Ferrimagnetism

In many ferromagnetic crystals the saturation magnetization at $T = 0$ K does not correspond to parallel alignment of the magnetic moments of the constituent paramagnetic ions, even in crystals for which the individual para- magnetic ions have their normal magnetic moments.

The most familiar example is magnetite,

.

 $Fe₃O₄$ or $FeO \cdot Fe₂O₃$

But the observed value of Bohr magnetons per $Fe₃O₄$ formula unit is 4.1. The discrepancy is accounted for if the moments of the $Fe³⁺$ ions are antiparallel to each other: then the observed moment arises only from the $Fe²⁺$ ion, as in Fig. 1. Neutron diffraction results agree with this model.

A systematic discussion of the consequences of this type of spin order was given by L. Néel with reference to an important class of magnetic oxides known as **ferrites**. The usual chemical formula of a ferrite is $MO \cdot Fe_2O_3$, where M is a divalent cation, often Zn, Cd, Fe, Ni, Cu, Co, or Mg.

The term **ferrimagnetic** was coined originally to describe the ferrite-type ferromagnetic spin order such as Fig. 1, and by extension the term covers almost any compound in which some ions have a moment antiparallel to other ions. Many fcrrimagnets are poor conductors of electricity, a quality exploited in applications such as rf transformer cores.

Crystal structure of the mineral **spinel** MgAl₂ 0_4 ; the *Mg⁺²* ions occupy tetrahedral sites, each surrounded by four oxygen ions; the Al^{+3} occupy octahedral sites, each surrounded by six oxygen ions.

The cubic ferrites have the **spinel** crystal structure shown in Fig. 2. There are eight occupied tetrahedral (or *A)* sites and 16 occupied octahedral(or *B)* sites in a unit cube. The lattice constant is about 8 Å .

A remarkable feature of the spinels is that all exchange integrals J_{AA} , J_{AB} and J_{BB} are negative and favor *antiparallel* alignment of the spins connected by the interaction

. But the *AB* interaction is the strongest, so that the *A* spins are parallel to each other and the *B* spins are parallel to each other, just in order that the *A* spins may be antiparallel to the *B* spins. If *J* in *U* = -2J**S**ⁱ •**Sj** is positive, we say that the exchange integral is ferromagnetic; if *J* is negative, the exchange integral is antiferromagnetic.

We now prove that three antiferromagnetic interactions can result in ferrimagnetism. The mean exchange fields acting on the *A* and *B* spin lattices may be written

$$
\mathbf{B}_{\mathbf{A}} = -\lambda \mathbf{M}_{\mathbf{A}} - \mu \mathbf{M}_{\mathbf{B}}
$$

$$
\mathbf{B}_{\mathbf{B}} = -\mu \mathbf{M}_{\mathbf{A}} - \nu \mathbf{M}_{\mathbf{B}}
$$

taking all mean field constants λ, μ, ν to be positive. The minus sign then corresponds to an antiparallel interaction. The interaction energy density is

$$
U = -\frac{1}{2}(\mathbf{B}_{A}.\mathbf{M}_{A} + \mathbf{B}_{B}.\mathbf{M}_{B}) = \frac{1}{2}\lambda \mathbf{M}_{A}^{2} + \mu \mathbf{M}_{A}.\mathbf{M}_{B} + \frac{1}{2}\nu \mathbf{M}_{B}^{2}
$$
 2

1

Interaction energy is lower when M_A is antiparallel to M_B than when M_A is parallel to M_B . The energy when antiparallel should be compared with zero, because a possible solution is $M_A = M_B = 0$. Thus when 3

$$
\mu M_A M_B > \frac{1}{2} (\lambda M_A^2 + \nu M_B^2)
$$

The ground state will have M_A directed oppositely to M_B

Curie Temperature and Susceptibility of Ferrimagnets

We define separate Curie constants C_A and C_B for the ions on the *A* and *B* sites. For simplicity, let all interactions be zero except for an antiparallel interaction between the *A* and *B* sites:

$$
B_A = -\mu M_{B,} \qquad B_B = -\mu M_A
$$

, where μ is positive. We have in the mean field approximation

$$
M_A T = C_A (B_a - \mu M_B)
$$

$$
M_B T = C_B (B_a - \mu M_A)
$$

4

where B_a is the applied field.

These equations have a nonzero solution *for* M_A and M_B in zero applied field if

$$
\begin{vmatrix} T & \mu C_A \\ \mu C_B & T \end{vmatrix} = 0
$$
 5

6

so that the ferrimagnetic Curie temperature is given by $T_c = \mu (C_A C_B)^{1/2}$

We solve (35) *for* M_A and M_B to obtain the susceptibility at $T > T_C$

$$
\chi = \frac{M_A + M_B}{B_a} = \frac{(C_A + C_B)T - 2\mu C_A C_B}{T^2 - T_c^2}
$$

Fig.3 Reciprocal susceptibility of magnetite, FeO \cdot Fe₂O₃

Experimental values for $Fe₃O₄$ are plotted in Fig.3 The curvature of the plot of $1/\chi$ versus *T* is a characteristic feature of a ferrimagnet.

Ferrites

have magnetic properties which resemble in certain respect s to those metallic ferromagnetism For example they show hysteresis, spontaneous magnetization, and associated phenomena.

They are technically important solids: their technical importance are due to the fact

- (i) they are not metals but ionic crystal of resistivity in the range 10^2 to 10^6 ohm-cm This puts them in insulator or semiconductor class if compared with 10-6 ohm –cm for iron. This means that power losses due to eddy currents are much reduced in these solids and are therefore well suited for microwave frequency applications
- (ii) Their magnetization can be controlled by changing the relative percentage of different constituent ions.

Iron Garnets.

The iron garnets are cubic ferrimagnetic insulators with the general formula $M_3Fe_5O_{12}$, where M is a trivalent metal ion and the Fe is the trivalent ferric ion $(S = 5/2, L = 0)$. An example is yttrium iron garnet $Y_3Fe_5O_{12}$, known as YIG. Here Y^{3+} is diamagnetic.

The net magnetization of YIG is due to the resultant of two oppositely magnetized lattices of $Fe³⁺$ ions. At absolute zero each ferric ion contributes $\pm 5\mu_B$ to the magnetization, but in each formula unit the three Fe³⁺ ions on sites denoted as *d* sites are magnetized in one sense and the two Fe3+ ions on *a* sites are magnetized in the opposite sense, giving a resultant of $5\mu_B$ per formula unit in good agreement with the measurements of Geller *et al.*

The mean field at an *a* site due to the ions on the *d* sites is $B_a = -(1.5 \text{ X } 10^4)M_d$. The observed Curie temperature 5.59 K of YIG is due to the *a-d* interaction. The only magnetic ions in YIG are the ferric ions. Because these are in an $L = 0$ state with a spherical charge distribution, their interaction with lattice deformations and phonons is weak. As a result YIG is characterized by very narrow linewidths in ferromagnetic resonance experiments.