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102 Topological Spaces and Continuous Functions Ch.2

19. If A C X, we define the boundary of A by the equation
BdA = AN(X - A).

(a) Show that Int A and Bd A are disjoint, and A = Int AUBd A.

(b) Show that Bd A = & ¢ A is both open and closed.

(c) Show that U isopen & BdU =U —U.

(d) If U 15 open, is it true that U = Int(U)? Justify your answer.
20. Find the boundary and the nterior of each of the following subsets of R?-

(@ A={xxyly=0}

(b) B={xxy|x>0andy#0}

(c) C=AUB

(d) D= {x x y]| x is rational}

€ E={xxy|l0<x?=yt<l)

) F={xxy|x#0andy < 1/x)}

*21. (Kuratowski) Consider the collection of all subsets A of the topological space X.
The operations of closure A — A and complementation A — X — A are func-
tions from this collection to itself.

(a) Show that starting with a given set A, one can form no more than 14 distinct
sets by applying these two operations successively.

(b) Find a subset A of R (in its usual topology) for which the maximum of 14 is
obtained

§18 Continuous Functions

The concept of continuous function is basic to much of mathematics. Continuous
functions on the real line appear in the first pages of any calculus book, and continuous
functions in the plane and in space follow not far behind. More general kinds of
contnuous functions arise as one goes further in mathematics. In this section, we shall
formulate a definition of continuity that will include all these as special cases, and we
shall study various properties of continuous functions. Many of these properties are
direct generalizations of things you learned about continuous functions in calculus and
analysis.

Continuity of a Function

Let X and Y be topological spaces. A function f : X — Y is said to be continuous if
for each open subset V of ¥, the set f~!(V) is an open subset of X.

Recall that £~ (V) is the set of all points x of X for which f(x) € V; itis empty
if V does not intersect the image set f(X) of f.

Continuity of a function depends not only upon the function f itself, but also on
the topologies specified for its domain and range. If we wish to emphasize this fact,
we can say that f is continuous relative to specific topologies on X and Y.
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Let us note that if the topology of the range space Y is given by a basis B, then to
prove continuity of f it suffices to show that the inverse image of every basis element
is open. The arbitrary open set V of ¥ can be written as a union of basis elements

v=UBa.

ael
Then

o= e

ae)

so that f~1(V) is open if each set f~'(8,) is open.

If the topology on Y is given by a subbasis §, to prove continuity of f it will even
suffice to show that the inverse image of each subbasis element is open. The arbitrary
basis element B for ¥ can be written as a finite intersection S) N - - N S, of subbasis
elements; it follows from the equation

7@y =7 syn-n £
that the inverse image of every basis element is open.

EXAMPLE | Let us consider a function like those studied in analysis, a “real-valued
function of a real variable,”

f R— R

In analysis, one defines continuity of f via the “¢-8 definition,” a bugaboo over the years
for every student of mathematics. As one would expect, the ¢-§ definition and ours are
equivalent To prove that our definition implies the ¢-§ definition, for instance, we proceed
as follows:

Given xp in R, and given ¢ > 0, the interval V = ( f(xq) — €, f(xp) +¢) isan open set
of the range space R Therefore, f~!(V) is an open set in the domain space R. Because
F~Y(V) contains the point xg, it contains some basis element (a, b) about xo We choose &
to be the smaller of the two numbers xo —a and & — xg Then if {x — xo| < §, the point x
must be in (g, b), sothat f(x) € V,and | f(x) — flxo)| < ¢, as desired.

Proving that the €-§ definition implies our definition is no harder; we leave it to you.
We shall retum to this example when we study metnic spaces

EXAMPLE 2.  In calculus one considers the property of continuity for many kinds of
functions. For example, one studies functions of the following types:

f.R — R?  (curves in the plane)

f.R — R®  (curvesin space)

f RR—R (functions f{x, y) of two real vanables)

f. R*—R (functions f(x, y, 2) of three real variables)

f. R — R?  (vector fields v{x, y) in the plane).

Each of them has a notion of continuity defined for it. Our general definition of continuity
includes all these as special cases; this fact will be a consequence of general theorems we
shall prove concerning continuous functions on product spaces and on metric spaces.
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EXAMPLE 3 Let R denote the set of real numbers in its usual topology. and let R,
denote the same set in the Jower limit topology. Let

f R— R

be the identity function; f(x) = x for every real number x. Then f is not a continuous
function; the inverse image of the open set [a, b) of Ry equals itself, which is not open
in R. On the other hand, the identity function

g R —R
is continuous, because the inverse image of (a, b) is itself, which is open in R,

In analysis, one studies several different but equivalent ways of formulating the
definition of continuity. Some of these generalize to arbitrary spaces, and they are
considered in the theorems that follow. The familiar “¢-8" definition and the “con-
vergent sequence definition” do not generalize to arbitrary spaces; they will be treated
when we study metric spaces.

Theorem 18.1. Let X and Y be topological spaces; let f : X — Y. Then the
following are equivalent:
(1) f is continuous.
(2) Forevery subset A of X, one has f{A) C f(A).
(3) Forevery closed st B of Y, the set f~(B) is closed in X
(4) For eachx € X and each neighborhood V of f(x), there is a neighborhood U
of x such that f(U)C V.

If the condition in (4) holds for the point x of X, we say that f is continuous at
the point x.
Proof. We show that (1) = (2) = (3) = (1) and that (1) => (4) = (1).

(1) = (2). Assume that f is continuous. Let A be a subset of X. We show that if
x € A, then f(x) € f(A). Let V be aneighborhood of f(x). Then f~Y(V)isan open
set of X containing x; it must intersect A in some point y. Then V intersects f(A) in
the point f(y).so that f(x) € f(A), as desired.

(2) = (3). Let Bbeclosedin ¥ and let A = f"(B). We wish to prove that A
is closed in X; we show that A = A. By elementary set theory, we have f(A) =
FUfY(B)) C B. Therefore, if x € A,

fx)e fLA)C F(A)c B=8,

sothatx € f~'(B) = A. Thus A C A, sothat A = 4, as desired.
(3)=> (). Let Vbeanopensetof Y. Set B=Y — V. Then

By =W - vy =x- .

