Course:
Computer Architecture

Paper:
MCA - 202

Module:

General Organization
Lecture - |

Prabhash Kr. Singh,Vidyasagar University

QOutline

e Introduction

e General Register Organization
> Control Word

> Microoperations
e Stack Organization
e CPU Organization
e Addressing Modes
e Interrupt

Prabhash Kr. Singh,Vidyasagar University 2

Introduction:

* Part of computer that performs bulk of
data processing operations

 CPU made of three major parts:

> Register set

> ALU
o Control Unit

Inside the CPU

Inside the CPU

Address bus

Memory

Address

Other Register
registers

Data bus

Memory 2
Main
Data
Register Sey

Arithmetic Control Bus (Read / Write)

and Logic
Unit (ALU)

Control Unit

Clock pulses

Electronic
clock

Clock Egwast
=1
=2
- _R3
R4
|_5s
RS
» = ¥4
Lol '
o —— SEIA{ MU X MU X E:}—m
3x<8 A bus= A bhaxss
decocder
S ST L
S] Arnthmetic legic unit
azn{: (ALL)
Carigprast
o BEock diarsaaes
= =< 4 = =
SELA SELB SELD OPR

Control Word:

3 3 3 5
SELA | SELB | SELD | oPR —) Control Word

e For ex:

R1«<R2 + R3

> MUX A selector (SELA): to place the content of
R2 into bus A

> MUX B selector (SELB): to place the content of
R3 into bus B

> ALU operation selector (OPR): to provide
arithmetic addition A+B

> Decoder destination selector (SELD): to transfer
the content of the output bus into R

Operations:

00000 Transfer A TSFA
00001 Increment A INCA
00010 AddA +B ADD
00101 Subtract A — B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
Ol110 Complement A COMA
10000 Shift right A SHRA

1 1000 Shift left A SHLA

Microoperations:

f SELA |SELB |SELD w Control Word

R1< R2-R3 011 001 00101
R4<— R4vVvR5 R4 RS R4 OR 100 101 100 01010
R6<— R6+1 R6 - R6 INCA 110 000 110 00001
R7<— R1 R1 - R7 TSFA 001 000 111 00000
Output <— R2 R2 - None TSFA 010 000 000 00000
Output<— Input Input - None TSFA 000 000 00O 00000
R4<— shl R4 R4 - R4 SHLA 100 000 100 11000

R5<—0 RS R5 R5 XOR 101 101 101 01100

Continued...

* Most efficient way to generate control
words with large number of bits is to
store them in memory unit

* A memory unit that stores control words
is referred control memory

By reading consecutive control words
from memory, it is possible to initiate
desired sequence of micro-operations

e This is referred as microprogrammed
control

Stack Organization

Mem. Unit | Address

L | Address BC ='pmgra'm \1000
63 (instructions
EMPTY AR » Data |2000
] (operands)
4
$ 1o ¢ 3 Stack 3000
B 12 3997
A |1 SP ’ 3998
Hold data to
. 0 3999
be w/R i/o
4000
of stack . DR 4001
Block diagram of DR
a b4 wor;jlérggiséter stack Computer memory with
|

program; datai & stacksegments

PUSH

* The PUSH operation is implement with
the following sequence of
microoperations:

SP— SP+1 Increment stack pointer
M[SP] ~— DR Write item on top of the stack
If (SP=0) then (FULL— 1) Check if stack is full
(when 63 is incremented by 1, the result is 0.)
EMPTY «— 0 Mark the stack not empty

POP

* The POP operation consists the following
sequence of microoperations:

DR+— M|SP] Read item from top of the stack
SP+— SP-1 Decrement stack pointer

If (SP=0) then (EMPTY+— 1) Check if stack is empty
FULL~— O Mark the stack not full

e A stack can exist as a stand-alone unit or

can be implemented in a RAM attached to a
CPU.

