for a series of binary indicators) for which each indicator is also affected by an additional
latent trait, z.
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Figure 10.1. (Upper panel) The relationship between latent growth rate variable z
and the average age at which a child will emerge five deciduous teeth. (Lower
panel) The distribution of z among children in the population.

that the trait has a particular parametric distribution among children — a
distribution whose parameters are initially unknown. The lower panel of
Figure 10.1 shows a hypothetical distribution of z among children in a
population. Even though we cannot measure the z value for each child, we
can estimate the entire distribution of z values among children, as well as
the average effect of the latent trait on the emergence of each tooth.

The method controls for correlations among age indicators in a way
similar to that of models of shared frailty and some random effects models
(e.g. Hougaard 1986; Klein et al. 1999). The effect of z on the PDF
f
�
(a ��

�
, �
�
, z,	

��
) or the survival function S

�
(a ��

�
, �
�
, z,	

��
) of transition times

for the i-th aging indicator, can be modeled in one of two standard ways.
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Figure 10.2. The effect of z	
�
on the distribution of times to transition. The

distribution of the latent trait z is normal with �� 18 and �� 4. (Upper panel)
Accelerated failure time model in which z	

�
shifts the distribution rigidly to the

left or right. (Lower panel) Proportional hazards model, in which z	
�
changes

both the mean and the variance of the distribution.

The first is by using an accelerated failure time model, in which the effect of
z is either to accelerate or decelerate the time to the transition (Klein et al.
1999). One common specification for an accelerated failure time model is
f
�
(a ��

�
, �
�
, z,	

��
) � f

�
[a ��

�
exp(z	

��
),�

�
], in which 	

��
simply shifts the mean

time to emergence up or down without changing the variance (Figure 10.2,
top panel). A second standardway to model the effects of z is to assume that
it increases or decreases the hazard of making the transition at each age. If
a proportional hazards model is specified, the effect of z on the PDF of
transition times is f

�
(a ��

�
,�
�
, z,	

��
) � f

�
(a ��

�
,�
�
)S
�
(a ��

�
,�
�
)����	�����e�	�� and

the effect of z on the SDF is S
�
(a ��

�
,�
�
, z,	

��
)�S

�
(a ��

�
, �
�
)����	���. Under this

specification both the mean and the variance of times to emergence change
with different values of 	

��
(Figure 10.2, lower panel).
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The distribution of z must be specified parametrically — for example, as a
gamma or normal distribution, both of which are often used in this kind of
analysis. In the examples presented below, we use a normal distribution for
z, which we denote g

�
(z ��

�
, �
�
). The parameter �

�
is constrained to equal 0,

and we estimate the �
�
parameter along with the arrays � and � for the n

age indicators. When more than two age indicators are used, an array of
n
 1 	

��
parameters is found as well, each 	

��
telling us something about

the strength of association between z and the i-th age indicator. The value
of 	

��
is constrained to equal 1, so that the other 	 parameters model the

effect of z on the corresponding age indicators relative to its effect on the
first age indicator.

Estimating parameters of the reference distribution
For a sample of N� reference individuals and n age indicators, we need to
modify equation (10.9), which assumed independence among all the aging
indicators. We now want to estimate the function g

�
(z �0,�

�
) that describes

how z varies among individuals. In addition, the distribution for each age
indicator, f

�
(a ��

�
, �
�
) or S

�
(a ��

�
,�
�
), has a new parameter 	

��
that describes

how strongly the indicator is affected by the individual’s underlying growth
trajectory z. The necessary likelihood is

L�
��

�
��
�
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g
�
(z �0, �

�
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��

f
�
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(10.13)
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)������]dz.

The latent-trait method can be used for either developmental or senes-
cent traits. When both types of trait are available in the reference sample, it
is conceivable that distributions for two separate latent traits (one for
growth and one for senescence) can be estimated.

Estimating the target age-at-death distribution
We assume that the parameters �̂, �̂, 	�

�
, and �̂

�
have already been estimated

from the reference sample. The likelihood for the target sample is then an
extension of equation (10.10), to which we add integration over the dis-
tribution of z. The likelihood for N� target individuals is
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(z) (10.14)

�
�
�
��

[S
�
(a �z,	�

��
, �̂
�
, �̂
�
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)������]dzda.

Application

In this section, we present an illustrative analysis using the latent-trait
method. The dataset was provided by Lyle Konigsberg, who uses it in
Chapter 11. Reference and target distributions were by partitioning a
sample of 737 known-age males, each scored by the Suchey system.
A target sample of 149 target individuals was drawn according to a
Gompertz—Makeham distribution with parameters �

�
� 0.01, �

�
� 0.001,

and 	
�
� 0.1, and the reference distribution encompassed the remaining

588 individuals.
In our attempts to retrieve parameters for the age-at-death distribution

of the dataset, we treated the six pubic phases as a series of five transitions
representing five correlated age indicators, modeled as being log-normally
distributed. Maximum likelihood estimates of the reference and target
parameters were found by the latent-trait method using equations (10.13)
and (10.14), and for comparison we estimated the corresponding models
assuming independence among traits by equations (10.9) and (10.10). A
proportional hazards specification was used to model the effect of z on the
age indicator distributions. Parameters were estimated by numerically
maximizing the log-likelihood using mle version 2.0 software (Holman
2000). Numerical integration was performed by 30-point trapezoidal ap-
proximations. Estimates of the standard errors were found by the method
of Nelson (1982), which involves inverting a numerical approximation of
Fisher’s information matrix.

The latent-trait model used to estimate the multivariate reference dis-
tribution has five � and � parameters, four 	 parameters, and one �

�
parameter. The resulting parameter estimates are given in Table 10.6. The
�
�

parameter was not well estimated for the reference sample and the 	
parameters were not significantly different from zero. It appears that the
transition times between different phases are relatively independent.
To further explore this issue, we also fit the 10-parameter multivariate
independent model given by equation (10.9) obtaining a log-likelihood of

671.83 for the reference sample. The Akaike information criterion (AIC)
can be used to select between the two models (Akaike 1973, 1992; Burnham
and Anderson 1998). The difference in AIC is 117, suggesting the latent-
trait model does provides a better fit to the data.
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Table 10.7. Parameter values used to simulate the example target sample,
and parameter estimates for the target age-at-death distributions for the
target sample. Log-likelihoods for the known-age model and the latent-trait
model were 
607.77 and 
222.61, respectively

Known-age estimates� Latent-trait estimates�
Parameter Simulation parameter� (SE) (SE)

�
�

0.01 0.013 0.012
(0.003) (0.006)

�
�

0.001 0.00009 0.00007
(0.00012) (0.0006)

	
�

0.1 0.11 0.13
(0.02) (0.15)

SE, standard error.
�Parameter value used to simulate the target sample (see Chapter 11).
�Parameters recovered by direct estimation of known ages in the simulated target sample.
�Parameters recovered by the latent-trait method.

The parameter estimates derived from the reference sample by the
latent-trait model were used, in turn, to estimate the parameters of a
Gompertz—Makeham age-at-death distribution using data from the target
sample. The Gompertz—Makeham model has three parameters, �

�
, �

�
, and

	
�

(for details, see Wood et al., Chapter 7, this volume). Parameter esti-
mates for the resulting age-at-death distribution are given in Table 10.7.
Additionally, target ages were provided for the target sample, so we could
estimate the parameters of the Gompertz—Makeham directly from the
known target ages (Table 10.7). The parameters recovered by the latent
trait model were very close to the parameters used for the simulation as
well as the parameters estimated from the known ages of the target sample.
Clearly, the 	

�
parameter was not well estimated by the latent-trait method

for the target sample. Nevertheless, the difference in AIC between the
latent-trait model and the multivariate independent model was 14.52,
indicating that latent-trait model fits somewhat better than the model
assuming independence.

Age-at-death distributions estimated from known ages and by the
latent-trait method are shown in Figure 10.3. The distributions recovered
from the known ages and by the latent-trait method are not significantly
different, but we note that the standard errors recovered by the latent trait
method are quite large.

