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The next exercise introduces a subgroup, J(P), which (like the center of P) is defined for an
arbitrary finite group P (althoughin most applications P is a group whose order is a power of
a prime). This subgroup was defined by J. Thompson in 1964 and it now plays a pivotal role
in the study of finite groups, in particular, in the classification of finite simple groups.

20. For any finite group P let d(P) be the minimum number of generators of P (so, for
example, d(P) = 1 if and only if P is a nontrivial cyclic group and d(Qg) = 2). Let m(P)
be the maximum of the integers d(A) as A runs over all abelian subgroups of P (so, for
example, m(Qg) = 1 and m(Dg) = 2). Define

J(P) = (A | Ais an abelian subgroup of P with d(A) = m(P)).

(J(P) is called the Thompson subgroup of P.)

(a) Prove that J(P) is a characteristic subgroup of P.

(b) For each of the following groups P list all abelian subgroups A of P that satisfy
d(A) = m(P): Qs, Dg, D1g and QD;¢ (Where QD¢ is the quasidihedral group
of order 16 defined in Exercise 11 of Section 2.5). [Use the lattices of subgroups for
these groups in Section 2.5.]

(c) Show that J(Qg) = QOs, J(Dg) = Dg, J(D16) = D16 and J(Q Dye) is a dihedral
subgroup of order 8 in O Dq¢.

(d) Provethatif Q < P and J(P) is a subgroup of Q, then J(P) = J(Q). Deduce that if
P is a subgroup (not necessarily normal) of the finite group G and J(P) is contained
in some subgroup Q of P such that Q < G, then J(P) < G.

4.5 SYLOW’S THEOREM

In this section we prove a partial converse to Lagrange’s Theorem and derive numerous
consequences, some of which will lead to classification theorems in the next chapter.

Definition. Let G be a group and let p be a prime.

(1) A group of order p” for some « > 1is called a p-group. Subgroups of G which
are p-groups are called p-subgroups.

(2) If Gis a group of order p*m, where p t m, then a subgroup of order p* is called
a Sylow p-subgroup of G.

(3) The set of Sylow p-subgroups of G will be denoted by Syl,(G) and the number
of Sylow p-subgroups of G will be denoted by n,(G) (or just n, when G is
clear from the context).

Theorem 18. (Sylow’s Theorem) Let G be a group of order p®m, where p is a prime
not dividing m.
(1) Sylow p-subgroups of G exist, i.e., Syl ,(G) # @.
(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there
exists g € G such that Q < gPg, i.e., Q is contained in some conjugate of
P. In particular, any two Sylow p-subgroups of G are conjugate in G.
(3) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,

n, = 1(mod p).

Further, n,, is the index in G of the normalizer Ng (P) forany Sylow p-subgroup
P, hence n, divides m.
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We first prove the following lemma:
Lemmal9. Let P € Syl,(G). If Q isany p-subgroup of G, then QNNg(P) = QNP.

Proof: Let H = Ng(P)N Q. Since P < Ng(P)itisclearthat PN Q < H, so
we must prove the reverse inclusion. Since by definition H < (), this is equivalent to
showing H < P. We do this by demonstrating that P H is a p-subgroup of G containing
both P and H; but P is a p-subgroup of G of largest possible order, so we must have
PH=P,ie,H<P.

Since H < Ng(P), by Corollary 15 in Section 3.2, P H is a subgroup. By Propo-
sition 13 in the same section

|P|IH|

[PNH|

All the numbers in the above quotient are powers of p, so P H is a p-group. Moreover,
P is a subgroup of P H so the order of P H is divisible by p“, the largest power of
p which divides |G|. These two facts force |PH| = p® = |P|. This in turn implies
P = PH and H < P. This establishes the lemma.

Proof of Sylow’s Theorem (1) Proceed by induction on |G|. If |G| = 1, there is nothing
to prove. Assume inductively the existence of Sylow p-subgroups for all groups of
order less than |G]|.

