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1.1 Introduction

The linear space is a generalization of vector space of two and three dimensions. The concept of length
of a vector has been introduced in terms norm in a linear space. In a vector space of usual vector one
more important notion is there viz the notion of dot product. With the help of dot product the concept of
orthogonality can be introduced. This concept of dot product is missing is normed linear space. Hence the
question arises whether the dot product and orthogonality can be introduced in arbitrary linear space. In
fact, we show in this module that this can be done and thus we define an inner product in a linear space.
A linear space equipped with inner product will be called an inner product space. It is shown here that the
normed linear space is a special case of inner product space. Though we have first discussed the normed
linear space and then inner product space, historically the notion of inner product space was introduced
before the notion of normed linear space.
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1.2 Objective

We begin with the axiomatic definition of inner product space introduced by the famous mathematician J.
Von Neumann. A complete inner product space is called a Hilbert space in the-name of the great German
mathematician D. Hilbert. The modern developments in Hilbert spaces are concerned largely with the
theory of operators on the spaces. The whole theory was initiated by the work of D. Hilbert (1912)
on integral equations. The currently used geometrical notation and terminology is analogous to that the
Euclidean geometry. The generalization of the notions of parallelogram law, Pythagorean theorem, Bessel’s
inequality, Fourier series etc. have been discussed.

1.3 Inner Product Spaces

Def. 1.3.1 An inner product space is a (complex) vector space V equipped with a mapping from V × V to
C denoted by (x, y) 7→ ⟨x, y⟩ for all x, y ∈ V which satisfies the following properties:

(i) ⟨x, x⟩ ≥ 0.

(ii) ⟨x, x⟩ = 0 if and only if x = 0.

(iii) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ V .

(iv) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩ for all x, y, z ∈ V and α, β ∈ C.

⟨ , ⟩ is called an inner product on V .

Also for all x, y, z ∈ V and β ∈ C, we have

⟨x, y + βz⟩ = ⟨y + βz, x⟩ [by (iii)]

= ⟨y, x⟩+ β ⟨z, x⟩ [by (iv)]

= ⟨x, y⟩+ β ⟨x, z⟩.

Example 1.3.1 (i) Rn is an inner product space with the inner product

⟨x, y⟩ =
n∑

i=1

xiyi

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn.

(ii) Cn is an inner product space with the inner product

⟨x, y⟩ =
n∑

i=1

xiyi

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Cn.

(iii) The sequence space l2 is an inner product space with the inner product

⟨x, y⟩ =
∞∑
n=1

xnyn

where x = {xn}, y = {yn} ∈ l2.

2 Department of Applied Mathematics



Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) For f, g ∈ C[0, 1], define

⟨f, g⟩ =
1∫

0

f(x)g(x)dx.

Then ⟨ , ⟩ is an inner product on C[0, 1].

Def. 1.3.2 Let ⟨ , ⟩ is an inner product on V . For x ∈ V , define

∥x∥ =
√

⟨x, x⟩.

Theorem 1.3.1 (Cauchy-Schwarz inequality) If V is an inner product space and x, y ∈ V , then∣∣⟨ x, y⟩
∣∣ ≤∥x∥∥y∥.

Further, this inequality is an equality if and only if the vectors x and y are linearly dependent.

Proof. For y = 0 we have ⟨ x, y⟩ = ⟨ x, 0⟩ = 0 and ⟨ y, y⟩ = ⟨ 0, 0⟩ = 0. So,
∣∣⟨ x, y⟩

∣∣ = 0 =∥x∥∥y∥ i.e.
the inequality holds.

Let y ̸= 0 and α ∈ C. Then we have
0 ≤∥x− αy∥2 = ⟨ x− αy, x− αy⟩ = ⟨ x, y⟩ − α⟨ y, x⟩ − α⟨ x, y⟩+|α|2⟨ y, y⟩.
Let α = ⟨ x, y⟩

∥y∥2 .

Then, 0 ≤ ⟨ x, x⟩ − |⟨ x, y⟩|2
∥y∥2 − |⟨ x, y⟩|2

∥y∥2 +
|⟨ x, y⟩|2

∥y∥4 ∥y∥2

i.e. 0 ≤∥x∥2 − |⟨ x, y⟩|2
∥y∥2

i.e. ∥x∥2∥y∥2 ≥
∣∣⟨ x, y⟩

∣∣2
i.e.

∣∣⟨ x, y⟩
∣∣ ≤∥x∥∥y∥.

Now let x and y be linearly dependent. Then x = ky for some k ∈ C.
So, LHS= ∥ky∥∥y∥ = |k|∥y∥2 and RHS=

∣∣⟨ ky, y⟩
∣∣ = |k|

∣∣⟨ y, y⟩
∣∣ = |k|∥y∥2. Hence the equality holds.

