
Functional Dependencies

• Functional dependencies
– Are used to specify formal measures of the

"goodness" of relational designs

– And keys are used to define normal forms for
relations

– Are constraints that are derived from the meaning
and interrelationships of the data attributes

• A set of attributes X functionally determines a set
of attributes Y if the value of X determines a
unique value for Y

1

• X > Y holds if whenever two tuples have the same
value for X, they must have the same value for Y

– For any two tuples t1 and t2 in any relation instance
r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]

• X >Y in R specifies a constraint on all relation
instances r(R)

• Written as X >Y; can be displayed graphically on a
relation schema as in Figures.

• FDs are derived from the real world constraints
on the attributes

2

Examples of FD constraints

• Social security number determines employee
name
– SSN >ENAME

• Project number determines project name and
location
– PNUMBER >{PNAME, PLOCATION}

• Employee ssn and project number determines
the hours per week that the employee works on
the project
– {SSN, PNUMBER} > HOURS

3

• An FD is a property of the attributes in the
schema R

• The constraint must hold on every relation
instance r(R)

• If K is a key of R, then K functionally
determines all attributes in R

 (since we never have two distinct tuples with
t1[K]=t2[K])

4

FD’s are a property of the meaning of data and hold
at all times: certain FD’s can be ruled out based on

a given state of the database

5

Inference Rules for FDs
 • Given a set of FDs F, we can infer additional FDs

that hold whenever the FDs in F hold

• Armstrong's inference rules:
– IR1. (Reflexive) If Y subset-of X, then X >Y

– IR2. (Augmentation) If X >Y, then XZ >YZ
• (Notation: XZ stands for X U Z)

– IR3. (Transitive) If X >Y and Y >Z, then X >Z

• IR1, IR2, IR3 form a sound and complete set of
inference rules
– These are rules hold and all other rules that hold can

be deduced from these

6

• Some additional inference rules that are useful:

– Decomposition: If X >YZ, then X >Y and X >Z

– Union: If X >Y and X >Z, then X >YZ

– Psuedotransitivity: If X >Y and WY >Z, then WX > Z

• The last three inference rules, as well as any
other inference rules, can be deduced from IR1,
IR2, and IR3

7

• Closure of a set F of FDs is the set F+ of all
FDs that can be inferred from F

• Closure of a set of attributes X with respect
to F is the set X+ of all attributes that are
functionally determined by X

• X+ can be calculated by repeatedly applying
IR1, IR2, IR3 using the FDs in F

8

Equivalence of Sets of FDs

• Two sets of FDs F and G are equivalent if:
– Every FD in F can be inferred from G, and

– Every FD in G can be inferred from F

– Hence, F and G are equivalent if F+ =G+

• Definition (Covers):
– F covers G if every FD in G can be inferred from F

• (i.e., if G+ subset-of F+)

• F and G are equivalent if F covers G and G
covers F

9

Normalization of Relations

• Normalization:
– The process of decomposing unsatisfactory "bad"

relations by breaking up their attributes into
smaller relations

• Normal form:
– Condition using keys and FDs of a relation to

certify whether a relation schema is in a particular
normal form

10

List of Normal Forms

• First Normal Form (1NF)
– Atomic values

• 2NF, 3NF
– based on primary keys

• 4NF
– based on keys, multi-valued dependencies

• 5NF
– based on keys, join dependencies

11

Practical Use of Normal Forms

• Most practical relational design projects take one of
the following two approaches:

– Perform a conceptual schema design using a conceptual

model (ER, EER) and map the conceptual design into
relations

– Design the relations based on external knowledge derived
from an existing implementation of files (or reports)

12

• Normalization is carried out in practice so that the
resulting designs are of high quality and meet the
desirable properties

• The database designers need not normalize to the
highest possible normal form

– (usually up to 3NF, BCNF or 4NF)

13

Definitions of Keys and Attributes
Participating in Keys

• A superkey of a relation schema R = {A1, A2,, An}
is a set of attributes S subset-of R with the property
that no two tuples t1 and t2 in any legal relation
state r of R will have t1[S] = t2[S]

• A key K is a superkey with the additional property
that removal of any attribute from K will cause K not
to be a superkey any more.

14

Definitions of Keys and Attributes
Participating in Keys

• If a relation schema has more than one key, each is
called a candidate key.
– One of the candidate keys is arbitrarily designated to be

the primary key

• A Prime attribute must be a member of some

candidate key
• A Nonprime attribute is not a prime attribute—that

is, it is not a member of any candidate key.

15

First Normal Form

• Historically, it is designed to disallow

– composite attributes

– multivalued attributes

– Or the combination of both

• All the values need to be atomic

16

17

• To normalize into 1NF, we have the following 3
techniques:

– Remove the attribute Dlocations that violates 1NF and
place it in a separate relation

– Expand the key (10.8 C). In this case, the PK become the
combination of {Dnumber, Dlocation}

– If the max number of values is known, then we can replace
the violate attribute by the max number atomic attributes,
such as, Dlocation1, Dlocation2, Dlocation3…

18

Second Normal Form

• In this example, {Ssn, Pnummber} -> Hours is a
fully dependency

• However, the dependency {Ssn, Pnumber}-
>Ename is partial because Ssn->Ename holds

19

• A relation schema R is in second normal form (2NF) if every
non-prime attribute A in R is fully functionally dependent on
the primary key

• A functional dependency X->Y is a partial dependency if some
attribute A belong X can be removed from X and the
dependency still holds

20

• If the primary key contains a single attribute, it is
2NF

• Normalization into 2NF:

– If a relation schema is not in 2NF, it can be normalized into
a number of 2NF relations where nonprime attributes are
associated with only with the part of the primary key on
which they are fully functionally dependent

21

22

Third Normal Form

• A relation schema R is in third normal form
(3NF) if it is in 2NF and no non-prime attribute
A in R is transitively dependent on the primary
key

– Transitive functional dependency: a FD X -> Z
that can be derived from two FDs X -> Y and Y ->
Z

23

• Examples:

– SSN -> DMGRSSN is a transitive FD

• Since SSN -> DNUMBER and DNUMBER -> DMGRSSN
hold

– SSN -> ENAME is non-transitive

• Since there is no set of attributes X where SSN -> X and
X -> ENAME

24

25

Normal Forms Defined Informally

• 1st normal form

– All attributes depend on the key

• 2nd normal form

– All attributes depend on the whole key

• 3rd normal form

– All attributes depend on nothing but the key

26

SUMMARY OF NORMAL FORMS

based on Primary Keys

27

Practice

• Based on the given primary key, is this relation in 1NF,
2NF, or 3NF? Why or why not? How would you
successively normalize it completely?

Find whether the above relation (fig (a)) is in

28

29