Now B is aclosed setof Y. Then f~!(B) isclosed in X by hypothesis, so that f~1(V)
is open in X, as desired.
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(1) = (4). Let x € X and let V be a neighborhood of f(x). Then the set
U = f~1(V) is aneighborhood of x such that f(U) C V.

(4) = (1). Let V be an open setof ¥; let x be a point of £~!(V) Then f(x) e V.
so that by hypothesis there is a neighborhood Uy of x such that f(U,) C V. Then
U, C f7Y(V). It follows that =1 (V) can be written as the union of the open sets U,
so that it is open. u

Homeomorphisms

Let X and ¥ be topological spaces; let f . X — Y be abijection. If both the function f
and the inverse function

iy x

are continuous, then f is called a homeomorphism.

The condition that f =1 be continuous says that for each open set U of X, the
inverse image of U under the map f~! : Y — X is openin ¥ But the inverse
image of U under the map f~! is the same as the image of I/ under the map f. See
Figure 18.1. So another way to define a homeomorphism is to say that it is a bijective
correspondence f : X — Y suchthat f(U) is open if and only if U is open.

Figure 18.1

This remark shows that a homeomorphism f : X — Y gives us a bijective cor-
respondence not only between X and Y but between the collections of open sets of X
and of Y. As aresult, any property of X that is entirely expressed in terms of the topol-
ogy of X (that is, in terms of the open sets of X) yields, via the corresponderice f, the
corresponding property for the space Y. Such a property of X is called a topological
property of X.

You may have studied in modern algebra the notion of an isomorphism between al-
gebraic objects such as groups or nngs. An isomorphism is a bijective correspondence
that preserves the algebraic structure involved. The analogous concept in topology is
that of homeomorphism, it is a bijective correspondence that preserves the topological
structure involved.

Now suppose that f : X — Y is an injective continuous map, where X and ¥
are topological spaces. Let Z be the image set f(X), considered as a subspace of ¥,
then the function f/: X — Z obtained by restricting the range of f is bijective. If f/
happens to be a homeomorphism of X with Z, we say thatthemap f : X — Y isa
topological imbedding, or simply an imbedding, of X in Y.



106 Topological Spaces and Continuous Functions Ch.2

ExaMpLE 4.  The function f . R — R given by f(x) = 3x + | is a homeomorphism
See Figure 18 2. If we define g - R — R by the equation

1
g =30 - 1)

then one can check easily that f(g(y)) = y and g(f(x)) = x for all real numbers x and y
It follows that f is bijective and that g = f ~1, the continuity of f and g is a familiar result
from calculus.

EXAMPLE 5.  The function F . (-1, 1) — R defined by

x

F(x)= ——s

W =1-r

is a homeomorphism See Figure 18.3 We have already noted in Example 9 of §3 that F
is a bijective order-preserving correspondence; its inverse is the function G defined by

Gy = 2
VETT Qv a2

The fact that F is a homeomorphism can be proved in two ways One way is to note that
because F is order preserving and bijective, F carnes a basis element for the order topology
in (—1, 1) onto a basis element for the order topology in R and vice versa As aresult, F is
automatically a homeomorphism of (—1, I) with R (both in the order topology) Since the
order topology on (—1, 1) and the usual (subspace) topology agree, F is 2 homeomorphism
of (-1, )y withR

F(x) = 1—3—-

f(x) =3x +1 )

/

A second way to show F a homeomorphism is to use the continuity of the algebraic
functions and the square-root function to show that both F and G are continuous These
are familiar facts from calculus

.

Figure 18.2 Figure 18.3

EXAMPLEG A bijective function f . X — Y can be continuous without being a home-
omorphism One such function is the identity map g R; — R considered in Example 3
Another is the following Let $' denote the anit circle,

S'=fexylat+yr=1),
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considered as a subspace of the plane R?, and let
F o.p—¢

be the map defined by f(r) = (cos 2mt, sin2rrt). The fact that f is bijective and continu-
ous follows from famuliar properties of the tngonometnc functions. But the function f~!
is not continuous The image under f of the open set U = (0, i) of the domain, for in-
stance, is not open in S, for the point p = f(0) lies in no open set V of R? such that
v NnS$! ¢ fU). See Figure 18.4.

(V)
v !
B — P
01 1
e
Figure 18.4

ExaMpLE 7. Consider the function
g:00,1) — R?

obtained from the function f of the preceding example by expanding the range. The map g
is an example of a continuous injective map that is not an imbedding

Constructing Continuous Functions

How does one go about constructing continuous functions from one topological space
to another? There are a number of methods used in analysis, of which some generalize
to arbitrary topological spaces and others do not. We study first some constructions
that do hold for general topological spaces, deferring consideration of the others until
later.

Theorem 18.2 (Rules for constructing continuous functions). Let X, Y, and Z be
topological spaces.
(a) (Constant function) If f . X — Y maps all of X into the single point yo of Y,
then f is continuous.
(b) (Inclusion) If A is a subspace of X, the inclusion function j : A — X is contin-
uous.
(¢) (Composites) If f : X —» Y andg : Y — Z are continuous, then the map
go f: X — Z is continuous.
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(d) (Restricting the domain) If f : X — Y is continuous, and if A is a subspace
of X, then the restricted function f|A - A — Y is continuous.

(e) (Restricting or expanding the range) Let f + X — Y be continuous. If Z is a
subspace of Y containing the image set f(X), then the functiong : X — Z
obtained by restricting the range of f is continuous. If Z is a space having Y as
a subspace, then the function h : X — Z obtained by expanding the range of f
is continuous.

(D) (Local formulation of continuity) The map f : X — Y is continuous if X can be
written as the union of open sets U, such that f|U, is continuous for each a.

Proof (a) Let f(x) = yp forevery x in X. Let V be open in Y. The set f (V)
equals X or &, depending on whether V contains yp or not. In either case, it is open.
(b) If U is open in X, then j-WU) = U N A, which is open in A by definition of
the subspace topology.
(©)If U isopenin Z, then g~ (U) isopenin Y and f~'(g~'(U/}) is open in X.
But

e wn =@o HNTNW),

by elementary set theory.

(d) The function f|A equals the composite of the inclusion map j : A — X and
themap f : X — ¥, both of which are continuous.

