Vidyasagar University

Department of Library and Information Science

Course - Bachelor of Library and Information Science

Paper No: BLI - 202

Paper Name - Management of Libraries and Information Centres - II

Unit - 4: Measurement of Central Tendency

Material No-02

Properties of Arithmetic Mean:

1) The total of a set of observations is equal to the product of their number and the arithmetic mean.

 $\sum x = n\overline{x}$ or $\sum fx = N\overline{x}$

We know that Arithmetic Mean (AM) = $\bar{x} = \frac{\sum x}{n}$ (i)

or $\sum x = n\overline{x}$ Arithmetic Mean (AM) = $\overline{x} = \frac{\sum fx}{N}$ (ii) Or $\sum fx = -N\overline{x}$

See example – 1 of Material No - 1

Where $\bar{x} = 109$, $\sum x = 1090$, n = 10 $\sum x = n\bar{x}$ 1090 = 109 * 10 = 1090

See example – 3 of Material No - 1

Where $\bar{x} = 60$, $\sum fx = 1680$, N = 28 $\sum fx = N \bar{x}$ 1680 = 28 * 60 = 1680

2) The sum of the deviation of a set of observations from their A M is always zero.

$$\sum (xi - \overline{x}) = 0 \text{ where } \overline{x} = \frac{\sum xi}{n}$$
$$\sum fi(xi - \overline{x}) = 0 \text{ where } \overline{x} = \frac{\sum fixi}{N}$$

See example – 1 of Material No – 1

Price per book (Rs)	Deviation	
(x)	$(xi - \overline{x})$	$(xi - \overline{x})$
75	75 - 109	- 34
80	80 - 109	- 29
110	110 - 109	1
125	125 - 109	16
140	140 - 109	31
90	90 - 109	- 19
150	150 - 109	41
100	100 - 109	- 9
85	85 - 109	- 24
135	135 - 109	26

 $\sum (xi - \overline{x}) = 0 (+115, -115)$

See example – 3 of Material No - 1

No of books	No of days			
issued per day	of the month			
(x)	(f)	$fi(xi - \overline{x})$	$fi(xi - \overline{x})$	
20	1	1(20-60)	- 40	
30	2	2(30-60)	- 60	
40	3	3(40-60)	- 60	
50	4	4(50-60)	- 40	
60	5	5(60-60)	00	
70	6	6(70-60)	60	
80	7	7(80-60)	140	

 $\sum fi(xi - \overline{x}) = 0 (+200, -200)$

- 3) If a group of n₁ observations has A M x1 and another group of n₂ observations has A M x2, then the A M (x) of the composite group of n₁ + n₂ (= N, say) observations is given by Nx = n₁ x1 + n₂ x2.
 Suppose, there are two groups and values of the variable in each group are as follows: Group A: Price/ book 70, 90, 120, 140, 180
 Group B: Price/ book 200, 220, 250, 280, 300
 For Group A, AM = x1 = (70+90+120+140+180)/ 5 = 600/ 5 = 120, where n₁ = 5 and For Group B, AM = x2 = (200+220+250+280+300)/ 5 = 1250/ 5 = 250, where n₂ = 5.
 So, AM of the composite group by following the formula will be -
 - $N\bar{x} = n_1 \ \overline{x1} + n_2 \ \overline{x2}$ Or $10\bar{x} = 5 * 120 + 5 * 250$ Or $10\bar{x} = 600 + 1250$ Or $\bar{x} = 1850/10$ Or $\bar{x} = 185$.

Now, AM of the composite group without following the formula is -

- $\bar{x} = (70+90+120+140+180+200+220+250+280+300)/10$
 - = 1850/10
 - = 185.

4) If two variables x and y are so related that $y = \frac{x-c}{d}$ then, $\bar{x} = c + d\bar{y}$, c = origin, d = scale

See example – 4 of Material No – 1

No of books catalogued/ day Mid-value No of days

(X)	(x)	(f)	$y = \frac{x - 38}{5}$	(fy)
16-20	18	32	- 4	-128
21-25	23	35	- 3	-105
26-30	28	42	- 2	- 84
31-35	33	48	- 1	- 48
36-40	38	35	0	00

41-45	43	30	1	30
46-50	48	23	2	46
51-55	53	19	3	57
56-60	58	16	4	64

 $\sum f = N = 280$ $\sum fy = -168 (197-365)$

Where, c = origin = 38 and d = scale = 5
y = changed value of x after changing its origin and scale of measurement
f = frequency of the variable in each class
N = total number of frequency

Arithmetic mean in respect of y i.e., $\bar{y} = \frac{\sum fy}{N} = -168/280$ So, $\bar{x} = c + d\bar{y} = 38 + 5 (-0.6) = 38 - 3 = 35.$

Therefore, following the formula the value of AM will remain unchanged if the values of x are converted into y by changing its origin and scale of measurement.

5 The sum of the squares of deviations of a set of observations has the smallest value, when deviations are taken from their A M.

To prove this property it needs to calculate the average of a particular problem by other types of measurement of central tendency.