We conclude that the latent-trait model does a reasonable, though not
perfect, job of recovering the parameters in these simulated age-at-death
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Figure 10.3. Age-at-death distribution for the target sample based on estimated
parameters in Table 10.7. The solid line (� 1 standard error bar) shows the
distribution recovered directly from the known ages of the target sample. The
dashed line is the target distribution recovered by the latent-trait method using
pubic symphysis indicators, and dotted lines are � 1 standard error.

distributions. One of the difficulties of the estimates presented here is that
the standard errors may have been poorly estimated by errors introduced
in the numerical integration. Methods that use Markov chain Monte Carlo
for the integration and bootstrapped estimates of parameter uncertainty
would be useful refinements of the method.

Conclusions

We have presented a method for estimating an age-at-death distribution
from multivariate skeletal data with possible missing values. The method
adheres rigorously to the Rostock Manifesto outlined in other parts of this
book. Thus the method complements those used by Konigsberg and
Herrmann (Chapters 11 and 12) and Love and Müller (Chapter 9). It is also
consistent with methods found elsewhere in the recent paleodemographic
literature (Konigsberg and Frankenberg 1992; Konigsberg and Holman
1999; O’Connor 1995).

We would argue that skeletal data, by their nature, absolutely demand
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multivariate treatment. But three additional criteria must be met for any
multivariate method to be of use to the practicing paleodemographer.
First, the method must not assume that traits are statistically independent
within an individual (for biological reasons, skeletal traits are unlikely to
meet this assumption). Second, the number of parameters to be estimated
must not grow as an exponential function of the number of traits
(paleodemographic samples are too small to support estimation of a large
number of parameters). Third, the method must be able to accommodate
missing data for some skeletons (imperfect preservation almost inevitably
results in missing data). We have developed the latent-trait method in
response to these demands. Although it is a method of intermediate com-
putational complexity — two nested integrals appear in the likelihood for
the parameters of the age-at-death distribution — even this degree of
complexity may require stochastic methods of integration such as the
Markov chain Monte Carlo methods used in Chapter 11 (Konigsberg and
Herrmann, this volume). Nonetheless, the latent-trait approach represents
a major gain in practicality over methods that estimate the full variance—
covariance matrix among age indicators — and a major gain in realism over
methods that assume that indicators are independent.

The usefulness of this method (or any other multivariate method) rests,
in part, on the development of true multivariate reference samples. The
ideal reference sample would include numerous binary and continuous
indicators from many parts of the skeleton, maximizing the chance that at
least one indicator would be available for any skeleton. We eschew the
notion of developing any stage or phase indicators — as we argued earlier,
staged traits are likely to reflect multiple semi-independent processes that
would be better coded as a series of binary traits or as a continuous trait.
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11 Markov chain Monte Carlo
estimation of hazard model
parameters in paleodemography
  .     . 

Introduction

In the early 1990s Konigsberg and Frankenberg wrote ‘‘A future direction
that we expect to see in anthropological demography and paleodemogra-
phy is the incorporation of uncertainty of age estimates into reduced
parameterizations of life table functions. For example, hazards analysis,
which reduces the mortality parameters to a small set, has recently been
used in a number of anthropological demography studies’’ (Konigsberg
and Frankenberg 1992:252). At the time we were writing we lacked the
appropriate reference sample data for such an endeavor, as well as a
number of the requisite statistical/computational tools. Today, neither of
these issues is particularly problematical. Consequently, in this chapter we
present some newer methods exploiting available reference sample data.
The structure of this chapter is as follows. First, we discuss methods for
modeling the dependence of an ordinal categorical variable on age. We
then discuss the modeling of survivorship for archaeological human re-
mains, and show how hazard model parameters can be estimated from an
ordinal categorical variable using traditional maximization of the log-
likelihood. We follow this presentation of methods with a brief example of
estimating the parameters in a Gompertz—Makeham model using pubic
symphyseal data and the method of maximum likelihood. We then turn to
using a specific Markov chain Monte Carlo (MCMC) method known as
the Gibbs Sampler to show how more general problems in hazard model
and age estimation can be attacked. After another brief example, we discuss
extensions to the use of MCMC in paleodemography, and close with a brief
discussion of various critiques of previous methods.
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Modeling the dependence of a discontinuous ‘‘age indicator’’
on age

One of the key elements of the discussion from the Rostock Workshops
was the importance of appropriately modeling the dependence of ‘‘age
indicators’’ on age-at-death when doing any form of demographic recon-
struction or age estimation. Following the notation from the Workshops,
we write a single ‘‘age indicator’’ as C, for ‘‘character’’. The character can
take any of 1, . . , I values, each represented as c

�
. For example, in the

Suchey—Brooks pubic phase system, the character states are c
�
, c

�
, c

�
, c

�
,

c
�
, and c

�
. Our first task, then, is to find Pr(C(A)� c

�
�A� a), which is the

probability that an individual would be in the i-th state of the character
conditional on their age being exactly A� a years. In Chapter 9 (Love and
Müller, this volume), it was assumed that the character states are poly-
chotomous, in other words, that they are mutually exclusive but unordered
alternative states of the character. In Chapter 5 (Boldsen et al., this vol-
ume), it was assumed that the character is an ordinal categorical variable.
In this chapter we also make this stronger assumption, in other words that
the ‘‘phases’’ within an age determination system do represent ordered
states.

Since Boldsen and colleagues assume that the character states are
ordinal categorical, they apply logistic regression analysis. In this chapter
we use the closely related model of probit regression. In the statistical
literature the probit (or the comparable logit) when applied to ordinal
dependent data, is generally referred to as an ‘‘ordinal probit model’’
(Johnson and Albert 1999b), an ‘‘ordered probit model’’ (Powers and Xie
2000), or a ‘‘cumulative probit model’’ (Long 1997). This model can be
written as

Pr(C(A)� c
�
�a�A) ��(�

�

	�A) 
�(�

���

 	�A), (11.1)

where �(·) is standard normal integral, � is a set of intercepts with �
�

equal
to negative infinity and �

�
equal to positive infinity, and 	 is a slope. The

method of maximum likelihood can be used on a reference sample in order
to estimate the parameters �

�
, . . ., �

���
and 	. In addition to proprietary

software, there are a number of freely available programs that can be used
to fit the ordinal probit model:

tda, which is available from
ftp://ftp.stat.ruhr-uni-bochum.de/pub/tda/,

nkotp from ftp://k7moa.gsia.cmu.edu/nkotp.zip and see
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http://k7moa.gsia.cmu.edu/nkotp.htm for documentation,
and MIXOR from http://www.uic.edu/�hedeker/mix.html

Following Boldsen and coworkers’ terminology, the ordinal probit model
can also be written in terms of the mean ‘‘age to transitions’’ and the
standard deviation of the transition distributions, so that equation (11.1)
becomes

Pr(C(A)� c
�
�A � a)��

�

�	

f (A ��
���

, �)dA
�
�

�	

f (A ��
�
,�)dA, (11.2)

where f (A� a ��,�) is the normal probability density function at variate
value a with mean � and standard deviation �.

The representation of the ordinal probit in equation (11.2) makes clear
one particular problem, which is that the integration across age starts at
negative infinity. There are two ways to circumvent this problem. The first,
and simplest, way is to measure age in a logarithmic scale, or equivalently
to let the ‘‘age to transition’’ distributions be log-normal rather than
normal (see Holman et al., Chapter 9, this volume). The second way is to
allow the standard deviations for transitions to vary by phase, so that
equation (11.2) becomes

Pr(C(a)� c
�
�A� a) ��

�

�	

f (a ��
���

,�
���

)dA
�
�

�	

f (A ��
�
,�
�
)dA. (11.3)

In our experience, the standard deviations for transitions between early
phases are generally so small relative to the means that the integrals from
negative infinity to zero (across age) are negligible. Equation (11.3) does,
however, produce a different problem, which is that some of the calculated
probabilities for being in a particular phase at a particular age can be
negative. To circumvent this problem, we set any calculated probabilities
to zero and renormalize (i.e., divide the probability of being in a particular
phase at a particular age by the sum of the probabilities of being in each
phase at that age).