(e) Let f: X — Y be continuous. If f(X) C Z C Y, we show that the function
2 X — Z obtained from f is continuous. Let Bbe openin Z. Then B = Z N U for
some open set U/ of Y. Because Z contains the entire image set f(X),

iy =g7' (B,

by elementary set theory. Since f~!(I/) is open, so is g7 (B).

To show h : X — Z is continuous if Z has Y as a subspace, note that 4 is the
composite of the map f : X — Y and the inclusionmap j : ¥ — Z.

() By hypothesis, we can wnte X as a union of open sets Uy, such that f|U, is
continuous for each «. Let V be an open setin Y. Then

V)N U = (fIU (W),

because both expressions represent the set of those points x lying in U, for which
f(x) € V. Since f|Uy is continuous, this set is open in U, and hence openin X But

v =Uu i vnuy,

so that f~1(V) is also open in X. n

Theorem 18.3 (The pasting lemma). LerX = A U B, where A and B are closed
inX. Let f: A— Yandg : B — Y be continuous. If f(x) = g(x) for every
x € AN B, then f and g combine to give a continuous fanctionh : X — Y, defined
by setting h(x) = f(x) ifx € A, and h(x) = g(x) ifx € B.



818 Continuous Functions 109

Proof. Let C be a closed subset of Y. Now
RO = fHOugTHO),

by elementary set theory. Since f is continuous, f ~1((C) is closed in A and, thcrefore.,
closed in X. Similarly, g~ '(C) is closed in B and therefore closed in X. Their union
h~1(C) is thus closed in X. ]

This theorem also holds if A and B are open sets in X this is just a special case of
the “local formulation of continuity” rule given in preceding theorem.

EXAMPLE 8  Letus define a function & : R — R by setting

hix) = {x forx <0,

x/2 forx=z0
Each of the “pieces” of this definition is a continuous function, and they agree on the
overlapping part of their domains, which is the one-point set {0}. Since their domains are
closed in R, the function h is continuous. One needs the “pieces” of the function to agree
on the overlapping part of their domains in order to have a function at all. The equations

x—2 forx <0,

ko) = x 42 forx =0,

for instance, do not define a function On the other hand, one needs some limitations on
the sets A and B to guarantee continuity. The equations

Ix) = x—2 forx <0,
T lx+2 forx =0,

for instance, do define a function / mapping R into R, and both of the pieces are continuous.
But{ is not continuous; the inverse image of the open set (1, 3), for instance, is the nonopen
set [0, 1) See Figure 18.5

(e

Figure 18.5
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Theorem 18.4 (Maps into products). Let f : A — X x Y be given by the equation
fla) = (fila), fa(a)).
Then f is continuous if and only if the functions
fi A—X and f1:A—Y

are continuous.

The maps f and f; are called the coordinate functions of f.
Proof Lletm .XxY — Xandm : X x ¥ — Y be projections onto the first and
second factors, respectively. These maps are continuous. For YWy =U x Y and
ITZ_I(V) = X x V, and these sets are open if U and V are open. Note that for each
ac A,

fita) =m(f(a)) and  fala) = m(f(a)).

1f the function f is continuous, then f; and f; are composites of continuous func-
tions and therefore continuous. Conversely, suppose that f) and f are continuous. We
show that for each basis element U x V for the topology of X x Y, its inverse image
f"(U x V) isopen. A pointa isin f"l(U x V) if and only if f(a) € U x V, that
is, if and only if fi(a) € U and f3(a) € V. Therefore,

U xvy=lann 7.
Since both of the sets fl"(U ) and fz'l (V) are open, so is their intersection. [ ]

There is no useful critenion for the continuity of amap f : A x B — X whose
domain is a product space. One might conjecture that f is continuous if it is continuous
“in each vanable separately,” but this conjecture 1s not true. (See Exercise 12.)

ExampPLE9  Incalculus, a parametrized curve in the plane is defined to be a continuous
map f [a,b] — R? It is often expressed in the form f(r) = (x(1), y(r)); and one
frequently uses the fact that f is a continuous function of ¢ if both x and y are Similarly,
a vector field in the plane

vix, ¥} = P{x, )i+ Q(x,y)j
= (P(x,y), Q(x, ¥))

is said to be continuous if both P and Q are continuous functions, or equivalently, if v is
continuous as a map of R? into R2. Both of these statements are simply special cases of
the preceding theorem.

One way of forming continuous functions that is used a great deal in analysis is to
take sums, differences, products, or quotients of continuous real-valued functions. It
1s a standard theorem that if f, g . X — R are continuous, then f + g, f — g, and
f - g are continuous, and f/g is continuous if g(x) # 0 for all x. We shall consider
this theorem in §21.
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Yet another method for constructing continuous functions that 1s familiar from
analysis is to take the limit of an infinite sequence of functions. There is a theorem to
the effect that if a sequence of continuous real-valued functions of a real vanable con-
verges uniformly to a limit function, then the limit function is necessarily continuous.
This theorem is called the Uniform Limit Theorem. It is used, for instance, to demon-
strate the continuity of the tngonometnc functions, when one defines these functions
ngorously using the infinite senes definitions of the sine and cosine. This theorem
generalizes to a theorem about maps of an arbitrary topological space X into a metric
space Y. We shall prove it in §21.

Exercises

1. Prove that for functions f . R — R, the €-6 definition of continuity implies the
open set definition.

2. Suppose that f : X — Y is continuous. If x is a limit point of the subset A of X,
is it necessarily true that f(x) is a limit point of f(A)?

3. Let X and X’ denote a single set in the two topologies 7 and 7, respectively.
Leti : X' — X be the identity function.
(a) Show that i is continuous ¢ 7’ is finer than 7.
(b) Show that i is 2a homeomorphism & 77 = T

4. Givenxg € X and yp € Y, showthatthemaps f : X - X xYandg : Y —
X x Y defined by

fxy=xxys and g(y)=xoxy

are imbeddings.

5. Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace

{a, b] of R is homeomorphic with [0, 1]
6. Find a function f : R — R that is continuous at precisely one point,

7. (a) Suppose that f . R — R is “continuous from the nght,” that is,

b

lim, () = f(a),

for each a € R. Show that f is continuous when considered as a function
from R, to R.

(b) Can you conjecture what functions f + R — R are continuous when con-
sidered as maps from R to R;? As maps from R, to R,? We shall return to
this question in Chapter 3.

