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 Bacterial growth is a complex process involving numerous 
anabolic (synthesis of cell constituents and metabolites) and 
catabolic (breakdown of cell constituents and metabolites) 
reactions. Ultimately, these biosynthetic reactions result in 
cell division as shown in  Figure 3.1   . In a homogeneous rich 
culture medium, under ideal conditions, a cell can divide 
in as little as 10 minutes. In contrast, it has been suggested 
that cell division may occur as slowly as once every 100 
years in some subsurface terrestrial environments. Such 
slow growth is the result of a combination of factors 
including the fact that most subsurface environments are 
both nutrient poor and heterogeneous. As a result, cells are 
likely to be isolated, cannot share nutrients or protection 
mechanisms, and therefore never achieve a metabolic state 
that is efficient enough to allow exponential growth. 

 Most information available concerning the growth of 
microorganisms is the result of controlled laboratory studies 

using pure cultures of microorganisms. There are two 
approaches to the study of growth under such controlled 
conditions: batch culture and continuous culture. In a batch 
culture the growth of a single organism or a group of organ-
isms, called a consortium, is evaluated using a defined 
medium to which a fixed amount of substrate (food) is 
added at the outset. In continuous culture there is a steady 
influx of growth medium and substrate such that the amount 
of available substrate remains the same. Growth under both 
batch and continuous culture conditions has been well char-
acterized physiologically and also described mathematically. 
This information has been used to optimize the commercial 
production of a variety of microbial products including anti-
biotics, vitamins, amino acids, enzymes, yeast, vinegar, and 
alcoholic beverages. These materials are often produced in 
large batches (up to 500,000 liters) also called large-scale 
fermentations. 

 Chapter 3 

  FIGURE 3.1        Electron micrograph of Bacillus subtilis, a gram-positive bacterium, dividing. Magnification 
31,200 � . Reprinted with permission from Madigan  et al ., 1997.     
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 Unfortunately, it is difficult to extend our knowledge 
of growth under controlled laboratory conditions to an 
understanding of growth in natural soil or water environ-
ments, where enhanced levels of complexity are encoun-
tered ( Fig. 3.2   ). This complexity arises from a number of 
factors, including an array of different types of solid sur-
faces, microenvironments that have altered physical and 
chemical properties, a limited nutrient status, and consor-
tia of different microorganisms all competing for the same 
limited nutrient supply (see Chapter 4). Thus, the current 
challenge facing environmental microbiologists is to under-
stand microbial growth in natural environments. Such an 
understanding would facilitate our ability to predict rates of 
nutrient cycling (Chapter 14), microbial response to anthro-
pogenic perturbation of the environment (Chapter 17), 
microbial interaction with organic and metal contaminants 
(Chapters 20 and 21), and survival and growth of pathogens 
in the environment (Chapters 22 and 27). In this chapter, 
we begin with a review of growth under pure culture condi-
tions and then discuss how this is related to growth in the 
environment. 

  3.1     GROWTH IN PURE CULTURE 
IN A FLASK 

 Typically, to understand and define the growth of a particu-
lar microbial isolate, cells are placed in a liquid medium 
in which the nutrients and environmental conditions are 
controlled. If the medium supplies all nutrients required 
for growth and environmental parameters are optimal, the 
increase in numbers or bacterial mass can be measured as 
a function of time to obtain a growth curve. Several dis-
tinct growth phases can be observed within a growth curve 
( Fig. 3.3   ). These include the lag phase, the exponential or 
log phase, the stationary phase, and the death phase. Each 
of these phases represents a distinct period of growth that 
is associated with typical physiological changes in the cell 
culture. As will be seen in the following sections, the rates 
of growth associated with each phase are quite different. 

  3.1.1     The Lag Phase 

 The first phase observed under batch conditions is the lag 
phase in which the growth rate is essentially zero. When 
an inoculum is placed into fresh medium, growth begins 
after a period of time called the lag phase. The lag phase is 
defined to transition to the exponential phase after the ini-
tial population has doubled ( Yates and Smotzer, 2007 ). The 
lag phase is thought to be due to the physiological adapta-
tion of the cell to the culture conditions. This may involve 
a time requirement for induction of specific messenger 
RNA (mRNA) and protein synthesis to meet new culture 
requirements. The lag phase may also be due to low initial 
densities of organisms that result in dilution of exoenzymes 
(enzymes released from the cell) and of nutrients that leak 
from growing cells. Normally, such materials are shared by 
cells in close proximity. But when cell density is low, these 
materials are diluted and not as easily taken up. As a result, 
initiation of cell growth and division and the transition to 
exponential phase may be slowed. 

vs.