Both models that we have discussed (the log-normal model and the
separate standard deviation model) are supported in CatReg (US Environ-
mental Protection Agency 2000), a collection S� routines available from

http://www.epa.gov/ncea/catreg.htm and
http://www.stat.uiuc.edu/�simpson/papers.html

In CatReg the separate standard deviation model is referred to as an
‘‘unrestricted cumulative’’ probit, while in Hedeker et al.’s (1999) terminol-
ogy this is referred to as a ‘‘thresholds of change model’’. In general, we
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Table 11.1. Maximum likelihood estimates of means and standard
deviations in years (and associated standard errors) for transition ages
between Suchey—Brooks phases (N � 588)

Standard
Transition Mean SE (mean) deviation SE (sd)

I/II 21.02 0.24 2.20 0.23
II/III 25.74 0.45 5.29 0.47
III/IV 28.62 0.55 6.84 0.60
IV/V 40.22 0.84 11.37 0.86
V/VI 69.97 2.27 19.34 1.99

have not been able to fit the separate standard deviation model in CatReg,
or in MIXOR, because the occurrence of negative probabilities early in the
optimization of the total log-likelihood causes severe numerical problems.
We have written our own software, which uses a tensor method (Chow et
al. 1994) for maximizing the log-likelihood, and which replaces negative
probabilities with positive values near zero. In our experience this method
has almost always converged properly, and yields answers identical to the
‘‘unconstrained cumulative’’ probit in CatReg when that program has
converged properly. Table 11.1 contains maximum likelihood estimates for
the cumulative ordinal probit separate standard deviation model. This
table was formed using 588 of the original 737 cases from Suchey’s dataset.
The ‘‘loss’’ of 149 cases is because we have held them out as test cases, to be
discussed below.

Modeling survivorship

Hazards analysis has rapidly begun to supplant the use of life tables in
anthropological demography (Gage 1988; Wood et al. 1992), though appli-
cations in paleodemography have been less numerous (see Wood et al.,
Chapter 7, this volume). In this chapter we will initially use a Gompertz—
Makeham hazard model to represent adult mortality, and will then switch
later in the chapter to a Weibull distribution. The Gompertz—Makeham
survivorship can be written as:

S(A� a)� exp�
 �
�
a�

�
�
	

(1 
 exp(	a))� , (11.4)

where A is reported age minus 15 years (we only consider individuals 15
years old or older) and �

�
, �

�
, and 	 are three parameters to be estimated

from the data on reported ages. The hazard of death is
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h(a)� �
�
� �

�
� exp(	a), (11.5)

and the probability density function is then the product of the hazard with
the survivorship. The log-likelihood of the three parameters conditional on
observed ages-at-death is

lnL(�
�
, �

�
,	�a) �

�
�
��
�ln(�

�
� �

�
exp(	a

�
))� �

�
a
�

(11.6)

�
�
�
	

(1
 exp(	a
�
))� ,

where again the probability density function for age is

f (a ��) � h(a ��)S(a ��), (11.7)

where we use � to represent the hazard parameters.

Modeling survivorship concurrent with the dependence of a
discontinuous ‘‘age indicator’’ on age

Combining equations (11.3) and (11.7) we can write the log-likelihood for
the hazard parameters conditional on the observed phase data as

lnL(��c)�
�
�
��
�n�� ln��

�

 �

P(C
�
�A) f (A ��)dA�� , (11.8)

where n
�
are the elements of a vector that holds the counts for numbers of

individuals observed to be in the i-th of the I phases. Here the reference
sample information provides the probabilities that individuals in the target
sample are in their observed phases, though we must treat the conditioning
on age across an integral containing the probability density function for
age derived from the hazard parameters. Equation (11.8) can be maximized
by searching across the hazard parameters until a local maximum is found.
We have used both a tensor method (Chow et al. 1994) and simulated
annealing (Goffe et al. 1994) to find maximum likelihood estimates. For the
integration across age shown in equation (11.8) we have used routines from
QUADPACK (Favati et al. 1991).

Example of estimating Gompertz–Makeham parameters from
pubic symphyseal data

In our first example we estimated the Gompertz—Makeham parameters
and their associated variance—covariance matrix by explicitly maximizing
the log-likelihood shown in equation (11.8). Our example was drawn from
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Suchey’s 737 known-age males, with the pubic symphysis scored by Suchey
on her six-phase system. Specifically, we formed a ‘‘biased bootstrap’’
sample from Suchey’s data to serve as a target sample, and treated the
remaining cases as the reference sample. For the target sample we started
with �

�
, �

�
, and 	 equal to 0.01, 0.001, and 0.1, respectively, and determined

how many deaths we would need at each age in order to get a sample of
about 150 individuals. In the end we drew 149 individuals with the result-
ing Gompertz—Makehamparameters of 0.014, 4.63� 10��, and 0.1165. To
make these draws we sorted Suchey’s data on ascending age, randomly
permuted individuals within each yearly age class, assigned the requisite
number of cases to the target sample and the remaining cases in the age
class to the reference sample. As a consequence of using this method for
forming the reference and target samples, we know that issues of interob-
server error in scoring and differences in aging across samples are circum-
vented. However, the age-at-death structures for the target and reference
samples are radically different, as is shown in the empirical survivorship
(see Figure 11.1). Consequently, it should be easy to determine whether
there are problems of ‘‘age mimicry’’ occurring when we estimate the
hazard parameters for the target sample. The mean ages and standard
deviations for transitions in the reference sample of 588 individuals are
reported in Table 11.1.

We maximized the log-likelihood shown in equation (11.8) using both
simulated annealing (Goffe et al. 1994) to assure that we had identified a
global maximum and the tensor method (Chow et al. 1994) (starting from
the simulated annealing solution) to obtain the asymptotic variance—
covariance matrix for the hazard parameters. The number of cases in each
of the phases for the target sample was 15 in phase I, 6 in phase II, 5 in
phase III, 32 in phase IV, 65 in phase V, and 26 in phase VI. Table 11.2
contains the actual Gompertz—Makeham parameters and their variance—
covariance matrix estimated from the real ages, as well as the comparable
estimates from the phase data. Figure 11.1 shows the 95% confidence
interval around the survivorship estimated from the actual ages for the 149
individuals, and estimated from the phase data. For comparison, the figure
also shows the survivorship from the reference collection of 588 skeletons.
The figure shows quite clearly that it is possible to recover unbiased
estimates of the actual hazard parameters, but that confidence intervals on
survivorship (or the hazard or probability density function) are necessarily
larger when estimated from skeletal data rather than directly from age.
Konigsberg and Holman (1999) make a similar point in regard to estima-
ting skeletal growth parameters when ages are estimated rather than
known. Similarly, Konigsberg and Frankenberg (1992:251) noted that ‘‘the
assumption that ages are known (when they are not) will lead to false
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Figure 11.1. Ninety-five percent confidence intervals around survivorship for
actual age from a target sample (solid lines, Age) and for survivorship from age
estimated from Suchey—Brooks pubic symphyseal faces (dashed lines, mle). For
comparison, the reference sample survivorship is shown (dotted/dashed line,
Reference). The target sample was drawn using a Gompertz—Makeham model of
mortality, and the model was estimated from phase data using maximum
likelihood estimation (mle).

power in tests and confidence intervals that are too small’’. Conversely,
when the ages are known (but we do not know them) the actual confidence
intervals should be narrower than the ones we estimate from estimated
ages.