8. Let ¥ be an ordered set in the order topology. Let f, g : X — Y be continuous.
(a) Show thattheset {x | f(x) < g(x)}isclosedin X
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(b) Leth : X — Y be the function
h(x) = min{ f(x), g(x)}.

Show that h is continuous [Hint: Use the pasting lemma.]

9. Let {Aq} be a collection of subsets of X; let X = | J, 4. Let f : X — V;
suppose that f|A,, is continuous for each a.
(a) Show that if the collection {A4] is finite and each set A, is closed, then f is
continuous.
(b) Find an example where the collection {Ag} is countable and each A, is
closed, but f is not continuous.
(¢) An indexed family of sets {Aq] is said to be locally finite if each point x
of X has a neighborhood that intersects A, for only finitely many values of
a. Show that if the family {Ag} is locally finite and each A, is closed, then
f is continuous.
10. Let f - A — Band g : C — D be continuous functions. Let us define a map
f xg:AxC -— B x Dby the equation

(f x gia xc) = f(a) x g(c).

Show that f x g is continuous.

11. Let F: X x Y — Z. We say that F is continuous in each variable separately if
foreach ygin Y, themap h : X — Z defined by h(x) = F(x x yp) is continuous,
and for each x in X, themap k - ¥ — Z defined by k(y) = F(xg x y) is
continuous. Show that if F is continuous, then F is continuous in each vanable
separately.

12. Let F . R x R — R be defined by the equation

xy/x 4 yh if 0x0.
Flxxy) = xy/(x* + y%) i rxy#0x

0 ifxxy=0x0
(a) Show that F is continuous in each vanable separately.
(b) Compute the function g : R — R defined by g(x) = F(x x x).
(c) Show that F is not continuous

13. Let A C X;let f : A — Y be continuous; let Y be Hausdorff. Show that

if f may be extended to a continuous function g . A — Y, then g is uniquely
determined by f

§19 The Product Topology

We now return, for the remainder of the chapter, to the consideration of various meth-
ods for imposing topologies on sets
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Previously, we defined a topology on the product X x Y of two topologic al spaces,
In the present section, we generalize this definition to more general cartesian products.
So let us consider the cartesian products

Xix---xXp and XixXpx--,

where each X; is a topological space There are two possible ways to proceed. One
way is to take as basis all sets of the form Uy x -- x Up in the first case, and of the
form Uy x Uz x - in the second case, where U is an open set of X; for eachi. This
procedure does indeed define a topology on the cartesian product; we shall call it the
box topology.

Another way to proceed is to generalize the subbasis formulation of the definition,
given in §15. In this case, we take as a subbasis all sets of the form rrl."'(Ui ), where i is
any index and U; is an open set of X;. We shall call this topology the product topology.

How do these topologies differ? Consider the typical basis element B for the
second topology. It is a finite intersection of subbasis elements n‘"'(U,-), say fori =
i1, ..., ix. Then a point x belongs to B if and only if m,(x) belongs to U, fori =
iy,. .,ig; there is no restnction on m; (x) for other values of i.

It follows that these two topologies agree for the finite cartesian product and differ
for the infinite product. What is not clear is why we seem to prefer the second topology.
This is the question we shall explore in this section

Before proceeding, however, we shall introduce a more general notion of cartesian
product. So far, we have defined the cartesian product of an indexed family of sets
only in the cases where the index set was the set {1, .., n} or the set Z, Now we
consider the case where the index set is completely arbitrary.

Definition. Let J be an index set. Given a set X, we define a J-tuple of elements
of X tobe a functionx: J — X. If @ is an element of J, we often denote the value
of X at o by x, rather than x(«); we call it the ath coordinate of x. And we often
denote the function x itself by the symbol

(xq)aes,

which is as close as we can come to a “tuple notation” for an arbitrary index set J. We
denote the set of all J-tuples of elements of X by X”.

Definition. Let {A,}ocs be an indexed family of sets; let X = U(xe 7 Aq. The
cartesian product of this indexed family, denoted by

[T 4.

aet

is defined to be the set of all J-tuples (x,)qe s of elements of X such that x, € A, for
eacha € J That is, it is the set of all functions

x:J - UA,,

aet
such that x(«) € Ay foreacha € J.
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Occasionally we denote the product simply by [] A,, and its general element
by (xy), if the index set is understood

If all the sets A, are equal to one set X, then the cartesian product ﬂue 7 Aq 18 just
the set X7/ of all J-tuples of elements of X. We sometimes use “tuple notation” for
the elements of X7, and sometimes we use functional notation, depending on which is
more convement.

Definiton. Let {X,}q4c/ be an indexed family of topological spaces. Let us take as
a basis for a topology on the product space

IMx
ael

the collection of all sets of the form

[V

aclt

where U, is open in X, for each o € J. The topology generated by this basis is called
the box topology

This collection satisfies the first condition for a basis because ﬂ X is itself a basis
element; and it satisfies the second condition because the intersection of any two basis
elements is another basis element:

(n Uy) n(n Vo) = H(Uu NVy).

aeS ael ael

Now we generalize the subbasis formulation of the definition. Let

ﬂﬁ:nX.,—ng

aet

be the function assigning to each element of the product space its gth coordinate,
Kﬂ((x(x)ael) = Xg

it is called the projection mapping associated with the index 8.

Definition. Let Sg denote the collection
8g = {KEI(Ug) | Ug open in Xﬁ},

and let § denote the union of these collections,
s=Js
pel

The topology generated by the subbasis § is called the product topology. In this topol-
08Y [ees Xa is called a product space.
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To compare these topologies, we consider the basis B that § generates. The col-
lection B consists of all finite intersections of elements of §. If we intersect elements
belonging to the same one of the sets 8, we do not get anything new, becau se

m; Up) g (V) = w5 (Up 0 V)

the intersection of two elements of 8g, or of finitely many such elements, is again an
element of §g. We get something new only when we intersect elements from different
sets 8g. The typical element of the basis B can thus be described as follows: Let 8,
-, By be a finite set of distinct indices from the index set J, and let Ug, be an open
setin Xg, fori = 1,...,n. Then

B=rng;'WUp) Ny (Ug) N - Nyt (Up,)

is the typical element of B.
Now a point x = (xq) is in B if and only if 1ts Bth coordinate is in Ug, , its Sa2th
coordinate is in Ug,, and 50 on. There is no restriction whatever on the ath coordinate

of x if & is not one of the indices By, . ., B, Asaresult, we can write B as the product
B = H Uy,
aelt
where U, denotes the entire space X, ifa # 81, ..., B,

All this is summanzed in the following theorem:

Theorem 19.1 (Comparison of the box and product topologies). The box topol-
ogy on [] Xy has as basis all sets of the form [| Uy, where Uy is open in X, for
each a. The product topology on [| X, has as basis all sets of the form [ U,, where
Uy is open in X,, for each o and U, equals X, except for finitely many values of a.