Conversely, if the equality holds in Cauchy-Schwarz inequality then the above computation becomes
0 =∥x− αy∥ ⇒ x = αy i.e. x and y are linearly dependent.
A linear space V becomes a nls if it is possible to define a norm in V . The same linear space becomes

an inner product space if it is possible to define an inner product in it. So the question arises whether a
linear space can be both nls as well as inner product space. The following theorem gives the answer.

Theorem 1.3.2 Every inner product space is a normed space.

Proof. Let V be an inner product space.
Then for every x ∈ V , we define

∥x∥ =
√

⟨ x, x⟩.

We will show that this satisfies all axioms of a norm.
We have

(i) ∥x∥ =
√

⟨ x, x⟩ ≥ 0 for all x ∈ V .

(ii) ∥x∥ = 0 ⇔ ⟨ x, x⟩ = 0 ⇔ x = 0.

(iii) ∥kx∥ =
√

⟨ kx, kx⟩ =
√

kk⟨ x, x⟩ =
√
|k|2 ⟨ x, x⟩ = |k|

√
⟨ x, x⟩ = |k|∥x∥ for all x ∈ V and k ∈ C.
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(iv)

∥x+ y∥2 = ⟨ x+ y, x+ y⟩
= ⟨ x, x⟩+ ⟨ x, y⟩+ ⟨ y, x⟩+ ⟨ y, y⟩
=∥x∥2 +∥y∥2 + ⟨ x, y⟩+ ⟨ x, y⟩
=∥x∥2 +∥y∥2 + 2Re⟨ x, y⟩
≤∥x∥2 +∥y∥2 + 2

∣∣⟨ x, y⟩
∣∣

≤∥x∥2 +∥y∥2 + 2∥x∥∥y∥ (by Cauchy-Schwarz inequality)

=
(
∥x∥+∥y∥

)2
i.e. ∥x+ y∥ ≤∥x∥+∥y∥ for all x, y ∈ V .

Hence every inner product space is a normed linear space with norm defined by ∥x∥ =
√

⟨ x, x⟩.
We now define Hilbert space.

Def. 1.3.3 An inner product space which is complete w.r.t the norm coming out of the inner product is
called a Hilbert space.

Example 1.3.2 (i) Cn is a finite dimensional Hilbert space w.r.t the inner product given in Example
1.3.1 (ii).

(ii) l2 is a infinite dimensional Hilbert space w.r.t the inner product

⟨α, β⟩ =
∞∑
i=1

αiβi

∀α = (α1, α2, . . . , ), β = (β1, β2, . . . , ) ∈ l2.

(iii) For a measure space (X,σ, µ), the space L2(µ) is a Hilbert space w.r.t the inner product

⟨f, g⟩ =
∫

fg dµ

∀f, g ∈ L2(µ).

As every inner product space is normed linear space it follows that every complete inner product space
is complete normed linear space i.e. every Hilbert space is a Banach space. We have proved that the norm
function defined in a normed linear space is a continuous function. In the same manner it is now shown
that the inner product function defined in an inner product space is also a continuous function. Thus we
have the following theorem.

Theorem 1.3.3 In an inner product space, the inner product function is a continuous function.

Proof. Let V be an inner product space and x, y be any elements of V . Let {xn} {yn} sequences in V
such that xn → x and yn → y as n → ∞.
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Then we have∣∣⟨xn, yn⟩ − ⟨x, y⟩
∣∣ = ∣∣⟨xn, yn⟩ − ⟨xn, y⟩+ ⟨xn, y⟩ − ⟨x, y⟩

∣∣
=
∣∣⟨xn, yn − y⟩+ ⟨xn − x, y⟩

∣∣
≤
∣∣⟨xn, yn − y⟩

∣∣+∣∣⟨xn − x, y⟩
∣∣

≤ ∥xn∥∥yn − y∥+∥xn − x∥∥y∥ (by Cauchy Schwarz inequality)

→ 0 as n → ∞

Hence
∣∣⟨xn, yn⟩ − ⟨x, y⟩

∣∣ → 0 as n → ∞
i.e. ⟨xn, yn⟩ → ⟨x, y⟩ as n → ∞.

This shows that inner product function is a continuous function.

Def. 1.3.4 Two vectors in an inner product space are called orthogonal if ⟨x, y⟩ = 0.

A subset E of an inner product space V is called

(i) orthogonal if all the elements in E are pairwise orthogonal i.e. ⟨x, y⟩ = 0 ∀x, y ∈ E.

(ii) is called orthonormal if E is orthogonal and ∥x∥ = 1 ∀x ∈ E.