Gibbs sampling

There is an alternative strategy for fitting hazard models to paleodemo-
graphic (‘‘age indicator’’) data, which is to use MCMC methods. MCMC
methods have become increasingly popular over the last few years, and are
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Table 11.2. Estimated Gompertz—Makeham hazard parameters and
variance—covariance matrix using actual ages for 149 individuals and
observed pubic symphyseal phase data

Parameter Estimate Covariance matrix

Age data
�
�

0.014508 9.272400E-06
�
�

0.000392 
7.928000E-07 1.542100E-07
	 0.119995 3.928259E-05 
8.045600E-06 4.285446E-04

Phase data
�
�

0.013701 1.232958E-05
�
�

0.000595 
8.309787E-07 1.684148E-07
	 0.11636 8.039658E-06 
3.657529E-06 1.663518E-04

covered extensively in the statistical literature (Gelman et al. 1995; Gilks et
al. 1996; Gamerman 1997; Johnson and Albert 1999; Robert and Casella
1999). The advantage of these methods is that they replace the integrations
shown in equation (11.8) with Monte Carlo simulation. While equation
(11.8) only contains a twofold integral (one for the normal ‘‘transition’’ and
one across the age-at-death distribution), ‘‘multifactorial’’ (i.e., multivari-
ate) ordinal applications will require p� 1 levels of integration (where p is
the number of ‘‘age indicator’’ traits). For example, Konigsberg and Hol-
man (1999) fit a hazard model from deciduous dental eruption data. As
they considered 10 teeth, to fit such a model by maximizing equation (11.8)
would have required an iterative search across a likelihood calculated from
numerous 11-dimensional integrations. This is true because the likelihood
requires integration for every observed pattern of dental eruption in their
example. As an alternative to these excessive calculations, Konigsberg and
Holman used an MCMC method to fit a hazard model. In this section we
describe and implement a MCMC method for estimating a hazard model
from a single ordinal categorical age ‘‘indicator’’.

The particular MCMC method we describe here has been referred to in
the literature as a ‘‘Gibbs Sampler’’. In Gibbs sampling we alternately
sample from full posterior distributions so as to obtain estimates for
marginal distributions. In paleodemographic analysis, typically we will be
interested in summarizing the marginal distributions for hazard para-
meters, though in some situations we might be interested in the marginal
distributions of age-at-death for each individual. The method is certainly
flexible enough that either kind of information can be obtained, so we do
not make as strong a distinction between these two pursuits (estimating
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hazard models versus estimating ages-at-death) as was originally made at
the Rostock workshops. The Gibbs Sampler method applied to a single
ordinal categorical age ‘‘indicator’’ fits very comfortably within the ‘‘transi-
tion analysis’’ paradigm described by Boldsen and colleagues (Chapter 5,
this volume), so we will style our presentation after their work.

Simulating transition ages

We start by assuming that we actually know the values for the hazard
parameters in a particular hazard model, and that we know everyone’s
age-at-death. While these appear to be enormous assumptions, we simply
make these assumptions to serve as starting values for the Markov chain
that we will simulate. As the first few hundred runs of the chain will be
discarded (as a ‘‘burn-in’’ or ‘‘de-memorization’’), the starting values we
choose have no practical effect on the outcome of the MCMC. In the first
pass through the data we simulate the ages at transition for each individual,
where each individual has two ages at transition, an earlier and a later one.
The earlier simulated age is for the age at which the individual is presumed
to have made the transition into the observed phase, while the later age is
for the age at which we presume they would have moved into the next
higher stage had they not died. To simulate these transition ages we sample
out of truncated normal distributions, so that the transition into the
observed phase must occur prior to our current guess at the individual’s
age, while the transition into the next phase must occur after our current
guess at the individual’s age. Figure 11.2 shows this graphically for an
example where an individual is observed to be in phase IV in the Suchey—
Brooks system, our current guess at their age is 30.0 years, and the normal
distributions for transition ages come from the reference sample informa-
tion in Table 11.1. Simulation from truncated normal distributions is a
straightforward matter using the ‘‘inversion method’’ of sampling (see Buck
et al. 1996). Although analytical solutions are not available for the normal,
there are fast numerical routines for evaluating tail areas and finding
z-deviates that correspond to particular tail areas. These can be combined
in order to simulate from truncated normal distributions. Appendix 11.1
gives a brief ‘‘R’’ function for simulating from doubly truncated normal
distributions. To truncate only from the left we can pick a very high value
for the right, and to truncate only from the right we pick a very low value
for the left. For individuals in the first or last phase it is only necessary to
simulate one transition age, as for the first phase they are assumed to have
entered at birth, while for the last phase they will remain in the phase in
perpetuity.
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Figure 11.2. Graphical representation of simulating ‘‘transition ages’’, where the
individual is assumed to be 30 years old and in phase IV of the Suchey—Brooks
system. The normal distributions are taken from the parameters in Table 11.1.
Ages should be simulated from the truncated normals represented by the
‘‘hatching’’.

Simulating ages-at-death

Now that we have simulated transition ages we can simulate individual
ages-at-death. These individual ages must fall between the transition ages,
and should follow the assumed probability density function for age-at-
death specified by the value of the hazard parameters. For the remainder of
the chapter we will use a simpler hazard model than the Gompertz—
Makeham, specifically we will use the two-parameter Weibull model. For
an individual we need to sample from the Weibull truncated at the left by
the transition age into the observed phase and truncated at the right by the
transition age into the next higher phase. Simulation from a doubly trun-
cated Weibull can also be handled using inversion sampling.

Simulating the Weibull parameters

Starting from the ages-at-death simulated in the step above it is possible to
simulate the two Weibull parameters from their posterior distributions.
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Dellaportas and Smith (1993) described in detail how to use adaptive
rejection sampling (Gilks 1992, 1996; Gilks and Wild 1992; Gilks et al.
1995) to make these simulation draws. We give an abbreviated account
here. The log-likelihood for the Weibull model can be written as:

lnL(�,��T ) �
�
�
��

[ln(�)
�� ln(t
�
)��� ln(�)
 t�

�
���], (11.9)

where � is a scale parameter and � is a shape parameter. As with the
Gompertz—Makeham, we can also include a known ‘‘shift’’ or location so
that the exposure to risk of death starts at later than age 0. We use a
different parameterization of equation (11.9) that assures that log-likeli-
hood curves are concave (down). As in Dellaportas and Smith (1993), we
write a new parameter � that is equal to 
�� ln(�), and is constrained to
be less than 0 (while � must be greater than 0). Equation (11.9) then
becomes

lnL(�,��T) �
�
�
��

[ln(�)� (�
 1)� ln(t
�
)� � 
 t�

�
exp(�)], (11.10)

which has partial first derivatives

� lnL(�,��T)

��
� n


�
�
��

[t�
�
exp(�)] (11.11a)

� lnL(�,��T)

��
�

n

�
�

�
�
��

[ln(t
�
)(1 
 t�

�
exp(�))]. (11.11b)

These derivatives are used in finding a lower and upper ‘‘envelope’’ for
sampling � and �. Differentiating again leads to the second derivatives,
which are:

�� lnL(�,��T)

���
� 


�
�
��

[t�
�
exp(�)] (11.12a)

�� lnL(�,��T)

���
� 


n

��



�
�
��

[t�
�
ln(t

�
)� exp(�)]. (11.12b)

Both of these quantities are negative, showing that the posterior log-
distributions are concave. Log-concavity is required for adaptive rejection
sampling (without a Metropolis-Hastings step).
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Table 11.3. Estimated Weibull hazard parameters and
variance—covariance matrix using actual ages for 150 individuals
and observed pubic symphyseal phase data

Parameter Estimate Covariance matrix

Age data
� 31.08 2.1989
� 1.8657 0.01568 0.0170

Phase data (mle)
� 30.08 4.1027
� 1.8531 
0.0449 0.0381

Phase data (Gibbs Sampler)
� 29.69 3.9715
� 1.8369 
0.0456 0.0374

Example of estimating Weibull parameters from pubic
symphyseal data

In our second example we fit a Weibull model using both traditional
maximization of the log-likelihood (as in our previous example) and the
Gibbs Sampler described above. This allows us to compare these two
methods, as well as determine their ability to recover the generating
Weibull parameters. For the generating Weibull parameters we use �
(‘‘scale’’) equal to 33.22 and � (‘‘shape’’) equal to 1.75. These values are
taken from the mortality over age 15 years from Model West 1 for males
(Coale and Demeny 1966). We sampled 150 deaths from the Suchey data as
in our previous example, with a resulting � (‘‘scale’’) equal to 31.08 and �
(‘‘shape’’) equal to 1.86 (see Table 11.3). Although we re-estimated the
transition age means and standard deviations shown in Table 11.1 using
the remaining 587 cases, these values were so similar to those from Table
11.1 that we do not present them here.