  FIGURE 3.2        Compare the complexity of growth in a flask and growth 
in a soil environment. Although we understand growth in a flask quite 
well, we still cannot always predict growth in the environment.     
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  FIGURE 3.3        A typical growth curve for a bacterial population. Compare the difference in the shape of the 
curves in the death phase (colony-forming units versus optical density).     
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 The lag phase usually lasts from minutes to several 
hours. The length of the lag phase can be controlled to 
some extent because it is dependent on the type of medium 
as well as on the initial inoculum size. For example, if an 
inoculum is taken from an exponential phase culture in 
trypticase soy broth (TSB) and is placed into fresh TSB 
medium at a concentration of 10 6  cells/ml under the same 
growth conditions (temperature, shaking speed), there will 
be no noticeable lag phase. If the inoculum is taken from 
a stationary phase culture, however, there will be a lag 
phase as the stationary phase cells adjust to the new condi-
tions and shift physiologically from stationary phase cells 
to exponential phase cells. Similarly, if the inoculum is 

placed into a medium other than TSB, for example, a min-
eral salts medium with glucose as the sole carbon source, 
a lag phase will be observed while the cells reorganize and 
shift physiologically to synthesize the appropriate enzymes 
for glucose catabolism. 

 Finally, if the inoculum size is small, for example, 
10 4  cells/ml, and one is measuring activity, such as disap-
pearance of substrate, a lag phase will be observed until 
the population reaches approximately 10 6  cells/ml. This is 
illustrated in  Figure 3.4   , which compares the degradation 
of phenanthrene in cultures inoculated with 10 7  and with 
10 4  colony-forming units (CFU) per milliliter. Although the 
degradation rate achieved is similar in both cases (compare 
the slope of each curve), the lag phase was 1.5 days when a 
low inoculum size was used (10 4  CFU/ml) in contrast to only 
0.5 day when the higher inoculum was used (10 7  CFU/ml).  

  3.1.2     The Exponential Phase 

 The second phase of growth observed in a batch system is 
the exponential phase. The exponential phase is character-
ized by a period of the exponential growth—the most rapid 
growth possible under the conditions present in the batch sys-
tem. During exponential growth the rate of increase of cells 
in the culture is proportional to the number of cells present 
at any particular time. There are several ways to express this 
concept both theoretically and mathematically. One way is 
to imagine that during exponential growth the number of 
cells increases in the geometric progression 2 0 , 2 1 , 2 2 , 2 3  
until, after  n  divisions, the number of cells is 2  n   ( Fig. 3.5   ). 
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 FIGURE 3.4        Effect of inoculum size on the lag phase during degrada-
tion of a polyaromatic hydrocarbon, phenanthrene. Because phenanthrene 
is only slightly soluble in water and is therefore not readily available for 
cell uptake and degradation, a solubilizing agent called cyclodextrin was 
added to the system. The microbes in this study were not able to utilize 
cyclodextrin as a source of carbon or energy. Courtesy E. M. Marlowe.    
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 FIGURE 3.5        Exponential cell division. Each cell division results in a doubling of the cell number. At low 
cell numbers the increase is not very large; however, after a few generations, cell numbers increase explosively.    
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This can be expressed in a q uantitative manner; for exam-
ple, if the initial cell number is  X  0 , the number of cells after 
 n  doublings is 2  n X  0  (see Example Calculation 3.1). As can 
be seen from this example, if one starts with a low number 
of cells exponential growth does not initially produce large 
numbers of new cells. However, as cells accumulate after 
several generations, the number of new cells with each 
division begins to increase explosively. 

 In the example just given,  X  0  was used to represent 
cell number. However,  X  0  can also be used to represent cell 
mass, which is often more convenient to measure than cell 
number (see Chapters 10 and 11). Whether one expresses 
 X  0  in terms of cell number or in terms of cell mass, one can 
mathematically describe cell growth during the exponential 
phase using the following equation: 

  

dX

dt
X� �   (Eq. 3.1)

    

   where  X  is the number or mass of cells (mass/volume), 
 t  is time, and   �   is the specific growth rate constant (1/time). 
The time it takes for a cell division to occur is called the 
generation time or the doubling time. Equation 3.1 can be 
used to calculate the generation time as well as the specific 
growth rate using data generated from a growth curve such 
as that shown in  Figure 3.3 .   