Two things are immediately clear First. for finite products [];., Xa the two
topologies are precisely the same. Second, the box topology is in general finer than
the product topology.

What is not so clear is why we prefer the product topology to the box topology. The
answer will appear as we continue our study of topology. We shall find that a number
of important theorems about finite products will also hold for arbitrary products if we
use the product topology, but not if we use the box topology. As a result, the product
topology 15 extremely important in mathematics. The box topology is not so important;
we shall use it pnmarily for constructing counterexamples. Therefore, we make the
following convention:

Whenever we consider the product [| X,. we shall assume it is given the
product topology unless we specifically state otherwise.

Some of the theorems we proved for the product X x Y hold for the product [] X
no matter which topology we use. We list them here; most of the proofs are left 1o the
exercises.
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Theorem 19.2.  Suppose the topology on each space X is given by a basis B,. The
collection of all sets of the form
[1 5.

act

where By € B, for each a, will serve as a basis for the box topology on ﬂue 7 Xa.

The collection of all sets of the same form, where By € By for finitely many
indices @ and B, = X, for all the remaining indices, will serve as a basis for the
product topology [yes Xa.

ExaMPLE 1.  Consider euclidean n-space R”. A basis for R consists of all open intervals
in R; hence a basis for the topology of R” consists of all products of the form

(ay, by) x (az, b2} x - X (ay, by).

Since R" is a finite product, the box and product topologies agree Whenever we con-
sider R”, we wiill assume that it is given this topology, unless we specifically state other-
wise

Theorem 19.3. Let A, be a subspace of X, foreacha € J. Then[[Ay is a
subspace of [ X, if both products are given the box topology, or if both products are
given the product topology.

Theorem 19.4. If each space X,, is a Hausdorff space, then [] X, is a Hausdorff
space in both the box and product topologies.

Theorem 19.5. Let {X,)} be an indexed family of spaces; let Aq C X, foreacha. If
[1 X« is given either the product or the box topology, then

M. -~

Proof. Letx = (xy) be apointof [] A, we show thatx € m LetU =[] U, be
a basis element for either the box or product topology that contains X. Since xo € Aqg,
we can choose a point y, € Uy N Ay for each a. Then y = (y,) belongs to both U
and [T A, . Since U is arbitrary, it follows that x belongs to the closure of [] A,.
Conversely, suppose X = (x) lies in the closure of [] A, in either topology. We
show that for any given index 8, we have xg € Ag. Let V3 be an arbitrary open set
of Xg containing xg. Since 7y ! (Vp) is open in [ | X4 in either topology, it contains a
pointy = (¥a) of [] Aq. Then yg belongsto Vg N Ap. It follows that xg € Ag. ®

So far, no reason has appeared for preferring the product to the box topology. It is
when we try to generalize our previous theorem about continuity of maps into product
spaces that a difference first arises. Here is a theorem that does not hold if [] X, is
given the box topology:
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Theorem 19.6. Let f : A — [],.; X be given by the equation

f@) = (fal@))aes,

where fy : A — X, for each a. Let [| X, have the product topology. Then the
function f is continuous if and only if each function f, is continuous.

Proof. Let mg be the projection of the product onto its Sth factor. The function rg
is continuous, for if Ug is open in Xg, the set zrﬂ‘ l(U,g) is a subbasis element for the
product topology on X,. Now suppose that f : A — [] X, is continuous. The
function fg equals the composite g o f; being the composite of two continuous
functions, it is continuous.

Conversely, suppose that each coordinate function f, is continuous. To prove
that f is continuous, it suffices to prove that the inverse image under f of each subbasis
element is open in A, we remarked on this fact when we defined continuous functions.
A typical subbasis element for the product topology on []X, is a set of the form
rrﬂ"(Up), where B is some index and Ug is open in Xg. Now

g WUpy = £ U,
because fg = g o f. Since fg is continuous, this set is open in A, as desired. |
Why does this theorem fail if we use the box topology? Probably the most con-
vincing thing to do is to look at an example.
ExampPLE 2 Consider R“, the countably infinite product of R with itself. Recall that
R = [] Xa.
neZ,

where X, = R foreach n Let us define a function f R — R by the equation
fy=@t1,...)

the nth coordinate function of f is the function f,(r) = 1. Each of the coordinate functions
f» - R — R is continuous; therefore, the function f is continuous if R* is given the
product topology. But f is not continuous if R® is given the box topology Consider, for
example, the basis element

I 1
)X (=3.3) %

1
B=(1Lhx(=3.3 33

for the box topology. We assert that f~!(B) is not open in R. If f~!(B) were open
in R, it would contain some interval (-8, 5) about the point 0. This would mean that
f((—8,8)) C B, so that, applying 7, to both sides of the inclusion,

[al(—6,8)) = (=8,8) C (=1/n. 1/n)

for all n, a contradiction
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Exercises

[V R

10.

Prove Theorem 9.2

. Prove Theorem 19.3.

. Prove Theorem 19.4

., Show that (X; x -+ x Xp—1) x X, is homeomorphic with X x --- x X,,.

. One of the implications stated in Theorem 19.6 holds for the box topology.

Which one?

. Let x;, X2, . .. be asequence of the points of the product space [ | Xo. Show that

this sequence converges to the point X if and only if the sequence mo (X)), 1 (X2),
... converges to my(X) for each a. Is this fact true if one uses the box topology
instead of the product topology?

. Let R be the subset of R” consisting of all sequences that are “eventually zero,”

that is, all sequences (x1, x2, ... ) such that x; 3 O for only finitely many values
of i. What is the closure of R® in R® in the box and product topologies? Justify
your answer.