If p divides | Z (G)|, then by Cauchy’s Theorem for abelian groups (Proposition 21,
Section 3.4) Z(G) has a subgroup, N, of order p. Let G = G/N, sothat |G| = p*~'m.
By induction, G has a subgroup P of order p*~!. If we let P be the subgroup of G
containing N such that P/N = P then |P| = |P/N|-|N| = p® and P is a Sylow
p-subgroup of G. We are reduced to the case when p does not divide | Z(G)|.

Let g1, g2, - - ., & be representatives of the distinct non-central conjugacy classes
of G. The class equation for G is

|\PH| =

IGl = 1Z(G)|+)_IG : Colgi)-
i=1
If p | |G : Cg(g:)) for all i, then since p | |G|, we would also have p | |Z(G)],
a contradiction. Thus for some i, p does not divide |G : Cgs(g;)|- For this i let
H = Cs(g;) so that
|H| = p®k, where p{k.

Since g; ¢ Z(G), |H| < |G|. By induction, H has a Sylow p-subgroup, P, which of
course is also a subgroup of G. Since |P| = p®, P is a Sylow p-subgroup of G. This
completes the induction and establishes (1).

Before proving (2) and (3) we make some calculations. By (1) there exists a Sylow
p-subgroup, P, of G. Let
(P, P, ..., B}=S§
be the set of all conjugates of P (i.e., S = {gPg ! | g € G)) and let Q be any p-
subgroup of G. By definition of S, G, hence also @, acts by conjugation on §. Write
S as a disjoint union of orbits under this action by Q:

S=0,U0U--.UO,

140 Chap. 4  Group Actions



wherer = |O1| +--- +|Os|. Keep in mind that r does not depend on Q but the number
of Q-orbits s does (note that by definition, G has only one orbiton & but a subgroup Q of
G may have more than one orbit). Renumber the elements of S if necessary so that the
first s elements of S are representatives of the Q-orbits: P; € O;, 1 <i < s. It follows
from Proposition 2 that |O;| = |Q : Ng(F;)|. By definition, No(F;) = Ng(P) N Q
and by Lemma 19, Ng(P;) N Q = P; N Q. Combining these two facts gives

O:=10 : RNQ l<i=<s. CHY)

We are now in a position to prove that r = 1(mod p). Since Q was arbitrary we
may take O = P; above, so that (1) gives

Ol = 1.
Now, foralli > 1, P, # P,,so PN P; < P;. By (1)
Oil=|P : LNP|>1, 2<i<s.
Since P; is a p-group, |P; : P; N P;| must be a power of p, so that

plloil,  2<is<s

r=1011+ (0| +... +10,|) = 1(mod p).

We now prove parts (2) and (3). Let Q be any p-subgroup of G. Suppose Q is
not contained in F; foranyi € {1,2...., r} G.e., O £ gPg ! for any g € G). Inthis
situation, Q N P; < Q forall i, so by (1) 7

101=1Q: ONPF|>1, 1<i<s.

Thus p | |O;| for all i, so p divides |01 +. .. +]0;| = r. This contradicts the fact that
r = 1(mod p) (remember,  does not depend on the choice of Q). This contradiction
proves O < gPg~! for some g € G.

To see that all Sylow p-subgroups of G are conjugate, let Q be any Sylow p-
subgroup of G. By the preceding argument, 0 < gPg~! for some g € G. Since
lgPg ! = 10| = p°, we must have gPg~! = Q. This establishes part (2) of the
theorem. In particular, S = Syl,(G) since every Sylow p-subgroup of G is conjugate
to P, and so n, = r = 1(mod p), which s the first part of (3).

Finally, since all Sylow p-subgroups are conjugate, Proposition 6 shows that

n, =|G : Ng(P)| forany P € Syl,(G),

completing the proof of Sylow’s Theorem.