In elementary geometry, we know that the sum of the squares of the sides of a parallelogram is equal to
the the sum of the squares of its diagonals i.e. if ABCD is a parallelogram then we have

AB2 +BC2 + CD2 +DA2 = AC2 +BD2

i.e.

2(AB2 +BC2) = AC2 +BD2.

This law is known as parallelogram law.

This parallelogram law is also true for ordinary vectors as∣∣∣−→a +
−→
b
∣∣∣2 +∣∣∣−→a −

−→
b
∣∣∣2 = 2

(∣∣−→a ∣∣2 +∣∣∣−→b ∣∣∣2).
Geometrically this gives ∣∣∣−−→OC

∣∣∣2 +∣∣∣−−→BA
∣∣∣2 = 2

(∣∣∣−→OA
∣∣∣2 +∣∣∣−−→OB

∣∣∣2).
Now we state and prove parallelogram law for inner product space.

Theorem 1.3.4 (Parallelogram Law) Let V be an inner product space and x, y ∈ V . Then ∥x+ y∥2 +
∥x− y∥2 = 2(∥x∥2 +∥x∥2).

Proof.

∥x+ y∥2 +∥x− y∥2 = ⟨x+ y, x+ y⟩+ ⟨x− y, x− y⟩
= 2

(
⟨x, x⟩+ ⟨y, y⟩

)
= 2

(
∥x∥2 +∥y∥2

)
.
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Theorem 1.3.5 Let V be an inner product space and x, y ∈ V . Then

⟨x, y⟩ = 1

4

3∑
k=0

∥∥∥x+ iky
∥∥∥2.

Proof. We have

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
=∥x∥2 +∥y∥2 + ⟨x, y⟩+ ⟨y, x⟩,

∥x− y∥2 = ⟨x− y, x− y⟩
= ⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩+ ⟨y, y⟩
=∥x∥2 +∥y∥2 − ⟨x, y⟩ − ⟨y, x⟩,

∥x+ iy∥2 = ⟨x+ iy, x+ iy⟩
= ⟨x, x⟩+ ⟨x, iy⟩+ ⟨iy, x⟩+ ⟨iy, iy⟩
=∥x∥2 +|i|2∥y∥2 − i⟨x, y⟩+ i⟨y, x⟩
=∥x∥2 +∥y∥2 − i⟨x, y⟩+ i⟨y, x⟩,

and

∥x− iy∥2 = ⟨x− iy, x− iy⟩
= ⟨x, x⟩ − ⟨x, iy⟩ − ⟨iy, x⟩+ ⟨iy, iy⟩
=∥x∥2 +|i|2∥y∥2 + i⟨x, y⟩ − i⟨y, x⟩
=∥x∥2 +∥y∥2 + i⟨x, y⟩ − i⟨y, x⟩.

Using all the above four equations, we have

∥x+ y∥2 −∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2 =∥x∥2 +∥y∥2 + ⟨x, y⟩+ ⟨y, x⟩ −∥x∥2 −∥y∥2 + ⟨x, y⟩+ ⟨y, x⟩
+ i∥x∥2 + i∥y∥2 + ⟨x, y⟩ − ⟨y, x⟩ − i∥x∥2 − i∥y∥2 + ⟨x, y⟩ − ⟨y, x⟩
= 4⟨x, y⟩

i.e 4⟨x, y⟩ =∥x+ y∥2 −∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

i.e. ⟨x, y⟩ = 1
4

3∑
k=0

∥∥∥x+ iky
∥∥∥2.

This is known as Polarization identity.

Theorem 1.3.6 (Gram-Schmidt orthonormalization) Let {x1, x2, . . . , } be a set of linearly indepen-
dent vectors in an inner product space V .

Define y1 = x1, u1 =
y1

∥y1∥ and for n = 2, 3, . . . , yn := xn−⟨xn, u1⟩u1−⟨xn, u2⟩u2− . . .−⟨xn, un−1⟩un−1,

un = yn
∥yn∥ . Then {u1, u2, . . . , un, . . . , } is a set of orthonormal vectors and span{x1, x2, . . . , xn} =

span{u1, u2, . . . , un} ∀n ∈ N.
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We have seen that every inner product space is a normed linear space. Is its converse true? Not always.
Under certain condition a normed linear space becomes an inner product space, and that condition is the
holding of parallelogram law. We now state and prove this theorem.

Theorem 1.3.7 A Banach space is a Hilbert space if and only if the parallelogram low holds.