 The generation time for a microorganism is calculated 
from the linear portion of a semilog plot of growth versus 
time. The mathematical expression for this portion of the 
growth curve is given by Eq. 3.1, which can be rearranged 

      Example Calculation 3.1 Generation Time     

  Problem:  If one starts with 10,000 (10 4 ) cells in a culture that 
has a generation time of 2       h, how many cells will be in the 
culture after 4, 24, and 48       h? 

 Use the equation  X       �      2  n X  0 , where  X  0  is the initial number 
of cells,  n  is the number of generations, and  X  is the number 
of cells after  n  generations. 

 After 4       h,  n       �      4       h/2       h per generation      �      2 generations: 

 X � � �2 10 4 0 102 4 4( ) . cells      

 After 24       h,  n       �      12 generations: 

 X � � �2 10 4 1 1012 4 7( ) . cells      

 After 48       h,  n       �      24 generations: 

 X � � �2 10 1 7 1024 4 11( ) .      

 This represents an increase of less than one order of magni-
tude for the 4-h culture, four orders of magnitude for the 24-h 

culture, and seven orders of magnitude for the 48-h culture!      

and solved as shown in Eqs. 3.2 to 3.6 to determine the 
generation time (see Example Calculation 3.2):

   

dX

dt
X� �   (Eq. 3.1)

    

   Rearrange:   

  

dX

X
dt� �   (Eq. 3.2)

    

   Integrate:   

  

dX

X
dt

t

X

X
� �

00
∫∫   (Eq. 3.3)

      

  ln lnX t X X X e t� � �� �
0 0or   (Eq. 3.4)

 to be doubled:   

  

X

X0

2�   (Eq. 3.5)    

   Therefore:   

  2 � e t�   (Eq. 3.6)    

   where  t       �      generation time.    

  3.1.3     The Stationary Phase 

 The third phase of growth is the stationary phase. The sta-
tionary phase in a batch culture can be defined as a state 
of no net growth, which can be expressed by the following 
equation: 

  

dX

dt
� 0   (Eq. 3.7)

    

   Although there is no net growth in stationary phase, cells 
still grow and divide. Growth is simply balanced by an 
equal number of cells dying.   

 There are several reasons why a batch culture may reach 
stationary phase. One common reason is that the carbon 
and energy source or an essential nutrient becomes com-
pletely used up. When a carbon source is used up it does 
not necessarily mean that all growth stops. This is because 
dying cells can lyse and provide a source of nutrients. 
Growth on dead cells is called endogenous metabolism. 
Endogenous metabolism occurs throughout the growth 
cycle, but it can be best observed during stationary phase 
when growth is measured in terms of oxygen uptake or 
evolution of carbon dioxide. Thus, in many growth curves 
such as that shown in  Figure 3.6   , the stationary phase actu-
ally shows a small amount of growth. Again, this growth 
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occurs after the substrate has been utilized and reflects 
the use of dead cells as a source of carbon and energy. 
A second reason that stationary phase may be observed is 
that waste products build up to a point where they begin 
to inhibit cell growth or are toxic to cells. This generally 
occurs only in cultures with high cell density. Regardless 
of the reason why cells enter stationary phase, growth in 
the stationary phase is unbalanced because it is easier for 
the cells to synthesize some components than others. As 
some components become more and more limiting, cells 
will still keep growing and dividing as long as possible. 

As a result of this nutrient stress, stationary phase cells are 
generally smaller and rounder than cells in the exponential 
phase (see Section 2.2.2).  

  3.1.4     The Death Phase 

 The final phase of the growth curve is the death phase, 
which is characterized by a net loss of culturable cells. 
Even in the death phase there may be individual cells that 
are metabolizing and dividing, but more viable cells are 

      Example Calculation 3.2 Specifi c Growth Rate     

  Problem:  The following data were collected using a culture of Pseudomonas during growth in a minimal medium containing salicylate 
as a sole source of carbon and energy. Using these data, calculate the specific growth rate for the exponential phase.