Table 11.3 contains the estimated � and � parameters and their vari-
ance—covariance matrix from direct maximization of the log-likelihood in
the tensor algorithm. For the Gibbs Sampler, also shown in Table 11.3, we
started by assuming that everyone was 30 years old, that � was equal to
20.0, and that�was equal to 2.0. For the adaptive rejection sampling of the
Weibull hazard parameters we used FORTRAN routines available from
the Medical Research Council at Cambridge, see

http://www.mrc-bsu.cam.ac.uk/Research/Projects/ars.shtml

233Markov chain Monte Carlo estimation



Figure 11.3. Ninety-five percent confidence intervals around the hazards for
actual age from a target sample (dashed lines, Age), for survivorship from age
estimated from Suchey—Brooks pubic symphyseal faces using maximum
likelihood estimation (‘‘plus’’ symbols, mle), and using the Gibbs Sampler (solid
lines, Gibbs). The target sample was drawn using a Weibull model of mortality.

These routines can also be downloaded in single precision form from
statlib (see http://lib.stat.cmu.edu/apstat/), and were originally published in
the journal Applied Statistics (Gilks and Wild 1992). After an initial 300
iterations to ‘‘de-memorize’’ the starting values, we retained the next 10 000
iterations, and used the output � and � parameters to calculate their
averages and variance—covariance matrix. Table 11.3 shows that tradi-
tional maximization of the log-likelihood and the Gibbs Sampler give
nearly identical results. Further, these methods do an excellent job of
recovering the actual Weibull parameters. Figure 11.3 shows a comparison
of the 95% confidence intervals around the hazards from the actual age
data, and from maximum likelihood and Gibbs Sampler estimation using
the phase data. These intervals are indistinguishable between the maxi-
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mum likelihood and Gibbs Sampler methods, both of which give wider
confidence intervals than are obtained using actual age.

Extensions of the MCMC method for hazard model estimation

In this closing section we consider a number of possible extensions to the
Gibbs Sampler method that we have described. In particular, we consider
multivariate extensions, where the integrations required for ordinal cat-
egorical traits rapidly become prohibitively expensive using traditional
maximization of the likelihood. We also consider complications in the ‘‘age
estimator’’ data, as well as the use of more complicated hazard models to
represent prehistoric mortality.

Multivariate age estimation

For binary age indicators, such as Holman et al. discuss in Chapter 10 (this
volume), the extension to multivariate data is immediate. When the ob-
served skeletal indicators are binary, single transition ages (rather than two
ages) must be simulated. For individuals in the second stage we simulate
the age at which they moved into this stage, while for individuals in the first
stage we simulate the age at which they would move into the second stage if
they had survived. Because the data from the binary indicators are presum-
ably dependent, even after conditioning on age, we need to condition the
transition age for one trait on the transition ages for all other observed
traits within the individual. Konigsberg and Holman (1999) present an
example of hazard model (and age) estimation in the binary multivariate
setting, using as their example dental eruption of 10 deciduous teeth.

For multivariate ordinal categorical data we need to modify our
approach rather considerably. The problem with maintaining the straight
‘‘transition age’’ approach is that we now need to condition each indicator
on all other indicators, and if the traits are not binary then we will have two
ages per indicator. Rather than maintain the ‘‘transition age’’ paradigm, we
suggest treating the ordinal categorical data as latent traits (see e.g., John-
son and Albert 1999:127—130). Each trait can then be modeled using a
standard normal integral to replace equation (11.2) with:

Pr(C(a)� c
�
�A� a) ��

������
�

�
����
�

�(z �0, 1)dz, (11.13)

235Markov chain Monte Carlo estimation



and dependence between traits can be handled by allowing for nonzero
correlations. In this setting it would generally be reasonable to measure age
on a logarithmic scale. Rather than simulate directly from equation (11.13),
the logical approach now is to simulate the latent-trait value and then
sample directly from the posterior distribution of age for each individual.
The posterior is formed as the product of the probability density function
at z with the current probability density function for age-at-death (as in
equation 11.8). This is often a difficult distribution from which to simulate
directly. We have had some success using an independence Metropolis
sampler. Specifically, we sample an age from a uniform distribution be-
tween 0.0 and �, and write this proposal age as a

�
(for age to move to). We

have the previous guess at the age, which we write as a
�
(for current age

estimate). We can then form an acceptance ratio AR as

AR�min�
Pr(c

�
�a

�
)� f (a

�
��)

Pr(c
�
�a

�
)� f (a

�
��)

, 1� . (11.14)

After forming the acceptance ratio, we sample from a uniform distribution
between 0 and 1. If the random deviate is less than the acceptance ratio,
then we accept the move to the newage (a

�
). If the randomdeviate is greater

than the acceptance ratio, then we remain with our current estimate (a
�
).

Mixed and missing data

There are two additional complications we have not yet considered. The
first complication is that we may have data not only from ordinal categori-
cal variables, but also from continuous variables. This is a ‘‘mixed data’’
setting. As an example of a continuous variable, the second Rostock
workshop saw considerable discussion of cementum annulations. While
these data take only integer values, if the annulations do generally equal
the number of years lived since tooth eruption, then these data are better
treated as continuous. For continuous variables we can model the data
using a linear model regressing the continuous variable on age. This is
analogous to our description of the latent-trait approach above, but now
we do not have to simulate a latent trait because the actual trait value is
observed. The independence Metropolis sampler can again be used for the
continuous traits and, consequently, ordinal categorical and continuous
traits can be handled together.

The second complication is one of which paleodemographers are pain-
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fully aware: the high frequency of missing data. Any of the simulation
approaches we have described can easily accommodate incomplete
datasets. In the latent-trait approach, unobserved, ordinal categorical data
are simulated by conditioning on other traits, but they are not truncated.
For continuous data that are unobserved, the variables are conditioned on
latent-trait values and observed continuous variables.

More complex hazard models

While the parameters in many hazard models have full conditional den-
sities that are log-concave, and consequently can be sampled easily using
adaptive rejection, other models do not meet this criterion. In particular,
the Gompertz—Makeham model has some convexities for the log densities.
We have, for simplicity’s sake, avoided such models here. Gilks (Gilks et al.
1995; Gilks 1996) shows how a Metropolis-Hastings step can be added to
adaptive rejection sampling so that one can make draws on densities that
are not log-concave. In the future we will extend our work to include these
more complicated hazard models.

Whither now?

It was our naive hope with the publication of Konigsberg and Franken-
berg’s (1992) initial work on anthropological age estimation that much of
the rancor (e.g., Bocquet-Appel and Masset 1982, 1985; Van Gerven and
Armelagos 1983; Buikstra and Konigsberg 1985; Bocquet-Appel 1986;
Greene et al. 1986) surrounding paleodemography would disappear. While
possibly the skirmishes have diminished, the war still appears to wage, at
least in some quarters. Our current methods fit fairly comfortably within
the approaches taken during the Rostock workshops, and are clearly
within the parameters established within the most recent review of
paleodemography (Milner et al. 2000). When a specific critique of the
methods proposed by Konigsberg and Frankenberg (1992) appeared in the
American Journal of Physical Anthropology (Bocquet-Appel and Masset
1996) we chose not to comment in print at that time. By 1996, we had
largely switched from using life tables to using hazard models, and so our
comments would not have been relevant. We spelled out in our 1992 article
that we expected to see paleodemography move in the direction of hazards
analysis, so we make no apologies here for leading people ‘‘astray’’ with our
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1992 use of life tables. As some people have continued to use life table
approaches in paleodemography, we do need to comment briefly here on
some of the possible pitfalls that arise in following this approach.

First, we should comment very briefly on Bocquet-Appel and Masset’s
(1996) critique. We have programmed the ‘‘iterative proportional fitting
procedure’’ (IPFP) that Bocquet-Appel and Masset describe , as well as the
‘‘iterated age-length key’’ (IALK) (Kimura and Chikuni 1987) that we used
previously (Konigsberg and Frankenberg 1992), and a similar expectation
maximization (EM) log-linear model from the fisheries literature (Hoenig
and Heisey 1987). Provided the same convergence criteria are used, the
IPFP and the IALK yield identical results, so clearly they are the same
algorithm. The EM log-linear method that Hoenig and Heisey presented is
preferable to the IALK because the former includes the IALK as a special
case where the reference sample is very large (technically, infinite in size).
The difference between the IALK and the method presented in Hoenig and
Heisey points out a shortcoming of many of the approaches in this volume,
including our own work. We, as others here, have ignored the sampling
variance that comes from the reference sample. In a full MCMC approach,
this variance could be included by estimating the probit model simulta-
neously with estimating hazard parameters (for examples of MCMC esti-
mation of probit models, see Albert and Chib 1993; Chib and Greenberg
1998; Johnson and Albert 1999).