Proof. For simplicity, we consider the Banach space to be real. We suppose that in this Banach space
parallelogram law holds. We introduce an inner product in V by

⟨x, y⟩ = 1

4
[ ∥x+ y∥2 −∥x− y∥2]......................(1)

We now show that ⟨, ⟩ is an inner product on V .
We have from (1), ⟨x, x⟩ =∥x∥2 ≥ 0.
Also, ⟨y, x⟩ = 1

4 [ ∥y + x∥2 −∥y − x∥2] = 1
4 [ ∥x+ y∥2 −∥x− y∥2] = ⟨x, y⟩.

Now ⟨x, x⟩ = 0 ⇔∥x∥2 = 0 ⇔ x = 0.
It remains to show that

⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩

and ⟨λx, y⟩ = λ⟨x, y⟩where λ ∈ R.

By parallelogram law, we have

∥u+ v + w∥2 +∥u+ v − w∥2 = 2∥u+ v∥2 + 2∥w∥2

and ∥u− v + w∥2 +∥u− v − w∥2 = 2∥u− v∥2 + 2∥w∥2 .

On substraction, we obtain

∥u+ v + w∥2 +∥u+ v − w∥2 −∥u− v + w∥2 −∥u− v − w∥2 = 2∥u+ v∥2 − 2∥u− v∥2

Using (1) we get ⟨u+ w, v⟩+ ⟨u− w, v⟩ = 2⟨u, v⟩.
This is true for any u, v, w ∈ V . So taking w = u in the above, we have ⟨2u, v⟩+ ⟨0, v⟩ = 2⟨u, v⟩
or, ⟨2u, v⟩ = 2⟨u, v⟩ [since ⟨0, v⟩ = 1

4 [ ∥0 + v∥2 −∥0− v∥2] = 0]
Therefore ⟨u+ w, v⟩+ ⟨u− w, v⟩ = ⟨2u, v⟩.
Let x1, x2, y be elements in V . Setting u+ w = x1, u− w = x2 and v = y we obtain
⟨x1, y⟩+ ⟨x2, y⟩ = ⟨x1 + x2, y⟩........................(2)
We now show that ⟨λx, y⟩ = λ⟨x, y⟩ where λ ∈ R...............(3)
In (2), we take x1 = x2 = x and obtain
2⟨x, y⟩ = ⟨2x, y⟩.
Now 3⟨x, y⟩ = 2⟨x, y⟩+ ⟨x, y⟩ = ⟨2x, y⟩+ ⟨x, y⟩ = ⟨2x+ x, y⟩ = ⟨3x, y⟩,
4⟨x, y⟩ = 3⟨x, y⟩+ ⟨x, y⟩ = ⟨3x, y⟩+ ⟨x, y⟩ = ⟨3x+ x, y⟩ = ⟨4x, y⟩,
and so on.
In general, we thus have by induction that
n⟨x, y⟩ = ⟨nx, y⟩ where n is any positive integer.
In (1) taking −x for x we have ⟨−x, y⟩ = 1

4 [∥−x+ y∥2−∥−x− y∥2] = −1
4 [∥x+ y∥2−∥x− y∥2] = −⟨x, y⟩.

If n is any negative integer, let n = −m. Then m is a positive integer. Hence
n⟨x, y⟩ = ⟨−mx, y⟩ = −⟨mx, y⟩ = −m⟨x, y⟩ = n⟨x, y⟩.
So ⟨λx, y⟩ = λ⟨x, y⟩ is true for any integer.
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If λ is any rational number, let λ = p
q .

Then p⟨x, y⟩ = ⟨px, y⟩ = ⟨q(pqx), y⟩ = q⟨pqx, y⟩

i.e. p
q ⟨x, y⟩ = ⟨pqx, y⟩.

Thus (3) is true for any rational λ.

Finally, let λ be any real number. Then there exists a sequence rn of rational numbers such that rn → λ
as n → ∞.

Now for each rn we have

rn⟨x, y⟩ = ⟨rnx, y⟩....................................(4)
We have

∣∣rn⟨x, y⟩ − λ⟨x, y⟩
∣∣ = ∣∣(rn − λ)⟨x, y⟩

∣∣ = |rn − λ| ⟨x, y⟩ → 0 as n → ∞.

Therefore rn⟨x, y⟩ → λ⟨x, y⟩ as n → ∞............................(5)

Again

∣∣⟨rnx, y⟩ − ⟨λx, y⟩
∣∣ = ∣∣⟨(rn − λ)x, y⟩

∣∣
=

1

4

∣∣∣∥∥(rn − λ)x+ y
∥∥2 −∥∥(rn − λ)x− y

∥∥2∣∣∣
→ 0 as n → ∞

Therefor ⟨rnx, y⟩ → ⟨λx, y⟩ as n → ∞...............................(6)

In (4), letting n → ∞ and using (5) and (6) we get

λ⟨x, y⟩ = ⟨λx, y⟩ where λ ∈ R.
Conversely if a Banach space is a Hilbert space, then the parallelogram law satisfies here.