Note that the conjugacy part of Sylow’s Theorem together with Corollary 14 shows
that any two Sylow p-subgroups of a group (for the same prime p) are isomorphic.
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Corollary 20. Let P be a Sylow p-subgroup of G. Then the following are equivalent:
(1) P is the unique Sylow p-subgroup of G, i.e,n, =1
(2) P isnormalin G
(3) P is characteristic in G
(4) All subgroups generated by elements of p-power order are p-groups, i.e., if X
is any subset of G such that |x| is a power of p forall x € X, then (X ) is a

p-group.

Proof: If (1) holds, then gPg™! = P forall g € G since gPg~"' € Syl,(G),ie., P
isnormal in G. Hence (1) implies (2). Conversely, if P < G and Q € Syl,(G), then by
Sylow’s Theorem there exists g € G such that Q = gPg~! = P. Thus Syl,(G) = {P}
and (2) implies (1).

Since characteristic subgroups are normal, (3) implies (2). Conversely, if P < G,
we just proved P is the unique subgroup of G of order p“, hence P char G. Thus (2)
and (3) are equivalent.

Finally, assume (1) holds and suppose X is a subset of G such that | x| is a power
of p forall x € X. By the conjugacy part of Sylow’s Theorem, for each x € X there
is some g € G such that x € gPg~! = P. Thus X € P,andso (X) < P, and (X)
is a p-group. Conversely, if (4) holds, let X be the union of all Sylow p-subgroups of
G. If P is any Sylow p-subgroup, P is a subgroup of the p-group ( X ). Since P is a
p-subgroup of G of maximal order, we must have P = ( X ), so (1) holds.

Examples

Let G be a finite group and let p be a prime.

(1) If p does not divide the order of G, the Sylow p-subgroup of G is the trivial group
(and all parts of Sylow’s Theorem hold trivially). If |G| = p%, G is the unique Sylow
p-subgroup of G.

(2) A finite abelian group has a unique Sylow p-subgroup for each prime p. This subgroup
consists of all elements x whose order is a power of p. This is sometimes called the
p-primary component of the abelian group.

(3) S3 has three Sylow 2-subgroups: ((12) ), {((23)) and ( (1 3) ). It has a unique (hence
normal) Sylow 3-subgroup: ( (123)) = A3z. Note that 3 = 1(mod 2).

(4) A4 has a unique Sylow 2-subgroup: ((12)(34), 1 3)(24)) = V4. It has four Sylow
3-subgroups: ((123)),((124)),((134))and ((234)). Note that 4 = 1(mod 3).

(5) S4 has np = 3 and n3 = 4. Since S4 contains a subgroup isomorphic to Dg, every
Sylow 2-subgroup of Sy is isomorphic to Dsg.

Applications of Sylow’s Theorem

We now give some applications of Sylow’s Theorem. Most of the examples use Sylow’s
Theorem to prove that a group of a particular order is not simple. After discussing
methods of constructing larger groups from smaller ones (for example, the formation
of semidirect products) we shall be able to use these results to classify groups of some
specific orders # (as we already did for n = 15).

Since Sylow’s Theorem ensures the existence of p-subgroups of a finite group, it
is worthwhile to study groups of prime power order more closely. This will be done in
Chapter 6 and many more applications of Sylow’s Theorem will be discussed there.
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For groups of small order, the congruence condition of Sylow’s Theorem alone
is often sufficient to force the existence of a normal subgroup. The first step in any
numerical application of Sylow’s Theorem s to factor the group order into prime powers.
The largest prime divisors of the group order tend to give the fewest possible values for
n,, (for example, the congruence condition on n; gives no restriction whatsoever), which
limits the structure of the group G. In the following examples we shall see situations
where Sylow’s Theorem alone does not force the existence of a normal subgroup,
however some additional argument (often involving studying the elements of order p
for a number of different primes p) proves the existence of a normal Sylow subgroup.