 Time (h)  Culturable cell count (CFU/ml) 
  0  1.2      �      10 4  
  4  1.5      �      10 4  
  6  1.0      �      10 5  
  8  6.2      �      10 6  
 10  8.8      �      10 8  
 12  3.7      �      10 9  
 16  3.9      �      10 9  
 20  6.1      �      10 9  
 24  3.4      �      10 9  
 28  9.2      �      10 8  

 The times to be used to determine the specific growth rate can be chosen by visual examination of a semilog plot of the data (see 
figure). Examination of the graph shows that the exponential phase is from approximately 6 to 8 hours      . Using Eq. 3.4, which describes 
the exponential phase of the graph, one can determine the specific growth rate for this  Pseudomonas . (Note that Eq. 3.4 describes a 
line, the slope of which is  � , the specific growth rate.) From the data given, the slope of the graph from time 6 to 10 hours is: 

 � � � � � � �(ln ln ) ( ) .1 10 1 10 10 6 2 39 5 / 1/h     

 It should be noted that the specific growth rate and generation time calculated for growth of the  Pseudomonas  on salicylate are 
valid only under the experimental conditions used. For example, if the experiment were performed at a higher temperature, one 
would expect the specific growth rate to increase. At a lower temperature, the specific growth rate would be expected to decrease. 
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lost than are gained so there is a net loss of viable cells. 
The death phase is often exponential, although the rate of 
cell death is usually slower than the rate of growth during 
the exponential phase. The death phase can be described 
by the following equation: 

  

dX

dt
k Xd� �   (Eq. 3.8)

    

   where  k d   is the specific death rate.   
 It should be noted that the way in which cell growth is 

measured can influence the shape of the growth curve. For 
example, if growth is measured by optical density instead 
of by plate counts (compare the two curves in  Fig. 3.3 ), the 
onset of the death phase is not readily apparent. Similarly, 
if one examines the growth curve measured in terms of car-
bon dioxide evolution shown in  Figure 3.6 , again it is not 
possible to discern the death phase. Still, these are com-
monly used approaches to measurement of growth because 
normally the growth phases of most interest to environ-
mental microbiologists are the lag phase, the exponential 
phase, and the time to onset of the stationary phase.  

  3.1.5     Effect of Substrate Concentration 
on Growth 

 So far we have discussed each of the growth phases and 
have shown that each phase can be described mathe-
matically (see Eqs. 3.1, 3.7, and 3.8). One can also 
write  equations to allow description of the entire growth 
curve. Such equations become increasingly complex. For 
 example, one of the first and simplest descriptions is the 

Monod equation, which was developed by Jacques Monod 
in the 1940s: 

  
�

�
�

�
max

s

S

K S
  (Eq. 3.9)

    

   where   �   is the specific growth rate (1/time),  µ  max  is the 
maximum specific growth rate (1/time) for the culture,  S  
is the substrate concentration (mass/volume), and  K  s  is the 
half-saturation constant (mass/volume) also known as the 
affinity constant.   

 Equation 3.9 was developed from a series of experiments 
performed by Monod. The results of these experiments 
showed that at low substrate concentrations, growth rate 
becomes a function of the substrate concentration (note that 
Eqs. 3.1 to 3.8 are independent of substrate concentration). 
Thus, Monod designed Eq. 3.9 to describe the relationship 
between the specific growth rate and the substrate concen-
tration. There are two constants in this equation,   �   max , the 
maximum specific growth rate, and  K  s , the half-saturation 
constant, which is defined as the substrate concentration 
at which growth occurs at one half the value of   �   max . Both 
  �   max  and  K  s  reflect intrinsic physiological properties of a 
particular type of microorganism. They also depend on the 
substrate being utilized and on the temperature of growth 
(see Information Box 3.1). Monod assumed in writing 
Eq. 3.9 that no nutrients other than the substrate are limiting 
and that no toxic by-products of metabolism build up. 

 As shown in Eq. 3.10, the Monod equation can be 
expressed in terms of cell number or cell mass ( X ) by equat-
ing it with Eq. 3.1: 

  

dX

dt

SX

K S
�

�

�max

s
  (Eq. 3.10)

      

 The Monod equation has two limiting cases (see  Fig. 3.7   ). 
The first case is at high substrate concentration where 
S  �      �       K  s . In this case, as shown in Eq. 3.11, the specific 
growth rate   �   is essentially equal to   �   max . This simplifies 
the equation and the resulting relationship is zero order or 
independent of substrate concentration: 

  
For :s maxS K

dX

dt
X>> � �   (Eq. 3.11)

    

   Under these conditions, growth will occur at the maximum 
growth rate. There are relatively few instances in which 
ideal growth as described by Eq. 3.11 can occur. One such 
instance is under the initial conditions found in pure culture 
in a batch flask when substrate and nutrient levels are high. 
Another is under continuous culture conditions, which are 
discussed further in Section 3.2. It must be emphasized 
that this type of growth is unlikely to be found under natu-
ral conditions in a soil or water environment, where either 
substrate or other nutrients are commonly limiting.   