This proves the theorem.

Note 1.3.1 In case the Banach space is complex, then we have to use the Polarization identity to define
the inner product of x, y.

1.4 Orthonormal sets

We now show that the famous Pythagorean theorem is true for an inner product space.

Theorem 1.4.1 If {x1, x2, . . . , xn} is an orthogonal subset of an inner product space V , then

∥x1 + x2 + . . .+ xn∥2 =∥x1∥2 +∥x2∥2 + . . .+∥xn∥2 .
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Proof. We have

∥x1 + x2 + . . .+ xn∥2 = ⟨x1 + x2 + . . .+ xn, x1 + x2 + . . .+ xn⟩
= ⟨x1, x1⟩+ ⟨x1, x2⟩+ . . . ⟨x1, xn⟩
+ ⟨x2, x1⟩+ ⟨x2, x2⟩+ . . . ⟨x2, xn⟩
+ ........................................

+ ......................................

+ ⟨xn, x1⟩+ ⟨xn, x2⟩+ . . . ⟨xn, xn⟩
= ⟨x1, x1⟩+ 0 + . . .+ 0

+ 0 + ⟨x2, x2⟩+ . . .+ 0

+ .....................................

+ ......................................

+ 0 + 0 + . . .+ ⟨xn, xn⟩[∵ ⟨xi, xj⟩ = 0 for all i ̸= j ]

= ⟨x1, x1⟩+ ⟨x2, x2⟩+ . . .+ ⟨xn, xn⟩
=∥x1∥2 +∥x2∥2 + . . .+∥xn∥2 .

Theorem 1.4.2 (Bessel’s Inequality) Let X be an inner product space, {u1, u2, . . . , } be a countable
orthonormal set in X and x ∈ X. Then

∞∑
n=1

∣∣⟨x, un⟩∣∣ ≤∥x∥2 ,

where equality holds if and only if x =
∞∑
n=1

⟨x, un⟩un.

Proof. Let xm =
m∑

n=1
⟨x, un⟩un for m = 1, 2, . . . ,.

Since {u1, u2, . . . , } is an orthonormal set,

⟨x, xm⟩ = ⟨x,
m∑

n=1

⟨x, un⟩un⟩un

=
m∑

n=1

⟨x, un⟩⟨x, un⟩

=
m∑

n=1

∣∣⟨x, un⟩∣∣2 ,
and ⟨xm, x⟩ =

m∑
n=1

∣∣⟨x, un⟩∣∣2.
Similarly, ⟨xm, xm⟩ =

m∑
n=1

∣∣⟨x, un⟩∣∣2.
Department of Applied Mathematics 9
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Now,

0 ≤∥x− xm∥2 = ⟨x− xm, x− xm⟩
= ⟨x, x⟩ − ⟨xm, x⟩ − ⟨x, xm⟩+ ⟨xm, xm⟩

= ⟨x, x⟩ −
m∑

n=1

∣∣⟨x, un⟩∣∣2
i.e. ⟨x, x⟩ ≥

m∑
n=1

∣∣⟨x, un⟩∣∣2 for all m = 1, 2, . . . ,

i.e. ⟨x, x⟩ ≥
∞∑
n=1

∣∣⟨x, un⟩∣∣2.
If the equality holds then by the above result we get

∥x− xm∥ as m → ∞

i.e. x =

∞∑
n=1

⟨x, un⟩un.

Conversely, let x =
∞∑
n=1

⟨x, un⟩un. Then

∥x∥2 = ⟨x, x⟩

= ⟨
∞∑
n=1

⟨x, un⟩un,
∞∑
n=1

⟨x, un⟩un⟩

= lim
m→∞

m∑
n=1

⟨x, un⟩⟨x, un⟩

=
∞∑
n=1

∣∣⟨x, un⟩∣∣2 .
Theorem 1.4.3 Let {u1, u2, . . . , } be an orthonormal set in an inner product space X and let k1, k2, . . . ,∈
C.

(i) If
∞∑
n=1

knun converges to some x ∈ X, then kn = ⟨x, un⟩ ∀n and
∞∑
n=1

|kn|2 < ∞.

(ii) (Riesz-Fischer Theorem) If X is a Hilbert space and
∞∑
n=1

|kn|2 < ∞, then
∞∑
n=1

knun converges X.

Proof. (i) First part follows from Bessel’s inequality.

If x =
∞∑
n=1

knun, then kn = ⟨x, un⟩ ∀n.

Also
∞∑
n=1

|kn|2 =
∞∑
n=1

∣∣⟨x, un⟩∣∣ =∥x∥2 < ∞.