Example: (Groups of order pg, p and g primes with p < gq)
Suppose |G| = pq for primes p and g with p < g. Let P € Syl,(G) andlet Q € Syl (G).
We show that Q is normal in G and if P is also normal in G, then G is cyclic.

Now the three conditions: ng = 1 + kq for some k > 0, n, divides p and p < ¢,
together force k = 0. Sinceny; =1, 0 < G.

Since n, divides the prime g, the only possibilities are n, = 1 or g. In particular, if
ptq — 1, (thatis, if g # 1(mod p)), then n,, cannot equal g, so P < G.

Let P = (x)and Q = (y). If P < G, then since G/C¢(P) is isomorphic to a
subgroup of Aut(Z,) and the latter group has order p — 1, Lagrange’s Theorem together
with the observation that neither p nor g can divide p — 1 implies that G = Cg(P). In
this case x € P < Z(G) so x and y commute. (Altemnatively, this follows immediately
from Exercise 42 of Section 3.1.) This means |xy| = pq (cf. the exercises in Section 2.3),
hence in this case G is cyclic: G = Zp,.

Ifp | g — 1, we shall see in Chapter 5 that there is a unique non-abelian group of order
pq (in which, necessarily, n, = g). We can prove the existence of this group now. Let Q be
a Sylow g-subgroup of the symmetric group of degree g, S;. By Exercise 34 in Section 3,
|Ns, (@) = q(q — 1). By assumption, p | q — 1 soby Cauchy’s Theorem Ny, (Q) has a
subgroup, P, of order p. By Corollary 15 in Section 3.2, P Q is a group of order pq. Since
Cs,(Q) = O (Example 2, Section 3), P Q is a non-abelian group. The essential ingredient
in the uniqueness proof of PQ is Theorem 17 on the cyclicity of Aut(Z,).

Example: (Groups of order 30)

Let G be a group of order 30. We show that G has a normal subgroup isomorphic to
Z)15. We shall use this information to classify groups of order 30 in the next chapter. Note
that any subgroup of order 15 is necessarily normal (since it is of index 2) and cyclic
(by the preceding result) so it is only necessary to show there exists a subgroup of order
15. The quickest way of doing this is to quote Exercise 13 in Section 2. We give an
alternate argument which illustrates how Sylow’s Theorem can be used in conjunction
with a counting of elements of prime order to produce a normal subgroup.

Let P € Syls(G) and let Q € Syl3(G). Ifeither P or Q is normal in G, by Corollary
15, Chapter 3, PQ is a group of order 15. Note also that if either P or Q is normal, then
both P and Q are characteristic subgroups of PQ, and since PQ < G, both P and Q are
normal in G (Exercise 8(a), Section 4). Assume therefore that neither Sylow subgroup is
normal. The only possibilities by Part 3 of Sylow’s Theorem are ns = 6 and n3 = 10.
Each element of order 5 lies in a Sylow 5-subgroup, each Sylow 5-subgroup contains 4
nonidentity elements and, by Lagrange’s Theorem, distinct Sylow 5-subgroups intersect
in the identity. Thus the number of elements of order 5 in G is the number of nonidentity
elements in one Sylow 5-subgroup times the number of Sylow 5-subgroups. This would
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be 4 - 6 = 24 elements of order 5. By similar reasoning, the number of elements of order 3
would be 2- 10 = 20. This is absurd since a group of order 30 cannot contain 24420 = 44
distinct elements. One of P or Q (hence both) must be normal in G.

This sort of counting technique is frequently useful (cf. also Section 6.2) and works
particularly well when the Sylow p-subgroups have order p (as in this example), since then
the intersection of two distinct Sylow p-subgroups must be the identity. If the order of the
Sylow p-subgroup is p® with @ > 2, greater care is required in counting elements, since
in this case distinct Sylow p-subgroups may have many more elements in common, i.e.,
the intersection may be nontrivial.