 FIGURE 3.6        Mineralization of the broadleaf herbicide 2,4-dichlorophe-
noxy acetic acid (2,4-D) in a soil slurry under batch conditions. Note that 
the 2,4-D is completely utilized after 6 days but the CO 2  evolved con-
tinues to rise slowly. This is a result of endogenous metabolism. From 
 Estrella  et al ., 1993.     
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 The second limiting case occurs at low substrate con-
centrations where  S       �      �   K  s  as shown in Eq. 3.12. In this 
case there is a first order dependence on substrate concen-
tration ( Fig. 3.7 ): 

  
For :s

max

s

S K
dX

dt

SX

K
<< �

�
  (Eq. 3.12)

    

   As shown in Eq. 3.12, when the substrate concentration is 
low, growth ( dX/dt ) is dependent on the substrate concen-
tration. Since the substrate concentration is in the numera-
tor, as the substrate concentration decreases, the rate of 
growth will also decrease. This type of growth is typi-
cally found in batch flask systems at the end of the growth 
curve as the substrate is nearly all consumed. This is also 
the type of growth that would be more typically expected 
under conditions in a natural environment where substrate 
and nutrients are limiting.   

 The Monod equation can also be expressed as a function 
of substrate utilization given that growth is related to sub-
strate utilization by a constant called the cell yield (Eq. 3.13): 

  

dS

dt Y

dX

dt
�

1
  (Eq. 3.13)

    

   where  Y  is the cell yield (mass/mass). The cell yield coef-
ficient is defined as the unit amount of cell mass produced 
per unit amount of substrate consumed. Thus, the more 
efficiently a substrate is degraded, the higher the value of 
the cell yield coefficient (see Section 3.3 for more detail). 
The cell yield coefficient is dependent on both the structure 
of the substrate being utilized and the intrinsic physiologi-
cal properties of the degrading microorganism. As shown 
in Eq. 3.14, Eqs. 3.10 and 3.13 can be combined to express 
microbial growth in terms of substrate disappearance:   

  

dS

dt Y

SX

K S
� �

�

1 �max

s
  (Eq. 3.14)

    

    Figure 3.8    shows a set of growth curves constructed from 
a fixed set of constants. The growth data used to gener-
ate this figure were collected by determining protein as a 
measure of the increase in cell growth (see Chapter 11). 
The growth data were then used to estimate the growth 
constants   �   max ,  K  s , and  Y . Both  Y  and   �   max  were estimated 
directly from the data.  K  s  was estimated using a mathe-
matical model that performs a nonlinear regression analy-
sis of the simultaneous solutions to the Monod equations 
for cell mass (Eq. 3.10) and substrate (Eq. 3.13). This set 
of constants was then used to model or simulate growth 
curves that express growth in terms of CO 2  evolution and 
substrate disappearance. Such models are useful because 
they can help one to: (1) estimate growth constants such 
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 FIGURE 3.7        Dependence of the specific growth rate,   �  , on the substrate 
concentration. The maximal growth rate   �   max       �      0.5       1/h               and  K  s       �      0.5       g/l. 
Note that   �   approaches   �   max  when  S       �      �   K  s  and becomes independent of 
substrate concentration. When  S       �      �   K  s , the specific growth rate is very 
sensitive to the substrate concentration, exhibiting a first-order dependence.    

      Information Box 3.1      The Monod Growth Constants

 Both   �  max and  K  s  are constants that reflect: 

   ●      The intrinsic properties of the degrading microorganism  
   ●      The limiting substrate  
   ●      The temperature of growth    

 The following table provides representative values of   �   max  and  K  s  for growth of different microorganisms on a variety of sub-
strates at different temperatures and for oligotrophs and copiotrophs in soil.