(ii) Let xs =
s∑

n=1
knun for s = 1, 2, . . ..

10 Department of Applied Mathematics
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For s > m,

∥xs − xm∥2 = ⟨
s∑

n=m+1

knun,

s∑
j=m+1

kjuj ⟩

=

s∑
n=m+1

s∑
j=m+1

kn kj ⟨un, uj⟩

=

s∑
n=m+1

|kn|2 .

As
∞∑
n=1

|kn|2 < ∞, {xs} is a Cauchy sequence in the Hilbert space X. Hence
∞∑
n=1

knun converges X.

Def. 1.4.1 (Orthonormal Basis) An orthonormal set {uα}α∈I in a Hilbert space X is called an or-
thonormal basis if it is maximal in the sense that if {uα}α∈I is contained in some orthonormal subset
E ⊆ X, then E = {uα}α∈I .

Theorem 1.4.4 Every non-zero Hilbert space has an orthonormal basis.

Theorem 1.4.5 Let {uα}α∈I be an orthonormal set in an inner product space X and x ∈ X. Then
Ex := {uα : ⟨x, uα⟩ ̸= 0} is countable, say {u1, u2, . . . , }.

Moreover if X is a Hilbert space, then
∞∑
n=1

⟨x, un⟩un converges in X to some y and (x− y) ⊥ uα ∀α ∈ I.

Proof. If x = 0, then the result holds.

If x ̸= 0, then define

Ej := {uα :∥x∥ ≤ j
∣∣⟨x, uα⟩∣∣} for j ∈ N.

Fix j and let uα1 , uα2 , . . . , uαm ∈ Ej .

Then

0 < m∥x∥2 ≤
m∑
i=1

j2
∣∣⟨x, uαi⟩

∣∣2
= j2

( m∑
i=1

∣∣⟨x, uαi⟩
∣∣2)

≤ j2∥x∥2 [By Bessel’s inequality]

So m ≤ j2, i.e. Ej contains at most j2 elements and Ex =
∞∪
j=1

Ej . Thus Ex is countable.

By Bessel’s inequality, we have
∞∑
n=1

∣∣⟨x, un⟩∣∣2 ≤∥x∥2 < ∞.

Now if X is a Hilbert space then by Riesz-Fischer theorem
∞∑
n=1

⟨x, un⟩un converges to some y ∈ X.

Department of Applied Mathematics 11
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So,

⟨y, uα⟩ = ⟨
∞∑
n=1

⟨x, un⟩un, uα⟩

=
∞∑
n=1

⟨x, un⟩⟨un, uα⟩

= ⟨x, uα⟩⟨uα, uα⟩ if uα ∈ Ex or 0 if uα /∈ Ex

= ⟨x, uα⟩.

Thus, ⟨x− y, uα⟩ = 0 ∀α ∈ I
i.e. x− y ⊥ uα ∀α ∈ I.

Theorem 1.4.6 Let {uα}α∈I be an orthonormal set in a Hilbert space H. then the following are equivalent:

(i) {uα}α∈I is an orthonormal basis in H

(ii) (Fourier Expansion) For each x ∈ H, x =
∞∑
n=1

⟨x, un⟩un

(iii) (Parseval’s Formula) For each x ∈ H, ∥x∥2 =
∞∑
n=1

∣∣⟨x, un⟩∣∣2 where Ex = {u1, u2, . . . , }.

Proof. (i) ⇒ (ii) : Consider x ∈ H. By Theorem 1.4.5, we have that
∞∑
n=1

⟨x, un⟩un = y for some y ∈ H

and (x− y) ⊥ uα ∀α ∈ I.
If x ̸= y, then u = x−y

∥x−y∥ is such that ∥u∥ = 1 and u ⊥ uα ∀α ∈ I, which is a contradiction to the

maximality of {uα}α∈I (i.e. orthonormal basis).

So x = y =
∞∑
n=1

⟨x, un⟩un.

(ii) ⇒ (iii) : Follows from the equality criterion of Theorem 1.4.2.
(iii) ⇒ (i) : Let E be an orthonormal set in H such that E ⊇ {uα}α∈I .
If ∃u ∈ E such that u ̸= uα ∀α ∈ I, then ⟨u, uα⟩ = 0 ∀α ∈ I.
By Parseval’s formula, ∥u∥ = 0. But ∥u∥ = 1 as u ∈ E. So a contradiction.

1.5 Approximation

Let X be an inner product space, x ∈ X and E ⊆ X. An element y ∈ E is said to be a best approximation
from E to x if

∥x− y∥ ≤∥x− z∥ ∀z ∈ E.