Example: (Groups of order 12)

Let G be a group of order 12. We show that either G has a normal Sylow 3-subgroup or
G = A4 (inthelattercase G has a normal Sylow 2-subgroup). We shall use this information
to classify groups of order 12 in the next chapter.

Suppose n3 # 1 andlet P € Syl3(G). Since n3 | 4 and n3 = 1(mod 3), it follows that
n3 = 4. Since distinct Sylow 3-subgroups intersect in the identity and each contains two
elements of order 3, G contains 2-4 — 8 elements of order 3. Since |G : Ng(P)| = n3 =4,
Ng(P) = P. Now G acts by conjugation on its four Sylow 3-subgroups, so this action
affords a permutation representation

¢:G - 84

(note that we could also act by left multiplication on the left cosets of P and use Theorem 3).
The kernel K of this action is the subgroup of G which normalizes all Sylow 3-subgroups
of G. In particular, K < Ng(P) = P. Since P is not normal in G by assumption, K =1,
i.e., ¢ isinjective and

G = ¢(G) < 8.

Since G contains 8 elements of order 3 and there are precisely 8 elements of order 3 in
S4, all contained in A4, it follows that ¢( G) intersects A4 in a subgroup of order at least 8.
Since both groups have order 12 it follows that (G) = A4, so that G = A4,

Note that A4 does indeed have 4 Sylow 3-subgroups (see Example 4 following Corol-
lary 20), so that such a group G does exist. Also, let V be a Sylow 2-subgroup of As.
Since |V | = 4, it contains all of the remaining elements of A4. In particular, there cannot
be another Sylow 2-subgroup. Thus n2(44) = 1, i.e., V < A4 (which one can also see
directly because V is the identity together with the three elements of S4 which are products
of two disjoint transpositions, that is, V is a union of conjugacy classes).

Example: (Groups of order p%q, p and ¢ distinct primes)

Let G be a group of order p2q. We show that G has a normal Sylow subgroup (for either
p or g). We shall use this information to classify some groups of this order in the next
chapter (cf. Exercises 8 to 12 of Section 5.5). Let P € Syl,(G) andlet Q € Syl (G).

Consider first when p > ¢. Since np | g and np, = 1 4+ kp, we must have np, = 1.
Thus P 4 G.

Consider now the case p < g. If ng = 1, Q is normal in G. Assume therefore that
ng > 1,ie., n, = 1+ 1tgq, for some t > 0. Now ng divides p? son, = p or p*. Since
g > p we cannothave n, = p, hence n, = p®. Thus

tg=p*—1=(@p-D(p+1).
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Since q is prime, either g | p—1log | p + 1. The former is impossible since g > p so
the latter holds. Since g > p but g | p + 1, we must have ¢ = p + 1. This forces p = 2,
g = 3 and |G| = 12. The result now follows from the preceding example.

Groups of Order 60

We illustrate how Sylow’s Theorems can be used to unravel the structure of groups of
a given order even if some groups of that order may be simple. Note the technique of
changing from one prime to another and the inductive process where we use results on
groups of order < 60 to study groups of order 60.

Proposition 21. If |G| = 60 and G has more than one Sylow 5-subgroup, then G is
simple.

Proof: Suppose by way of contradiction that |G| = 60 and ns > 1 but that there
exists H a normal subgroup of G with H # 1 or G. By Sylow’s Theorem the only
possibility for ns is 6. Let P € Syls(G), so that |Ng(P)| = 10 since its index is ns.

If5 I |H| then H contains a Sylow 5-subgroup of G and since H is normal, it
contains all 6 conjugates of this subgroup. In particular, |H| > 1+ 6 -4 = 25, and the
only possibility is |H| = 30. This leads to a contradiction since a previous example
proved that any group of order 30 has a normal (hence unique) Sylow S-subgroup. This
argument shows 5 does not divide |H| for any proper normal subgroup H of G.