CPU Organization

e A register address is binary number of k bits that defines one
of 27k registers in the CPU.

e Most computers fall into one of the 3 types of CPU
organizations:

|. Single Accumulator (AC) Organization,
i.,e.,ADD X

2. General register (Rs) Organization,
ADD RI1,R2,R3

3. Stack Organization,

i.e. ADD (pop and add 2 operand then push the result
into the stack)

e Some computers combine features from more than one
organization structure, Ex. Intel 8080 (GRs for register
transfer, AC used in arithmetic operations)

Address Instruction

e Three-Address Instruction
- ADDR1,A, B Rl MI[A] + M[B]
- ADDR2,C,DR2 M][C] + M[D]

- ADD X, R1, R? M[X] R1*R2
e Two-Address Instruction

- MOV R1, A R1- M[A]

- ADDRL, B R1- R1+ M[B]

> MOV R2, C R2 < M[C]

- ADDR2, D R2 < R2 + M[D]

- MUL R1, R2 R1<R1*R2

> MOV X, R1 M[X] < R1

Continued...

e One-Address Instruction

- LOAD A AC<— MI[A]

- ADD B AC <— AC + M[B]
- STORE M[T] <—AC

- LOAD C AC < MI[C]

- ADDD AC <— AC + M[D]
° MULT AC <— AC * M[T]
> STORE X M[X] <—AC

e Zero-Address Instruction

o PUSHA

> PUSH B

o ADD

o PUSH C

> PUSH D

o ADD

o MUL

o POP X

Addressing modes:

e The addressing mode specifies a rule for
interpreting or modifying the address field of the
instruction before the operand is actually executed.

e Computers use addressing mode techniques for
the purpose of accommodating one of the
following provisions:

I. To give programming versatilities to the user to
be more flexible.

2. To reduce the number of bits in the addressing
field of the instruction.

* In some computers, the addressing mode of the
instruction is specified with distinct binary code.

Instruction format with mode field
Opcode | Mode Address

Continued...

e Other computers use a single binary for
operation & Address mode.

e The mode field is used to locate the
operand.

* Address field may designate a memory
address or a processor register.

e There are 2 modes that need no address
field at all (Implied & immediate modes).

Different addressing mode

* Implied mode

> Operands are specified implicitly in the definition
of the instruction

All register reference that use an accumulator, Stack
instruction

* [mmediate mode

> Operands specified in the instruction itself
» Register mode

o Operands are in register
* Register Indirect mode

o Specifies a register in CPU whose content gives
the address of the operand in the memory

Different addressing mode

e Autoincrement or Autodecrement mode

> Register indirect mode whose value increases or
decreases after its value is used to access memory

e Direct Address mode

o Effective address is equal to the address part of the
instruction

e Indirect Address mode

> Address field of the instruction gives the address
where effective address is stored in memory

e Relative Address mode

o Content of the program counter is added to the
address part of the instruction to obtain effective
address

Different addressing mode

* Indexed Addressing mode

> Content of an index register is added to the
address part of the instruction to obtain
effective address

* Base Addressing mode

> Content of an base register is added to the
address part of the instruction to obtain

effective address

Tabular List;

=2

R1=400

XR=100

AC

Addressing mode

Direct Address
Immediate operand
Indirect Address
Relative Address
Indexes Address
Register
Register Indirect
Auto-increment
Auto-decrement

Address

200
201
202

eff. Add Content of AC

500 800
201 500
800 300

702(PC=PC+2) 325
600(xr+500) 900

- 400
400 700
400 700
399 450

399
400

500
600
702
800

Memory

Load to AC

Mode
Address=500

Next Instruction

450

/00

800

g B B

Addressing Modes:

o Different ways in which the address of an operand in

specified in an instruction is referred to as addressing
modes.

e Register mode

> Operand is the contents of a processor register.
> Address of the register is given in the instruction.
> E.g.Clear RI

e Absolute mode
> Operand is in a memory location.

> Address of the memory location is given explicitly in the
instruction.

> E.g.Clear A
> Also called as “Direct mode” in some assembly languages

Continued...

e Register and absolute modes can be used to represent
variables

o Operand is given explicitly in the instruction.
> E.g. Move #200, RO
> Can be used to represent constants.