. Given sequences (a), az, ...) and (b1, by, ... ) of real numbers with a; > 0 for

all ¢, define h : R® — R“ by the equation
h((xr,xz, ... ) = (ax; + bi,axxy + b2, .. ).

Show that if R“ is given the product topology, 4 is a homeomorphism of R* with
itself. What happens if R is given the box topology?

. Show that the choice axiom is equivalent to the statement that for any indexed

family {Ag}aes Of nonempty sets, with J # 0, the cartesian product

14
ael
is not empty.
Let A be a set; let {X,}yes be an indexed family of spaces; and let { f;}4¢s be
an indexed family of functions fp : A — X,.
(a) Show there is a unique coarsest topology 7 on A relative to which each of
the functions f is continuous.
(b) Let

8p = {f;' (Up) | Ug is open in X},

and let § = |_J 85. Show that § is a subbasis for T

{c) Showthatamapg :Y — A is continuous relative to 7" if and only if each
map fy o g is continuous.

(d) Let f: A — []Xq be defined by the equation

fla) = (fal@)aes;

let Z denote the subspace f(A) of the product space []X,. Show that the
image under f of each element of 7 is an open set of Z.
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§20 The Metric Topology

One of the most important and frequently used ways of imposing a topology ona set is
to define the topology in terms of a metric on the set. Topologies given in this way lie
at the heart of modermn analysis, for example. In this section, we shall define the metric
topology and shall give a number of examples. In the next section, we shall consider
some of the properties that metnc topologies satisfy.

Definition. A metric on a set X is a function
d:XxX— R

having the following properties:
(1) d(x,y) = 0forallx, y € X equality holds if and only if x = y.
(2) dix,y)=d(y,x)forallx,y € X.
(3) (Triangle inequality) d(x, y) +d{(y,z) 2 d(x,z), forallx,y,z € X.

Given a metric d on X, the number d(x, y) is often called the distance between x
and y in the metric d Given € > 0, consider the set

By(x,€) = {y | d(x.y) < ¢}

of all points y whose distance from x is less than ¢. It is called the ¢-ball centered
at x. Sometimes we omit the metric d from the notation and wnte this ball simply as
B(x, €), when no confusion will anse.

Definition. If d is a metric on the set X, then the collection of all €-balls By(x, ¢), for
x € X and € > 0, is a basis for a topology on X, called the metric topology induced
by d.

The first condition for a basis is tnvial, since x € B(x, ¢) for any ¢ > Q. Before
checking the second condition for a basis, we show that if y is a point of the basis
element B(x, €), then there is a basis element B(y, §) centered at y that is contained
in B(x, €). Define § to be the positive number ¢ — d(x, y). Then B(y, §) C B(x,¢€),
forif z € B(y, 8), thend(y, z) < € — d(x, y), from which we conclude that

dx,z) <d(x,y)+d(y,2) <e.

See Figure 20.1.

Now to check the second condition for a basis, let B and B; be two basis elements
and let y € BjN B,. We have just shown that we can choose positive numbers §; and §;
so that B(y, §;) C By and B(y, §2) C Bj. Letting & be the smaller of §; and §;, we
conclude that B(y, 8) C By N B,.

Using what we have just proved, we can rephrase the definition of the metric topol-
ogy as follows:
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Figure 20.1

A set U is open in the metric topology induced by d if and only if for each
y € U, thereisa $ > 0 such that By(y,8) C U.

Clearly this condition implies that U is open. Conversely, if U is open, it contains
a basis element B = By(x, €) containing y, and B in turn contains a basis element
Bu(y, 8) centered at y

EXAMPLE | Given a set X, define
dix,yy=1 ifxs#y,
dix,y)=0 ifx=y
It is trivial to check that d is a metnc. The topology it induces is the discrete topology; the

basis element B(x, 1), for example, consists of the point x alone.

EXAMPLE 2.  The standard metnc on the real numbers R is defined by the equation
d(x, y} = |x =yl

It is easy to check that 4 is a metnc. The topology it induces is the same as the order
topology: Each basis element (a, b) for the order topology is a basis element for the metric
topology, indeed,

(a,b) = B(x,¢),

where x = (a + b)/2 and € = (b — a)/2. And conversely, each ¢-ball B(x, ¢) equals an
open interval the interval (x — €, x +€).

Definition. If X is a topological space, X is said to be metrizable if there exists a
metnic d on the set X that induces the topology of X. A metric space is a metnzable
space X together with a specific metnc d that gives the topology of X.

Many of the spaces important for mathematics are metnzable, but some are not.
Metrizability is always a highly desirable attribute for a space to possess, for the exis-
tence of a metric gives one a valuable tool for proving theorems about the space.
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It is, therefore, a problem of fundamental importance in topology to find condi-
tions on a topological space that will guarantee it is metnzable. One of our goals in
Chapter 4 will be to find such conditions; they are expressed there in the famous the-
orem called Urysohn's metrization theorem. Further metrization theorems appear in
Chapter 6. In the present section we shall content ourselves with proving merely that
R" and R® are metrizable.

Although the metnzability problem is an important problem in topology, the study
of metric spaces as such does not properly belong to topology as much as it does
to analysis Metnzability of a space depends only on the topology of the space in
question, but properties that involve a specific metric for X in general do not. For
instance, one can make the following definition in 2 metnc space.

Definition. Let X be a metric space with metnic d. A subset A of X is said to be
bounded if there is some number M such that
dlai,a3) < M

for every pair ay, a; of points of A. If A is bounded and nonempty, the diameter of A
is defined to be the number

diam A = sup{d(a;,az) | a1, a; € A).

Boundedness of a set is not a topological property, for it depends on the particular
metnc d that is used for X. For instance, if X is a metnc space with metric d, then
there exists a metric d that gives the topology of X, relative to which every subset of X
is bounded. It is defined as follows:

Theorem 20.1. Let X be a metnic space with metnic d. Defined : X x X — R by
the equation

d(x, y) = min{d(x, y), 1)
Then d is a metric that induces the same topology as d.

The metnic d is called the standard bounded metric corresponding to d.

Proof Checking the first two conditions for a metnc is trivial. Let us check the
triangle inequality:

d(x,2) < d(x,y) +d(y,2).