Theorem 1.5.1 Let X be an inner product space. If Erom ⊆ X is convex, then there exists one best
approximation from E to any x ∈ X.

Proof. Let y1, y2 be two best approximation from the convex set E to x.
Then by parallelogram law,

2∥x− y1∥2 + 2∥x− y2∥2 =∥2x− y1 − y2∥2 +∥y1 − y2∥2 ..........................(1)
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Let d = dist(x,E). As E is convex, y1+y2
2 ∈ E.

Therefore
∥∥∥x− y1+y2

2

∥∥∥ ≥ d.

So from (1),
∥y1 − y2∥2 ≤ 2d2 + 2d2 − 4d2 = 0
⇒ y1 = y2.

Theorem 1.5.2 Let E be a non-empty closed, convex subset of a Hilbert space H. Then for each x ∈ H,
there exists a unique best approximation from E to x. In particular, there exists unique element in E with
minimal norm.

Proof. Let d = dist(x,E).
So there exists a sequence {yn} in E such that ∥x− yn∥ → d.
By parallelogram law,

2∥x− yn∥2 + 2∥x− ym∥2 =∥2x− ym − yn∥2 +∥yn − ym∥2 ......................(1)

But as E is convex,
∥∥∥x− yn+ym

2

∥∥∥ ≥ d.

Then by (1),
∥yn − ym∥2 → 2d2 + 2d2 − 4d2 = 0.
So {yn} is a Cauchy sequence in the Hilbert space H and E is closed.
So yn → y in E, i.e. y ∈ E and ∥x− y∥ = limn→∞∥x− yn∥ = d.
Uniqueness follows from the previous Theorem.
The statement about minimal norm in the Theorem follows by considering the best approximation from

E to 0.

Theorem 1.5.3 Let F be a subspace of an inner product space X and x ∈ X. Then y ∈ F is a best
approximation to x if and only if (x− y) ⊥ F .

In that case, dist(x, F ) =
√

⟨x, x− y⟩.

Proof. Let y ∈ F be such that (x− y) ⊥ F .
Suppose z ∈ F . Then y − z ∈ F .
Now

∥x− z∥2 =
∥∥(x− y) + (y − z)

∥∥2
≥∥x− y∥2

Hence ∥x− y∥ ≤∥x− z∥ ∀z ∈ F .
So y is the best approximation from F to x.
Conversely, let y be the best approximation from F to x.
Fix z ∈ F with ∥z∥ = 1.
Let w = y + ⟨x− y, z⟩z ∈ F .
Therefore,

∥x− y∥2 ≤∥x− w∥2

= ⟨x− w, x− w⟩
= ⟨(x− y)− ⟨x− y, z⟩z, (x− y)− ⟨x− y, z⟩z⟩
=∥x− y∥2 − ⟨x− y, ⟨x− y, z⟩z⟩ − ⟨⟨x− y, z⟩z, x− y⟩+

∣∣⟨x− y, z⟩
∣∣2 ⟨z, z⟩

=∥x− y∥2 −
∣∣⟨x− y, z⟩

∣∣2 −∣∣⟨x− y, z⟩
∣∣2 +∣∣⟨x− y, z⟩

∣∣2
Department of Applied Mathematics 13
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i.e. 0 ≤ −
∣∣⟨x− y, z⟩

∣∣2
i.e. ⟨x− y, z⟩ = 0 ∀z ∈ F . So (x− y) ⊥ F .
2nd Part: Since y ∈ F , ⟨y, x− y⟩ = 0.....................(1)
Hence dist(x, F ) =∥x− y∥ =

√
⟨x− y, x− y⟩ =

√
⟨x, x− y⟩ [by (1)]

Def. 1.5.1 For a subset E of an inner product space X, we define

E⊥ := {x ∈ X : ⟨x, y⟩ = 0 ∀y ∈ E}.

Claim, E⊥ is a closed subspace of X.
Let x, y ∈ E⊥. We have to show that lx+ ky ∈ E⊥ where l, k ∈ C.
For z ∈ E, ⟨lx+ ky, z⟩ = l⟨x, z⟩+ k⟨y, z⟩ = l.0 + k.0 = 0
This implies lx+ ky ∈ E⊥.
Let yn ∈ E⊥ be such that yn → y for y ∈ X.
For z ∈ E, ⟨y, z⟩ = limn→∞⟨yn, z⟩ = 0.
So, y ∈ E⊥.

Theorem 1.5.4 (Projection Theorem) Let H be a Hilbert space and F be a closed subspace of H.
Then H = F + F⊥.

Moreover F = F⊥⊥.