Bocquet-Appel and Masset’s chief critique of the IALK (and hence their
identical IPFP) is that they believe the method is incapable of recovering
anything other than the mean age-at-death. This is not an argument based
in logic, but instead based on simulation work they have done. As the
IALK is a maximum likelihood method, to reject it out of hand we must
either critique the necessary assumptions (principally, Howell’s (1976)
‘‘uniformitarian assumption’’) or reject the underlying statistical premise of
likelihood estimation. Beyond this it is also important to realize that there
are contexts in which the IALK is not identified, and consequently is
doomed to failure. For example, Jackes (2000:435) has attempted to fit a life
table with 17 age classes using only the six Suchey—Brooks phases and the
IALK, and notes that the method ‘‘is shown to be completely ineffective in
replicating the real age-at-death distribution’’. An examination of her
figure 15.7 shows that many of the estimated age classes have zero frequen-
cies and, consequently, her solution falls on boundaries of the likelihood
space. Fienberg’s (1977) ‘‘Result 2’’ states that in order for there to be a
unique likelihood solution the parameters must fall in the interior of the
parameter space. Clearly, Jackes has attempted to estimate a model that is

238 L. W. Konigsberg and N. P. Herrmann



not identified. She could have avoided this pitfall either by reducing the
number of age classes or by switching to a hazard model. As should be
obvious from the results in our chapter, as well as other chapters in this
volume, such models are identified, provided they are not excessively
parameterized.

In a recent review of paleodemography, Chamberlain (2000:108) writes
that ‘‘the approach advocated by Konigsberg and Frankenberg . . . cannot
be recommended’’. He continues that the method ‘‘is computationally
difficult, and it relies on the target series being an unbiased sample of its
parent population’’. This first point is debatable (we have written an ‘‘R’’
function in under 10 lines that fits Hoenig and Heisey’s EM). The second
point is not true. One can always try to estimate a hazard model or life
table on a biased sample, and then show that the results do not fit
reasonable expectations for human mortality. An interesting aspect of
Chamberlain’s review is that he uses Bayesian estimation by assuming
some prior age distribution and updating this with the likelihood to obtain
a posterior age distribution. This is a cruder form of what Di Bacco et al.
(1999) have suggested. They take a fully Bayesian approach by starting
from an uninformative prior on hazard model parameters, and then updat-
ing these using the likelihood from the target and reference sample infor-
mation. Their likelihood (in their equation 20) is specified in the same
manner as ours (our equation 11.8). The difference in approach is between
Bayesian estimation and maximum likelihood estimation, a philosophical
debate that we should best avoid here.
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Appendix 11.1

‘‘R’’ function for simulating deviates from a doubly truncated
normal distribution

function (ndev=1,mu=0,sd=1,left=−1,right=1)

�
Fl -pnorm(left,mu,sd)
Fr -pnorm(right,mu,sd)
p -runif(ndev)*(Fr−Fl)+Fl
qnorm(p,mu,sd)

� Get cumulative distrib. up to left truncation
� Get cumulative distrib. up to right truncation
� Simulate ndev uniforms between F(L) and F(R)

� Invert the random deviates
�

‘‘R’’ function for simulating deviates from a doubly truncated
Weibull distribution

Note that ‘‘R’’ has intrinsic functions for the distribution and quantile functions in a
Weibull, which would presumably be faster than the explicit code below. The
function below allows for a ‘‘shift’’ in case the hazard only applies to a particular age
and above. The symbol ‘‘b’’ below is equivalent to � in the text, and ‘‘c’’ is equivalent
to �.

function (ndev=1,b=30,c=2,shift=15,left=20,right=25)

�
Sl -exp(-((left-shift)/b) ĉ)

Sr -exp(-((right-shift)/b) ĉ)

p -runif(ndev)*(Sl-Sr)+Sr
b*(log(1/p) (̂1/c))+shift

� Get Survivorship until age ‘‘left’’
� Get Survivorship until age ‘‘right’’
� Simulate uniform between survivorships

� Invert

�
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12 A re-examination of the age-at-death
distribution of Indian Knoll
  .     . 

Introduction

A majority of prior paleodemographic studies have focused on the estima-
tion of population structure utilizing individual age range estimates de-
rived from a variety of age indicators and compiled into a life table
(Johnston and Snow 1961; Weiss 1973; Mensforth 1990). General popula-
tion parameters from the life table are then compared among populations
or with model mortality schedules (e.g., Coale and Demeny 1966). Recent
research has demonstrated that age-at-death distributions derived from
these types of age estimation method are biased as a result of an a priori
assumption equating the age-at-death distributions of the reference and
skeletal samples (Bocquet-Appel and Masset 1982, 1996; Konigsberg and
Frankenberg 1992, 1994).

In this chapter, we will provide a case study based on an extension of the
statistical methods detailed in Konigsberg and Herrmann (Chapter 11, this
volume) using pelvic age indicator data from the large Archaic skeletal
sample from Indian Knoll (15Oh2), Kentucky. This well-preserved skeletal
series offers a unique opportunity to test these new methods. We compare
the age-at-death distribution derived from this new approach with mortal-
ity data collected by several researchers from the Indian Knoll series. Our
comparison illustrates differences between the earlier techniques, specifi-
cally life table based analyses, and our new method, which utilizes modeled
hazard parameters and unbiased age estimates.

Indian Knoll history

The Indian Knoll skeletal series represents over 1100 individuals. The
burial sample is one of the largest North American hunter—gatherer skel-
etal collections from a single site. Occupation of the site spans from
the Archaic to Mississippian cultural periods defined in the Eastern
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Woodlands of North America. The burial sample dates primarily from the
Middle to Late Archaic Periods. Five calibrated radiocarbon dates of
midden debris and individual burials span an interval from 5500 BC to
1500 BC (Winters 1974; Herrmann and Fenton 2000).

Two major excavations were undertaken at the site. In the fall and
winter of 1915—16, Clarence B. Moore identified and recovered portions of
298 burials (Moore 1916). The second, more extensive, investigation was
conducted in 1939 under the auspices of the Works Progress Administra-
tion (WPA, Webb 1946). Large-scale excavations were initiated at Indian
Knoll and several other shell middens along the Green River drainage. Dr
William S. Webb coordinated the fieldwork and logistics of the entire
program, but field supervisors directed excavations at each site. Webb’s
goal at Indian Knoll was to supplement C. B. Moore’s earlier work with
controlled excavations. Webb was unsure whether intact cultural deposits
were still present, given Moore’s substantial prior investigations. Much to
the surprise of field investigators and Webb a majority of the site remained
undisturbed. The WPA investigations resulted in the recovery of thou-
sands of stone tools, worked bone objects, shell beads, and 880 human
burials (Figure 12.1).

The skeletal collection from Indian Knoll has been the focus of numer-
ous osteological studies. Moore (1916) provided basic burial data and
descriptions of the artifacts recovered during his investigations. The exten-
sive WPA excavations were summarized in two publications. Webb (1946)
described the archaeological material and mortuary practices at the site,
and Charles E. Snow (1948) reported on the skeletal remains recovered
during Moore’s excavations and the WPA investigations. Webb provided
simple burial demographic data and contextual information in the ‘‘Indian
Knoll’’ monograph (Webb 1946). The age and sex determinations provided
in Webb’s publication were derived from Snow’s skeletal analysis. In
‘‘Indian Knoll skeletons’’, Snow (1948) provided a basic age-at-death
distribution of the burial sample, described unique pathologies, tabulated
metric and discrete observations, and presented a detailed typological
analysis of the complete crania. Although it was not specified in his
publication, Snow appears to have based age determinations on a combi-
nation of cranial suture closure, dental attrition, and the extent of skeletal
pathology. He provided information on pubic symphysis morphology
employing Todd’s (1920, 1921) method, but it does not appear that he
relied on these data when estimating ages. Thirteen years after the initial
analysis, Francis E. Johnston and Snow re-evaluated the original age
estimates in the light of new and refined aging methods, McKern and
Stewart’s three component pubic symphysis system, and a standardized
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Figure 12.1. Location of Indian Knoll within the Eastern United States.

dental attrition technique (Johnston and Snow 1961). The new age-at-
death distribution significantly increased the number of individuals over 30
years old as compared to Snow’s original assessments, but the number of
adults over 50 years old decreased from four individuals to one.