Now if either d(x, y) = 1 or d(y,z) > 1, then the nght side of this inequality is at
least 1, since the left side is (by definition) at most 1, the inequality holds. It remains
to consider the case in which d(x, y) < 1 and d(y, z) < 1. In this case, we have

d(x.2) <d(x.y) +d(y,2) =d(x,y) +d(»,2).
Since d (x, z) < d(x, z) by definition, the tnangle inequality holds for d.
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Now we note that in any metnc space, the collection of ¢-balls with € < | forms

a basis for the metnic topology , for every basis element containing x contains such an
¢-ball centered at x. It follows that d and d induce the same topology on X, because
the collections of ¢-balls with ¢ < 1 under these two metrics are the same collection.
[ ]

Now we consider some familiar spaces and show they are metnzable.

Definition. Given x = (x;, ..., x,) in R", we define the norm of x by the equation

Il = (e + - + 2DV

and we define the euclidean metric d on R” by the equation

dx,y) = lIx =yl = (01 — y)2 4+ (xa = y2)21'7%

We define the square metric p by the equation
e, y) = max{ixi — yil, ..., 1% = ynl}

The proof that 4 is a metnc requires some work; it is probably already familiar to
you. If not, a proof is outlined in the exercises. We shall seldom have occasion to use
this metnc on R".

To show that p is a metnic is easier. Only the trnangle inequality is nontrivial. From
the tnangle inequality for R it follows that for each positive integer i,

i = zi) <% =yl + 1y -zl
Then by definition of p,
e —zil < p(%y) + 2(y. D).
As aresult
p(x.2) = max{lx; - zi|} < p(X.¥) + p(y. 2),

as desired.

On the real line R = R!, these two metrics coincide with the standard metnc
for R. In the plane R?, the basis elements under d can be pictured as circular regions,
while the basis elements under p can be pictured as square regions.

We now show that each of these metnics induces the usual topology on R*. We
need the following lemma:

Lemma20.2. Letd and d’ be two metrics on the set X ; let 7 and T/ be the topologies
they induce, respectively. Then 7' is finer than T if and only if for each x in X and
each € > 0, there exists a § > 0 such that

By (x,8) C By(x,€)
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Proof.  Suppose that 77 is finer than 7 Given the basis element By(x, €) for T, there
15 by Lemma 13.3 a basis element B’ for the topology 7' such that x € B’ C By(x, €).
Within B’ we can find a ball By (x, 8) centered at x.

Conversely, suppose the §-¢ condition holds Given a basis element B for 7 con-
taining x, we can find within B a ball B;(x, €) centered at x. By the given condition,
there is a § such that By (x, 8§) C Ba(x, €). Then Lemma 13.3 applies to show 7' is
finer than 7. [

Theorem 20.3. The topologies on R" induced by the euclidean metric d and the
square metric p are the same as the product topology on R".

Proof Letx=(x;, ..,xp)andy = (y1,...,¥a) be two points of R*. It is simple
algebra to check that

p(x,y) < dx,y) < Vnp(x,y)
The first inequality shows that
Ba(x, €) C By(x, €)

for all x and ¢, since if d(x,y) < ¢, then p(x,y) < € also. Similarly, the second
inequality shows that

B,(x, €/+/R) C Ba(x,€)

for all x and €. It follows from the preceding lemma that the two metnic topologies are
the same.

Now we show that the product topology is the same as that given by the metric p.
First, let

B =(a1,b1) x - X (an, bn)

be a basis element for the product topology, and let x = (xi, ..., x,) be an element
of B. For each i, there is an ¢; such that

(x, — €, % +€) C (a;, by),

choose € = min{e|, ..,€,}. Then By(x,€) C B, as you can readily check. As a
result, the p-topology is finer than the product topology.

Conversely, let B,(x, €) be a basis element for the p-topology. Given the element
¥ € B,(x, €), we need to find a basis element B for the product topology such that

y € B C By(x, €).
But this is tnvial, for
By(X,€) = (x; ~ €, X1 + €) X --- X (Xq —~ €, X + €)

is itself a basis element for the product topology. n
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Now we consider the infinite cartesian product R. It is natural to try to generalize
the metncs d and p to this space. For instance, one can attempt to define a metric d
on R“ by the equation

oo 172

2

dix,y) = [Z(x; = %) J .
i=1

But this equation does not always make sense, for the senes in question need not

converge. (This equation does define a metric on a certain important subset of R“,

however; see the exercises.)
Similarly, one can attempt to generalize the square metric p to R“ by defining

(%, y) = sup{ix, — ynl}.

Again, this formula does not always make sense. If however we replace the usual
metnc d(x, y) = |x — y| on R by its bounded counterpart d(x, y) = min{|x ~ yl, 1},
then this definition does make sense; it gives a metric on R® called the uniform metric.

The uniform metric can be defined more generally on the cartesian product R for
arbitrary J, as follows:

Definition. Given an index set J, and given points X = (Xg)aes ad Y = (Yo)aes
of R/, let us define a metric 5 on R’ by the equation

A(x,y) = sup{d(xa. ya) | @ € J},

where d is the standard bounded metric on R. It is easy to check that j is indeed a
metric; it is called the uniform metric on R’ and the topology it induces is called the
uniform topology.

The relation between this topology and the product and box topologies is the fol-
lowing:

Theorem 20.4. The uniform topology on R’ is finer than the product topology and
coarser than the box topology; these three topologies are all different if J is infinite.

Proof.  Suppose that we are given a point X = (Xz)qes and a product topology basis
element [T U, about x. Let @y, ..., a, be the indices for which Uy # R. Then for
each i, choose €; > 0 so that the ¢;-ball centered at x,; in the d metnc is contained
in Uy,; this we can do because Uy, is open in R. Let € = minfe;, ..., €,}; then the
¢-ball centered at X in the 5 metric is contained in [ ] Uy. For if  is a point of R’ such
that 5(X,z) < ¢, thend(xy, 24) < € forall @, so that 2 € []U,. It follows that the
uniform topology is finer than the product topology.

On the other hand, let B be the ¢-ball centered at x in the 5 metric. Then the box
neighborhood

U=[]ta~j& 5 +36)
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of X is contained in B. Forif y € U, then c?(xu, Ya) < %e for all a, 5o that 5(x,y) <
1
‘2'6.

Showing these three topologies are different if J is infinite is a task we leave to
the exercises. »

In the case where J is infinite, we stili have not determined whether R’ is metrrz-
able in either the box or the product topology. It turns out that the only one of these
cases where R’ is metnizable is the case where J is countable and R” has the product
topology. As we shall see.

