> Systems of Equations

5.1 Introduction

In previous chapters we implemented the FVM for a single PDE (which was derived from a conservation law). Many
phenomena of interest to engineers and scientists are described by systems of coupled PDEs (which often arise from several
conservation laws). A famous example are the Navier-Stokes equations which, together with the Continuity Equation,

form a system of coupled PDEs describing fluid flow. Solving these equations is beyond the scope of an introductory text

so we apply the FVM to a simpler system of PDEs which are nonetheless very useful.

/5.2 The Shallow Water Equations
A

After much simplification the Navier-Stokes and Continuity equations can be reduced to the Shallow Water Equations

(SWE) which may be expressed in 1D or 2D. The SWE can be regarded as simplified model of water flow and are used

by engineers to simulate many phenomena of practical interest including river flooding, tsunami propagation and dam

break flows. One key simplification in deriving the SWE is that the flow velocity in the water column is depth-averaged

so that the equations model situations where the water velocity does not vary much with depth. We present the SWE in

both 1D and 2D since both systems of equations are used extensively by the engineering community.
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U, 0
- S (5.2a)
Uy dv,
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Q 0
! Q = Qz = i) ¢’ bx
Q3 g q) by

(5.2¢)

¢ = d(txy) is called the geopotential and ¢ = g h where h = h(t,xy) is the water depth and g is the acceleration due to
gravity (g = 9.81m/s?). v, = v (txy) and v, = vy(t,x,y) are the water s

peeds in x and y directions respectively. U is the
column matrix of dependent variables,

F = F(U) and G = G(U) are column matrices of fluxes in the x and y directions

respectively and Q is a column matrix of source terms which here onl

y includes bathymetric terms where b_and b are

bed slopes in the x and y directions (measured positive down wards). Note that in some texts U E G and Q are referred

to as vectors and (5.1) is a vector PDE.

Solving the 2D SWE gives the three components of U (effectivel
the water depth and floy ' s PRy

um in x and y directions and mass) from which
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where,

U = Ul = ¢
U, ov, |’ (5.42)
F = Fl = q)vx

Q=Q1_ 0

QZ g ¢ bx . (5.4c)

Variables are defined as in the 2D SWE with the obvious reductions to 1D. Solving the 1D SWE gives the two components
of U (effectively mass and momentum in x direction) from which the water depth and flow speed can be found at required

times t and points x.

Except for very special situations the SWE do not have analytical solutions. We use the FVM to find approximate solutions. ;
It should be noted that an in-depth treatment of the SWE requires the study of such concepts as supercritical and subcritical

flow and Riemann invariants which we leave to a more advanced book to follow. The following in a purely mathematical ‘
treatment to show how the FVM applies to a system of PDEs.

./5.3 General FVS for the SWE

As we have seen previously, the FVM applies to PDEs that can be written in finite volume form. We will focus on the 2D
SWE since the FVM for the 1D SWE is essentially the same. We observe that (5.1) is very similar to (1.1a) so we expect
that it will be possible to write (5.1) in finite volume form which we now do.

LetH=Fi+Gjandy=v, i+ el then (5.1) becomes,

oU
a_t el (5.5a)

where,
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where, as before, U and Q now represent averaged quantities over an arbitrary region of area A in the xy-plane.
Discretising each row of (5.6) in the same way as in Chapters 1 and 2 and rearranging gives,
n+1 q; n At n n
U™ = Uy —F(EH ‘§) + At Qg (5.7)
k \sides
Notes:
I. The matrix difference equation (5.7) may be regarded as a general explicit FVS for the system of equations in
(5.1).
2. Derivation of (5.7) for the system (5.1) is the same as for a single equation written in finite volume form
we simply repeat the steps for each row using the same time step AL,
3. Implementation of (5.7) is done row by row.
4. As in the single equation case, a particular FVS based on (5.7) is constructed by estimating the interface
fluxes for each row of H.
5. Since H = H(U), interface flux estimation may be done by estimating U at cell interfaces or estimating H at

cell interfaces directly, in either case using some form of extrapolation.
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3. The same time step is used for each row of (5.8).

_/5.4.2 Lax-Friedrichs Scheme for the SWE

’ . At 5 d mesh. It is,
In Chapter 4 we met the Lax-Friedrichs scheme for the 2D linear advection equation on a structure

n n n n
Sy & ey Ut Uppg AL SHE s (5.10)
Ai . sides i
1]

n+l1
ui,i T 4
where H = v u and interface fluxes are estimated by linear interpolation. Since the SWE and the linear advection equation

have the same finite volume form we expect their equivalent FVS to have the same form. Accordingly the Lax-Friedrichs

scheme for the SWE (with Q = 0) is,
(5.11)

n n n n
Ut Uls + Ulss + Uy + Ul _ At SH" s
L 4 Ai,j sides

are estimated by linear interpolation as

where U and H are given by (5.2a) and (5.5b) respectively and interface fluxes

described in Chapter 4.

Notes:
a FVS is derived from the finite volume form which is independent of the

1. As mentioned previously,
that a FVS for a single PDE has the same form as

particular PDE or system of PDEs. Hence it is no surprise

its equivalent for a system of PDEs as is the case with the FOU and L
to solve a single PDE should be convertible

ax-Friedrichs schemes,
2. 'The previous note implies that any FV code easily to a system of

PDEs although there is no guarantee that it will work!
3. (5.11) is an explicit scheme so the time step will be constrained by stability considerations which we now

address.
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