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Transition capacitance for  abrupt/step junction  
To a good approximation we can

consider the space charge within the

transition regions only due to

uncompensated donar and acceptor ion

separated by some distance constitute a

capacitor. These immobile ions some

distance constitute a capacitor.

For a sample of cross sectional area A

the total uncompensated charge on the

either side of the junction

eNdAdn = eNaAdp

Nadp=Nddn. Neutrality condition



For an abrupt or step junction
impurity profile is very step , the
abrupt approximation is usually
acceptable. Abrupt junction is
usually formed in alloyed
junction
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From equation 2 using equation    3 we get 
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Now considering the Poisson equation on the other side 
of the junction
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Since the potential has unique value  the potential is must be 
equal  at any value  of x including 0.
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When the junction is biased the width of the junction varies

Forward bias

Reverse bias
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Now the capacitance of the parallel plate capacitor is given by
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If we plot 1/C2 vs V for reverse bias in an abrupt
junction we get the barrier potential Δφ from the
intercept on the V axis.
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While the abrupt junction approximately describes the properties

of the alloyed junction, many epitaxial structures, it is often

inadequate in analyzing the diffused junction devices. For

diffused junction impurity profile is spread out into the sample.

This result in a graded junction.

Thus graded junction problem can be solved analytically if we

make a linear approximation of the net impurity distribution near

the junction. We assume that the graded region can be described

approximately by ND-NA=αx

where α is the grade constant giving the slope of the net impurity

distribution.

Linearly graded junction



Originally surface was n type. But as we diffuse impurity
(i.e. p type) into the n region near the surface becomes p
type but away from the surface impurity concentration
decreases to n region

Distance from the surface



Now considering the n region 
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We get
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Since the potential is unique we get both potentials must 
be same at any value of x including 0.
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For Reverse bias
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Above fig. shows the graph where 1/C3 is plotted
against the applied voltage. The intercept on voltage
axis gives the barrier potential .
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Diffusion capacitance

The diffusion capacitance dominates under forward bias
Now we have already got
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Hence pn denotes the thermal equilibrium hole density on n
side. Thus as a result of forward bias the barrier height will be
reduced



kTVe
pn epp /)( −∆Φ−=′

Injected  hole

)1(

/)(
0

−=

−=

−=

−=∆

−′=

∆Φ−

−∆Φ−

kT
eV

n

n
kT
eV

n

n
kT
eV

kT
e

p

n
kTVe

p

nn

ep

pep

pep

ppp

pp

Consequently the injected hole at x=dn will enter into the bulk 
n region and start recombination.
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Thus no of holes stored per unit area of the n region
just near to the junction may be obtained as
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Now if we produce a charge dQp of the stored hole charge by 
changing potential dV,  The diffusion capacitance per unit 
area due to hole on n side of the junction be given by 
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Similarly ,The diffusion capacitance per unit area due to 
electron on p side of the junction given by
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Thus the capacitance Cp and Cn as they are
connected in parallel. Hence the diffusion
capacitance of the junction per unit area is given by

Cd=Cn+Cp
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