Since Johnston and Snow’s reanalysis, the Indian Knoll collection has
served as an excellent comparative sample for numerous researchers
examining issues of subsistence change. Typically, these researchers com-
pare the mortality profile and the pattern of pathological lesions of the
Indian Knoll collection to various skeletal series from later horticulturists
or maize agriculturists. Blakely (1971) compared data from Indian Knoll to
the Mississippian Dickson Mounds sample, Cassidy (1972) contrasted it
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with the Fort Ancient Hardin Village series, and Kelley (1980) examined
the Northern Plains Mobridge and Southwestern Grasshopper Pueblo
collections relative to Indian Knoll. The primary problem with these prior
studies is that age estimates are based on biased methods. Assigned age
ranges are often too restrictive or unrealistic given the available age
indicators. The use of the 5- or 10-year age range in life table construction
unknowingly truncates realistic age range estimates. Numerous additional
studies have been conducted on Indian Knoll in the 20 years since Kelley’s
research. Often previous age estimates are utilized with some modification
or adult ages are evaluated in reference to very broad age categories for
comparative purposes.

Material and methods

In this study, we reconstructed the age-at-death distribution of Indian
Knoll. We employed methods outlined in Chapter 11 (this volume), using
two pelvic aging methods: Todd’s 10-stage pubic symphysis system and
Lovejoy and colleagues’ (1985) eight-phase auricular surface approach. In
order to complete the age-at-death distribution, Kelley’s (1980; n.d.) inter-
val-censored age estimates for individuals below 18 are combined with the
adult age-at-death distribution based on the pelvic indicators.

Herrmann recorded pubic symphysis and auricular surface data from
available adult burials (n� 472) in the skeletal collections housed at the
William S. Webb Museum of Anthropology at the University of Kentucky
and the Smithsonian Institution. Observations of the two age indicators
were independently assessed during different data collection periods.
Todd’s (1920, 1921) original descriptions, supplemented by Buikstra and
Ubelaker’s (1994)writtendescriptions anddrawings,were used to assess the
pubic symphysis. Auricular surfaces were scored based on Lovejoy et al.’s
(1985) original descriptions. Our reference dataset consists of individuals
(n� 745) from the Terry Collection, housed at the Smithsonian Institution
in Washington, DC. Konigsberg directed the collection of age data from
this series, including auricular surface and pubic symphysis stage informa-
tion. Herrmann assessed over 95% of the pelvic indicators in the reference
series. Consequently, interobserver error is not an issue in this study.

Mathematical approach

For Indian Knoll we will fit a four-parameter Siler model with survivorship
and hazard functions specified as
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Here a is a random variate representing an exact age at death, �
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parameters that represent the juvenile component of mortality, and �
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and
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represent the senescent component (Wood et al. 1992). We do not
include a ‘‘baseline’’ hazard parameter (�

�
), as in our experience this

parameter is rarely estimable from paleodemographic data. In the follow-
ing we will represent the set of hazard parameters as �.

Building on equation (11.13) presented by Konigsberg and Herrmann
(Chapter 11, this volume), we model the probability that an individual who
is exact age A will be in the j-th and k-th phases of the pubic symphysis and
auricular surface as
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where �(z
�
, z

�
) represents a standard bivariate normal probability density

function with one ‘‘free’’ parameter (a correlation coefficient r). The para-
meters that specify this model (the mean ‘‘age to transitions,’’ the common
within-character standard deviations, and the correlation coefficient be-
tween the two characters) were estimated with age measured on a logarith-
mic scale using our reference sample.

For Indian Knoll we have data on 891 individuals. From dental devel-
opment/eruption and epiphyseal closure, we consider 509 of these individ-
uals, which includes the 472 assessed, as being �18 years old at the time of
their death. The joint probability that one of the 891 individuals would be
�18 years old at time of death and be in the j-th and k-th phases of the
pubic symphysis and auricular surface conditional on the hazard para-
meters is

Pr(a� 18.0! c
�
, c
	
��)�S(18.0 ��)�

�

�����

Pr(c
�
, c
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f (a ��)
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�
, c
	
�a) f (a ��)da.

The division by survivorship to age 18.0 in the first line is so that the
probability density function for age-at-death ( f (a ��)) will integrate to 1.
This term cancels with the probability of surviving to age 18.0 years, as
shown in the second line. For individuals where one characteristic cannot
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be observed, we use the marginal for the other characteristic, and when
neither characteristic is observable we replace the probability for the
‘‘observed’’ phases with 1.

For the 382 remaining individuals who are judged to have died at less
than 18 years of age, we have interval-censored age estimates. If o

�
and e

�
represent the left- and right-censored ages for the i-th individual, then the
joint probability for an individual dieing between 0 and 18 years and
between o

�
and e

�
is

Pr(a� 18.0! o
�
� a� e

�
��)�Pr(a� 18.0)Pr(o

�
� a� e

�
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Combining the probabilities from equations (12.3) and (12.4) we can write
the total log-likelihood for the hazard parameters conditional on the
observed data as

lnL(��C, o, e)�
���
�
��

ln(S(o
�
��) 
S(e

�
��)) (12.5)

�
���
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Pr(c
�
�a) f (a ��)da� .

We find the maximum likelihood estimates for the hazard parameters
using simulated annealing (‘‘SIMANN’’ as described by Goffe et al. (1994))
to first identify a global maximum for the log-likelihood function, followed
by maximization using a tensor method (subroutine ‘‘TENSOR’’ as de-
scribed by Chow et al. (1994)) in order to estimate the Hessian and ensure
that the simulated annealing had converged properly.

Occasionally, the transition ages derived from the probit model for the
early stages of ordinal aging systems are extremely low. These low transi-
tion ages present serious problems for estimating model parameters. To
overcome this obstacle we compressed stages in both the Todd and auricu-
lar systems. Stages 1 through 4 in the Todd method were combined, and
phases 1 and 2 of the auricular method were grouped. In both cases the
early stage transition ages are well below the adult range as defined for this
study (18 years). The combined stages provide more appropriate transition
ages for these early stages. The transition ages on a log scale are provided in
Table 12.1.
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Table 12.1. Transition ages on a log scale, individual standard
error estimates, common standard deviation by indicator, indicator
correlation, and log-likelihood derived from the Terry Collection
age data (n� 745)

Transition Estimate (log age) SE

Pubic symphysis
1�/2 2.8670 0.0548
2/3 3.1974 0.0396
3/4 3.3396 0.0343
4/5 3.4679 0.0302
5/6 3.9367 0.0237
6/7 4.4287 0.0373
SD 0.4724 0.0258

Auricular surface
1�/2 2.9350 0.0452
2/3 3.3481 0.0298
3/4 3.5920 0.0233
4/5 3.8257 0.0204
5/6 3.9227 0.0204
6/7 4.3275 0.0286
SD 0.3973 0.0191

lnL� 
 2189.2080

r SE

Indicator correlation 0.4271 0.0347

SD, standard deviation; SE, standard error.
�Includes Todd stages 1—4.
�Includes auricular phases 1—2.

Comparative samples

Three prior paleodemographic reconstructions of Indian Knoll serve as
comparative data (Table 12.2). These studies span a period of methodologi-
cal advances in age estimation in physical anthropology. Snow’s (1948)
original life table is the initial dataset. Johnston and Snow’s (1961) reanaly-
sis of Indian Knoll serves as the second profile. Finally, Kelley’s (1980, n.d.)
paleodemographic reconstruction is the third comparative sample.