» Register, Absolute and Immediate modes contained either
the address of the operand or the operand itself.

e Some instructions provide information from which the
memory address of the operand can be determined
> That is, they provide the “Effective Address” of the operand.
> They do not provide the operand or the address of the operand
explicitly.
 Different ways in which “Effective Address” of the operand
can be generated.

Indirect Mode:

» Effective address of the operand is the contents of a register or a

memory location whose address appears in the instruction
RI and A are called “pointers”™

Add (R1),R0 Add (A),RO
. Main .
. nemory .
B Operand A B
RI B Register B Operand
*Register RI contains Address B *Address A contains Address B

*Address B has the operand *Address B has the operand

Indexing Mode:

o Effective Address of the operand is generated by adding
a constant value to the contents of the register

Add 20(R1),R0 *Operand is at address 1020
*Register R1 contains 1000

*Offset 20 is added to the

contents of R1 to generate the
—T—1000 address 20

*Contents of RI do not change in the
offset = 20 process of generating the address
*R1 is called as an “index register”

—X— 1020 Operand
What address would be generated

by Add 1000(R1), RO if RI had 20?

RI 1000

Relative Mode:

o Effective Address of the operand is generated by adding a
constant value to the contents of the Program Counter (PC).

e Variation of the Indexing Mode, where the index register is
the PC instead of a general purpose register.

* When the instruction is being executed, the PC holds the
address of the next instruction in the program.

» Useful for specifying target addresses in branch instructions.
Addressed location is “relative” to the PC, this is called
“Relative Mode”

Addressing Modes:

e Autoincrement mode:

o Effective address of the operand is the contents of a register
specified in the instruction.

o After accessing the operand, the contents of this register are
automatically incremented to point to the next consecutive
memory location.

© (RI)+
e Autodecrement mode

o Effective address of the operand is the contents of a register
specified in the instruction.

> Before accessing the operand, the contents of this register are
automatically decremented to point to the previous consecutive
memory location.

> -(RI)
e Autoincrement and Autodecrement modes are useful for
implementing “Last-In-First-Out” data structures

Interrupt

e A suspension of a process such as the
execution of a computer program, caused
by an event external to that process, and
performed in such a way that the process
can be resumed.

* A way to improve processor utilization

Need For Interrupts!?

* The OS is a reactive program
> When you give some input
° It will perform computations
> Produces output BUT

> Meanwhile you can interact with the system by
interrupting the running process or

> You can stop and start another process.
» This reactive ness is due to interrupts

* Modern Operating Systems Are Interrupt
driven

Types of Interrupts

e There are three major types of interrupts
that can cause a break in the normal
execution of program
> External Interrupts
° Internal Interrupts

o Software Interrupts

External Interrupts

e An external interrupt is a computer system
interrupt that happens as a result of outside
interference, whether that’s

> from the user,
> from peripherals,
° from other hardware devices or
° through a network.
* These are different than internal interrupts that

happen automatically as the machine reads
through program instructions.

e Ex: I/O device requesting transfer of data, I/O
device finished transfer of data, elapsed time of an
event or power failure

Internal Interrupts

* An internal interrupt is a specific type of
interrupt that is caused by

o instructions embedded in the execution
instructions of a program or

° process.
* [t resist changes by users, and happen

"naturally” or "automatically” as a processor
works through program instructions.

* Internal interrupts are called traps.

* Ex: register overflow, attempt to divide
number by zero, invalid operation code,
stack overflow

Software Interrupt

A software interrupt is a type of interrupt that is
caused either by a special instruction in the
instruction set or by an exceptional condition in the
processor itself.

A software interrupt is invoked by software, unlike a
hardware interrupt, and is considered one of the
ways to communicate with the kernel or to invoke
system calls, especially during error or exception
handling.

It can be used by the programmer to initiate an
interrupt procedure at any desired point in the
program.

Ex: switching of program from CPU mode to user
mode