If |H| = 6 or 12, H has a normal, hence characteristic, Sylow subgroup, which is
therefore also normal in G. Replacing H by this subgroup if necessary, we may assume
|H| =2,3 or4. LetG = G/H, so |E| = 30, 20 or 15. In each case, G has a normal
subgroup P of order 5 by previous results. If we let H; be the complete preimage of
PinG,then H, < G, Hi #Gand 5 I | Hy|. This contradicts the preceding paragraph
and so completes the proof.

Corollary 22. As is simple.

Proof: Thesubgroups ((12345))and((13245)) aredistinct Sylow 5-subgroups
of Ajs so the result follows immediately from the proposition.

The next proposition shows that there is a unique simple group of order 60.
Proposition 23. If G is a simple group of order 60, then G = As.

Proof: Let G be a simple group of order 60, son, = 3,5 or 15. Let P € SyL,(G)
andlet N = Ng(P),so |G : N| = ns.

First observe that G has no proper subgroup H of index less that 5, as follows: if
H were a subgroup of G of index 4, 3 or 2, then, by Theorem 3, G would have a normal
subgroup K contained in H with G/ K isomorphic to a subgroup of S, S3 or $;. Since
K # G, simplicity forces K = 1. This is impossible since 60 (= |G|) does not divide
41. This argument shows, in particular, that n, # 3.

If n, = 5, then N has index S in G so the action of G by left multiplication on
the set of left cosets of N gives a permutation representation of G into Ss. Since (as
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above) the kemel of this representation is a proper normal subgroup and G is simple,
the kerel is 1 and G is isomorphic to a subgroup of Ss. Identify G with this isomorphic
copy so that we may assume G < Ss. If G is not contained in As, then S5 = GAs
and, by the Second Isomorphism Theorem, As N G is ofindex 2 in G. Since G has no
(normal) subgroup of index 2, this is a con{radiction. This argument proves G < As.
Since |G| = | As|, the isomorphic copy of G in Ss coincides with As, as desired.

Finally, assume ny = 15. If for every pair of distinct Sylow 2-subgroups P and Q
of G, P N Q = 1, then the number of nonidentity elements in Sylow 2-subgroups of G
would be (4 — 1) - 15 = 45. But ns = 6 so the number of elements of order 5 in G is
(5 — 1) 6 = 24, accounting for 69 elements. This contradiction proves that there exist
distinct Sylow 2-subgroups P and Q with |P N Q| = 2. Let M = Ng(P N Q). Since
P and Q are abelian (being groups of order 4), P and Q are subgroups of M and since
G is simple, M # G. Thus 4 divides (M| and |M| > 4 (otherwise, P = M = Q). The
only possibility is [M| = 12, i.e., M has index 5 in G (recall M cannot have index 3
or 1). But now the argument of the preceding paragraph applied to M in place of N
gives G = As. This leads to a contradiction in this case because n;(As) = 5 (cf. the
exercises). The proof is complete.

EXERCISES

Let G be a finite group and let p be a prime.

1. Prove that if P € Syl,,(G) and H is a subgroup of G containing P then P € Syl,(H).
Give an example to show that, in general, a Sylow p-subgroup of a subgroup of G need
not be a Sylow p-subgroup of G.

2. Prove thatif H is a subgroup of G and Q € Syl,,(H) then gQele Sylp(gHg_l) forall
g€G.

3. Use Sylow’s Theorem to prove Cauchy’s Theorem. (Note that we only used Cauchy’s
Theorem for abelian groups — Proposition 3.21 — in the proof of Sylow’s Theorem so
this line of reasoning is not circular.)

4. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of Dy; and S3 x S3.
5. Show that a Sylow p-subgroup of D», is cyclic and normal for every odd prime p.
6. Exhibit all Sylow 3-subgroups of A4 and all Sylow 3-subgroups of S4.