The age-at-death profiles by Snow (1948) and Johnston and Snow (1961)
represent basic life tables. Snow’s sample consists of the burials from the
WPA, collections from Moore’s initial investigations (housed at the Smith-
sonian Institution), and disturbed remains from Moore’s excavation
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Table 12.2. Paleodemographic samples for the analysis of Indian Knoll

Researcher(s) Sample size Adults Reference date

Snow 1161 602 1948
Johnston and Snow 873 512 1961
Kelley 840 474 1980, n.d.
Present study 891 509 Present study

recovered during the WPA excavations. Our age-at-death distribution for
Snow’s 1948 publication is based on the combined totals of these three
samples with some modifications.� Johnston and Snow’s data are directly
from the 1961 published life table with no modifications. Kelley’s profile is
derived from individual interval-censored age estimates (Kelley 1980, n.d.).

For each of the comparative samples, we also will fit a four-parameter
Siler model with survivorship and hazard functions as described in formula
(12.1). The Siler parameters are estimated in mle Version 2.0.5 (Holman
2000) using a simulated annealing method. Once again we do not include a
‘‘baseline’’ hazard parameter (�

�
). The life table data by cohort are entered

in the model as simple frequencies with a beginning and ending age. For
Kelley’s interval-censored ages, we interpreted point ages (i.e., 14 years old)
as one-year intervals (13.5—14.5 years). For general classifications we de-
fined a range encompassing the entire interval. For example, an individual
aged as ‘‘adult’’ is treated as age 18 to 120 years. If Kelley aged an
individual as ‘‘45�’’, then this individual is treated as 45 to 120 years.

Standard error estimation

Age-specific survivorship and standard errors for each Siler model were
generated in R Version 1.1.1 (Ihaka and Gentleman 1996) using the para-
meter estimates and covariance matrix. The upper age limit of the output
was truncated at 80 years, given the extremely low survivorship at this age
in all models. These data were then imported in a spreadsheet and the
survivorship for each analysis bounded by (�)1 standard error is plotted
for comparative purposes.

� We have reduced the count estimate in the disturbed area for the age range 4—12 from 100 to 50.
Also, we do not include the ‘‘decayed’’ remains (n� 33). Finally, Snow’s (1948) numbers in
Table 5 sum to 1244 individuals not 1234. Based on a comparison with the individual burial
data it appears the mistake is in the ‘‘Infant to 3 year’’ age group.
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Figure 12.2. Contingency table of observed age indicators from Indian Knoll.
Missing data are represented in the ‘‘.’’ column.

Results

The observed data matrix for the Indian Knoll sample is provided in
Figure 12.2. Both auricular surface and pubic symphysis scores are avail-
able from 346 of the 472 adults observed. Thirty-three of the adults
evaluated from Indian Knoll are missing auricular surfaces, and 93 adults
lack pubic symphyseal surfaces. As expected, preservation of the auricular
surface is better than the pubic symphysis. The polychoric correlation of
auricular surface phase and pubic symphysis stage is 0.80 with a 95%
confidence limit from 0.76 to 0.84.

The parameters of the infant mortality component (�
�
and 	

�
) for all the

models are quite similar. However, the parameters of the senescent mortal-
ity component (�

�
and 	

�
) are more variable, as expected. These nuances

are indicative of different methods employed by each researcher. Each
model’s parameter estimates are provided in Table 12.3. Subadult age
estimates for all the studies are based on a variety of dental development
standards (see Meredith 1946; Hunt and Gleiser 1955; Moorrees et al.
1963a,b). Although potentially biased, these standards provide consistent
and relatively narrow age estimates, reducing variation between studies.

Differences in the senescent mortality component result in marked
variation in adult survivorship between the methodological approaches. A
plot of the hazard functions clearly shows the differences between the
paleodemographic analyses (Figure 12.3). The competing hazard model
produces a classic shape with a high infant mortality, a low juvenile and
young adult hazard, and increased adult mortality. We focus on the
variation in the adult range between the studies. The present research
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Table 12.3. Estimated Siler model parameters for each study

Parameter Snow
Johnston and
Snow Kelley Present study

�
�

0.3333 0.3487 0.3715 0.3326
	
�

1.0791 1.1236 1.0773 1.1221
�
�
� 0 0 0 0

�
�

0.0094 0.0056 0.0069 0.0092
	
�

0.0838 0.0969 0.0844 0.0690

�Not estimated.

Figure 12.3. Plot of the hazard functions for each paleodemographic
reconstruction of the Indian Knoll series.

exhibits the lowest hazard of death across the adult interval as compared
with the other studies.

In Figure 12.4, survivorship intervals are plotted relative to age for each
paleodemographic reconstruction of the Indian Knoll sample. The inter-
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Table 12.4. General comparison of age-specific survivorship by researcher,
based on estimated Siler model parameters

Age-specific survivorship

Age (years) Snow
Johnston and
Snow Kelley Present study

18 0.4943 0.5578 0.5284 0.5358
30 0.2049 0.2692 0.2737 0.2959
40 0.0475 0.0332 0.0695 0.1038
50 0.0005 0.0005 0.0029 0.0129

vals represent 1 standard error as derived from the Siler model parameter
estimates and covariance matrix. Adult survivorship gradually increases
across the four methods. This increase is associated with the addition of
new age indicators and reassessment of earlier age estimates. Survivorship
based on the present study is high across the entire adult interval as
compared with Kelley and Snow, and it outpaces Johnston and Snow after
age 26 years. A simple breakdown of survivorship by 10-year increments
clearly demonstrates the increase (Table 12.4). The confidence interval of
our approach in the midadult range (25—45 years) does not overlap with
Snow’s original data, but the other two profiles overlie the lower boundary
of the confidence interval. It is important to note that the confidence
intervals of the method proposed here provide a more realistic range of the
actual age-at-death distribution. In contrast, the standard errors in the
prior studies produce narrow bands suggesting a false accuracy in age
assessment.

Discussion

The age-at-death distributions presented here are not dramatically differ-
ent. One primary distinction in the studies presented is the adult aging
methods employed by each researcher. Auricular surface aging was not
available to earlier physical anthropologists. Some would argue that this
fact alone would explain the slight differences evident in the results. It
should be noted that the earlier age-at-death reconstructions are based on
biased adult aging standards that fail to account for the actual variation in
age estimation. For example, had we used the simple 5- to 10-year ranges
assigned to the auricular surface phases in our age estimates (Lovejoy et al.
1985), then the age-at-death distribution would have been quite different.
However, the distribution would have been biased.
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Figure 12.4. Three survivorship plots derived from the Siler model parameters
comparing the present study with those of Snow, Johnston and Snow, and
Kelley, respectively. The lines represent upper and lower bound of 1 standard
error.
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Variation in the Siler model parameters is greatly reduced in these
earlier studies through the assignment of narrow age ranges and the
application of life table analysis. In paleodemographic studies employing
life tables, the adult age range is divided into 5- or 10-year intervals.
Typically, each observed individual is placed within one of these age
ranges. Individuals are placed in each cohort on the basis of the estimated
age range or midpoint age estimate. Small adult age cohorts in the life table
produce unrealistic error intervals for the age-at-death distribution. The
new methodological approach proposed here overcomes this bias provid-
ing statistically accurate intervals.

Conclusions

This study demonstrates the extension of the proposed analytical methods
to a bivariate age indicator model using age indicator data from the large
prehistoric skeletal sample from Indian Knoll. The results clearly show
differences between the current study and past paleodemographic recon-
structions of the Indian Knoll series. Prior research inappropriately assig-
ned biased age estimates to individuals and reduced true age variation
through the use of life tables. These problems are typical in prior
paleodemographic research and are the focus of numerous critiques
(Bocquet-Appel and Masset 1982, 1996; Konigsberg and Frankenberg
1992; Konigsberg et al. 1997). Although not significantly different from
previous survivorship curves, the new Siler model distribution and confi-
dence interval provides a more realistic range of variation in the age-at-
death distribution. On the basis of paleodemographic observations derived
from this study, we have a clearer picture of mortality and longevity of the
hunter—gatherer population that once occupied Indian Knoll.
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