Proof. Let x ∈ H. By Theorem ??, there exists unique y ∈ F , the best approximation to x.
By Theorem ??, x− y ⊥ F .
Let z = x− y. Then z ∈ F⊥.
So x = y + z where y ∈ F , z ∈ F⊥.
Hence H = F + F⊥.
Next, let x ∈ F .
Then ⟨x, y⟩ = 0 ∀ ∈ F⊥

⇒ x ∈ F⊥⊥. So F ⊆ F⊥⊥.
Now let x ∈ F⊥⊥. As x ∈ H, ∃y ∈ F and z ∈ F⊥ such that x = y + z.
Here z ∈ F⊥ and z = x− y ∈ F⊥⊥ (∵ y ∈ F ⊆ F⊥⊥).
So z = 0. Hence x = y + 0 = y ∈ F . So F⊥⊥ ⊆ F .
Therefore, F = F⊥⊥.

So given any x ∈ H, ∃y ∈ F , z ∈ F⊥ such that x = y + z.
Let P : H → F be defined by P (x) = y.
This linear map is bounded as

∥∥P (x)
∥∥ =∥y∥ ≤∥x∥ [∵∥x∥2 =∥y∥2 +∥z∥2].

So Ker(P ) is closed and Ker(P ) = F⊥. Also Ran(P ) = F which is closed.
Further P 2(x) = P (P (x)) = P (y) = y = P (x).
F⊥ is called the orthogonal complement of F . The map P : H → F is called the orthogonal projection

of H onto F .

Def. 1.5.2 If a normed space X has the property that for every non-empty closed subspace F of X,
there exists a closed subspace G of X such that X = F + G, F ∩ G = {0}, then it is said to have the
complemented subspace property.

14 Department of Applied Mathematics



Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remark 1.5.1 Any Banach space which has the complemented subspace property is a Hilbert space.

Theorem 1.5.5 (Riesz Representation Theorem) Let H be a Hilbert space and y ∈ H. Then ϕy(x) =
⟨x, y⟩ ∀x ∈ H, is a bounded linear functional on H and

∥∥ϕy

∥∥ =∥y∥.
If ϕ ∈ H∗, then ∃ unique y ∈ H such that ϕ = ϕy.

Proof.
∣∣ϕy(x)

∣∣ = ∣∣⟨x, y⟩∣∣ ≤∥x∥∥y∥ ∀x ∈ H and ϕy is linear because ⟨, ⟩ is linear in the first co-ordinate.

So
∥∥ϕy

∥∥ ≤∥y∥.
Now, ϕy(

y
∥y∥) = ⟨ y

∥y∥ , y⟩ =
∥y∥2
∥y∥ =∥y∥.

So,
∥∥ϕy

∥∥ =∥y∥.
Let M = Ker(ϕ). Hence M is a closed subspace of H.

If M = H, then ϕ(x) = 0 ∀x ∈ H. Thus we have ϕ(x) = 0 = ⟨x, 0⟩ ∀x ∈ H. So y = 0 works in this case.

If M ̸= H, then there exists x0 ∈ H −M and M⊥ ̸= 0.

For this x0 we have by Theorem 1.5.4 unique y ∈ M and z ∈ M⊥ such that x0 = y + z.

Since z /∈ M , we have ϕ(z) ̸= 0.

Let x be any element of H.

Then we have ϕ

(
x− ϕ(x)

ϕ(z)z

)
= ϕ(x)− ϕ(x)

ϕ(z)ϕ(z) = ϕ(x)− ϕ(x) = 0.

Therefore x− ϕ(x)
ϕ(z)z ∈ M . Since z ∈ M⊥ we have⟨

x− ϕ(x)
ϕ(z)z, z

⟩
= 0

i.e. ⟨x, z⟩ − ϕ(x)
ϕ(z) ⟨z, z⟩ = 0

i.e. ϕ(x)⟨z, z⟩ = ϕ(z)⟨x, z⟩
i.e. ϕ(x) = ϕ(z)

∥z∥2 ⟨x, z⟩

i.e. ϕ(x) =

⟨
x, ϕ(z)∥z∥2 z

⟩
i.e. ϕ(x) = ⟨x, y⟩ where y = ϕ(z)

∥z∥2 z.

Therefore ϕ = ϕy where y = ϕ(z)

∥z∥2 z.

If possible let there exists y1, y2 ∈ H be such that ϕy1 = ϕy2 .

Now

(ϕy1 − ϕy2)(x) = ϕy1(x)− ϕy2(x)

= ⟨x, y1⟩ − ⟨x, y2⟩
= ⟨x, y1 − y2⟩
= ϕy1−y2(x)

Therefore
∥∥ϕy1 − ϕy2

∥∥ =
∥∥ϕy1−y2

∥∥ =∥y1 − y2∥ = 0

i.e. y1 = y2. Hence y is unique.
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