Theorem 20.5. Letd(a, b) = min{ja — b|, 1} be the standard bounded metric on R.
Ifx and y are two points of R®, define

dtxi, yi
D(x,y) = sup {__(x,l____yﬁ} .
Then D is a metnic that induces the product topology on R®.

Proof  The properties of a metric are satisfied tnivially except for the tnangle inequal-
ity, which is proved by noting that for all ,

J(x.‘o. ) _ 3(1;{ » J(y.., z
£ i

) <D y) + Dy, z),

so that

d‘ iy &f
{22} < pixy + Do

The fact that D gives the product topology requires a little more work. First, let U
be open in the metnc topology and let X € U; we'find an open set V in the product
topology such that x € V C U. Choose an e-ball Bp(x, €) lying in U. Then choose N
large enough that 1/N < €. Finally, let V be the basis element for the product topology

V= —e,x1+€)x - x(xy—€x8v+€) X RxRx---,
We assert that V C Bp(x, €): Given any y in R®,

dixi,yi) 1

; < I fori > N.
Therefore,
d(x1, y1) d(xy, yn) 1
D < e, L — 1.
x,y) < max{ N , N N

If y is in V, this expression is less than €, so that V C Bp(x, €), as desired.
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Conversely, consider a basis element

U=]'IU,»

i€y

for the product topology, where U; isopen in R fori =, ..., a, and U; = R for all
other indices i. Given x € U, we find an open set V of the metric topology such that
X € V C U. Choose an interval (x, — ¢, x; + &) in R centered about x, and lying
inU; fori =ay,...,a,; choose each e, < |. Then define

e =min{e; /i [i =ay,...,d,).
We assert that
x € Bp(x,e)CU.

Let y be a point of Bp(x, €). Then for all i,

d(x;_, ¥i) <D.y) <e.
1
Now if i = ay, ..., an, then € < /i, sothat d(x,, yi) < € < |; it follows that
Ix; — ¥il < €. Therefore,y € [] U,, as desired. ]
Exercises

1. (@) In R", define
dy) =lxr =yl + -+ %0 — yal.

Show that d’ is a metric that induces the usual topology of R”. Sketch the
basis elements under d’ when n = 2,
(b) More generally, given p > 1, define

n I/p
d'(x,y) = [Z i — ysl”}
i=|

for x, y € R". Assume that d’ is a metric. Show that it induces the usual
topology on R".
2. Show that R x R in the dictionary order topology is metrizable.
3. Let X be a metric space with metric d.
(a) Show thatd : X x X — R is continuous.
(b) Let X' denote a space having the same underlying set as X. Show that if
d . X' x X’ — R is continuous, then the topology of X’ is finer than the
topology of X.
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One can summarize the result of this exercise as follows: If X has a metric o,
then the topology induced by d is the coarsest topology relative to which the
function d is continuous.

. Consider the product, uniform, and box topologies on R®,

(a) In which topologies are the following functions from R to R“ continuous?
fy=(,21,3,...),
gy =(r6,t,...),
h(e) = (¢, 31, §t,..).

(b) In which topologies do the following sequences converge?
wi=(LiLLL...), x=(01L1L1..)
w=1(0,22,2...)., ®=0411.,

i

wiy = (0,0,3,3,...), x3 = (0,0, vl

e

yi=(1,0,0,0,...), z=(1,100,..),
y2=(3.4.00,..), z=(}400..),
B=0(G0.430. n=G100.),

. Let R™ be the subset of R“ consisting of all sequences that are eventually zero.

What is the closure of R® in R® in the uniform topology? Justify your answer.

. Let 5 be the uniform metric on R“. Given x = (x|, x2,...) € R“ and given

O<e <l let
U, e) =(x; —€, X1+ €)X -+ X (Xg—€,Xy +€) X -,

(a) Show that U (x, €) is not equal to the e-ball B;(x, €).
(b) Show that U (x, ¢) is not even open in the uniform topology.
(c) Show that

Bs(x,¢) = U U(x, 8).

d<e

. Consider the map h : R® — R® defined in Exercise 8 of §19; give R the uni-

form topology. Under what conditions on the numbers a; and b; is & continuous?
a homeomorphism?

. Let X be the subset of R consisting of all sequences x such that 3 xf converges.

Then the formula

. 172
d(x,y) = [Z(x.- - y.')z}
i=1
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defines a metric on X. (See Exercise 10.) On X we have the three topologies it
inhenits from the box, uniform, and product topologies on R“. We have also the
topology given by the metric d, which we call the £2-topology. (Read “little ell
two.”)

(a) Show that on X, we have the inclusions

box topology D 82-topoiogy D uniform topology.

{(b) The set R® of all sequences that are eventually zero is contained in X. Show
that the four topologies that R inherits as a subspace of X are all distinct.
(¢) The set

H= T[]0/

neZ,

is contained in X it is called the Hilbert cube. Compare the four topologies
that H inherits as a subspace of X.

. Show that the euclidean metric d on R" is a metric, as follows: If x, y € R" and

c € R, define

X+Y=(x)+Y,....%n+ yn),
X = (¢Xy,...,CXy),
X-y=xiyt1+- -+ Xnyn

(a) Showthatx - (y+2) = (x-y) + (x-2).

(b) Show that |x-y| < |[xlilly|l. [Hine: Ifx,y #£ 0,1eta = 1/[ix|jand b = 1/}ly|l,
and use the fact that |lax £ by|| > 0.]

(c) Show that [[x + y|| < lIx] + llyll. {Hint: Compute (X +y) - {x + y) and
apply (b).}

(d) Verify that d is a metric.

Let X denote the subset of R consisting of all sequences (x), x2, ...) such that

Zx,? converges. (You may assume the standard facts about infinite series. In

case they are not familiar to you, we shall give them in Exercise 11 of the next

section.)

(a) Show thatifx,y € X, then)_ |x,y,| converges. [Hint: Use (b) of Exercise 9
to show that the partial sums are bounded.]

(b) Letc € R. Show thatif x,y € X, then so are x + y and cx.

(¢) Show that

0 172
d(x,y) = [Z(x.- - mz]
i=1

is a well-defined metric on X.