7. Exhibit all Sylow 2-subgroups of S4 and find elements of S4 which conjugate one of these
into each of the others.

8. Exhibit two distinct Sylow 2-subgroups of S5 and an element of S5 that conjugates one
into the other.

9. Exhibit all Sylow 3-subgroups of SL;(F3) (cf. Exercise 9, Section 2.1).

1

10. Prove that the subgroup of SL;(F3) generated by ((l) _01 ) and ( 1

Sylow 2-subgroup of SL;(F3) (cf. Exercise 10, Section 2.4).

11. Show that the center of SL;(F3) is the group of order 2 consisting of +1, where [ is the
identity matrix. Prove that SLy(F3)/Z(SL2(F3)) = A4 [Use facts about groups of order
12.]

12. Let2n = 2% where k is odd. Prove that the number of Sylow 2-subgroups of D, is k.
[Prove thatif P € Syly(D»,) then Np, (P) = P.]

_11 ) is the unique
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13.

14.

15.

16.

17.

18.
19.
20.
21.

BN

25.

27.

28.

29.

30.
31.

32.

33.

34.

3s.

Sec.

Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing
its order.

Prove that a group of order 312 has a normal Sylow p-subgroup for some prime p dividing
its order.

Prove that a group of order 351 has a normal Sylow p-subgroup for some prime p dividing
its order.

Let |G| = pgr, where p, g and r are primes with p < g < r. Prove that G has a normal
Sylow subgroup for either p, g or r.

Prove that if |G| = 105 then G has a normal Sylow 5-subgroup and a normal Sylow
7-subgroup.

Prove that a group of order 200 has a normal Sylow 5-subgroup.

Prove that if |G| = 6545 then G is not simple.

Prove that if |G| = 1365 then G is not simple.

Prove that if |G| = 2907 then G is not simple.

. Prove that if |G| = 132 then G is not simple.
. Prove that if |G| = 462 then G is not simple.
. Prove that if G is a group of order 231 then Z (G) contains a Sylow 11-subgroup of G and

a Sylow 7-subgroup is normal in G.

Prove that if G is a group of order 385 then Z(G) contains a Sylow 7-subgroup of G and
a Sylow 11-subgroup is normal in G.

. Let G be a group of order 105. Prove thatif a Sylow 3-subgroup of G is normal then G is

abelian.

Let G be a group of order 315 which has a normal Sylow 3-subgroup. Prove that Z(G)
contains a Sylow 3-subgroup of G and deduce that G is abelian.

Let G be a group of order 1575. Prove that if a Sylow 3-subgroup of G is normal then a
Sylow 5-subgroup and a Sylow 7-subgroup are normal. In this situation prove that G is
abelian.

If G is a non-abelian simple group of order < 100, prove that G = As. [Eliminate all
orders but 60.)

How many elements of order 7 must there be in a simple group of order 1687
For p=2,3 and 5 find n,(As) and np,(Ss). [Note that Ag < As.]

Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P < H and
H < K, prove that P is normal in K. Deduce thatif P € Syl,(G) and H = Ng(P), then
Ng(H) = H (in words: normalizers of Sylow p-subgroups are self-normalizing).

Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that
P N H is the unique Sylow p-subgroup of H.

Let P € Syl,(G) and assume N < G. Use the conjugacy part of Sylow’s Theorem to
prove that P N N is a Sylow p-subgroup of N. Deduce that PN/ N is a Sylow p-subgroup
of G/N (note that this may also be done by the Second Isomorphism Theorem — cf.
Exercise 9, Section 3.3).

Let P € Syl,(G) and let H < G. Prove that gPg~1 N H is a Sylow p-subgroup of H
for some g € G. Give an explicit example showing that xPh~! N H is not necessarily a
Sylow p-subgroup of H for any k € H (in particular, we cannot always take g = 1 in the
first part of this problem, as we could when H was normal in G).
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