 Organism  Growth temperature (°C)  Limiting nutrient    �   max  (1/h)               K  s  (mg/l) 
  Escherichia coli   37  Glucose  0.8–1.4   2–4 
  Escherichia coli   37  Lactose  0.8  20 
  Saccharomyces cerevisiae   30  Glucose  0.5–0.6  25 
  Pseudomonas  sp.  25  Succinate  0.38  80 
  Pseudomonas  sp.  34  Succinate  0.47  13 
 Oligotrophs in soil      0.01  0.01 
 Copiotrophs in soil      0.045  3 

Source: Adapted from Blanch and Clark (1996), Miller and Bartha (1989), Zelenev et al. (2005).
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as  K  s  that are difficult to determine experimentally; and (2) 
quickly understand how changes in any of the experimen-
tal parameters affect growth without performing a long and 
tedious set of experiments.     

  3.2     CONTINUOUS CULTURE 

 Thus far, we have focused on theoretical and mathematical 
descriptions of batch culture growth, which is currently of 
great economic importance in terms of the production of 
a wide variety of microbial products. In contrast to batch 
culture, continuous culture is a system that is designed for 

long-term operation. Continuous culture can be operated 
over the long term because it is an open system ( Fig. 3.9   ) 
with a continuous feed of influent solution that contains 
nutrients and substrate, as well as a continuous drain of 
effluent solution that contains cells, metabolites, waste prod-
ucts, and any unused nutrients and substrate. The vessel that 
is used as a growth container in continuous culture is called 
a bioreactor or a chemostat. In a chemostat one can control 
the flow rate, maintain a constant substrate concentration, 
as well as provide continuous control of pH, temperature, 
and oxygen levels. As will be discussed further, this allows 
control of the rate of growth, which can be used to optimize 
the production of specific microbial products. For example, 
primary metabolites or growth-associated products, such as 
ethanol, are produced at high flow or dilution rates, which 
stimulate cell growth. In contrast, a secondary metabolite or 
non-growth-associated product such as an antibiotic is pro-
duced at low flow or dilution rates, which maintains high 
cell numbers. Chemostat cultures are also being used to 
aid in study of the functional genomics of growth, nutrient 
limitation, and stress responses at the whole-organism level. 
The advantage of the chemostat in such studies lies in the 
constant removal of metabolites, including signal molecules 
(see Chapter 16) or secondary metabolites that may mask 
or subtly alter physiological conditions under batch culture 
conditions ( Hoskisson and Hobbs, 2005 ). 

 Dilution rate and influent substrate concentration are 
the two parameters controlled in a chemostat to study 
microbial growth or to optimize metabolite production. 
The dynamics of these two parameters are shown in  Figure 
3.10   . By controlling the dilution rate, one can control the 
growth rate (  �  ) in the chemostat, represented in this graph 
as doubling time (recall that during exponential phase the 
growth rate is proportional to the number of cells present). 
By controlling the influent substrate concentration, one can 
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 FIGURE 3.9        Schematic representation of a continuously stirred bioreactor. Indicated are some of the 
variables used in modeling bioreactor systems.  X  0  is the dry cell weight,  S  0  is the substrate concentra-
tion, and  D  is the flow rate of nutrients into the vessel.    
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control the number of cells produced or the cell yield in the 
chemostat (the number of cells produced will be directly 
proportional to the amount of substrate provided). Because 
the growth rate and the cell number can be controlled 
independently, chemostats have been an important tool in 
studying the physiology of microbial growth and also in 
the long-term development of cultures and consortia that 
are acclimated to organic contaminants that are toxic and 
difficult to degrade. Chemostats can also produce micro-
bial products more efficiently than batch fermentations. 
This is because a chemostat can essentially hold a culture 
in the exponential phase of growth for extended periods. 
Despite these advantages, chemostats are not yet widely 
used to produce commercial products because it is often 
difficult to maintain sterile conditions over time. 

 In a chemostat, the growth medium undergoes constant 
dilution with respect to cells due to the influx of nutrient 
solution ( Fig. 3.9 ). The combination of growth and dilution 
within the chemostat will ultimately determine growth. 
Thus, in a chemostat, the change in biomass with time is 

  

dX

dt
X DX� ��   (3.15)

    

   where  X  is the cell mass (mass/volume),   �   is the specific 
growth rate (1/time), and  D  is the dilution rate (1/time).   

 Examination of Eq. 3.15 shows that a steady state (no 
increase or decrease in biomass) will be reached when 

  �        �       D . If   �        �       D , the utilization of substrate will exceed the 
supply of substrate, causing the growth rate to slow until it is 
equal to the dilution rate. If   �        �       D , the amount of substrate 
added will exceed the amount utilized. Therefore the growth 
rate will increase until it is equal to the dilution rate. In either 
case, given time, a steady state will be established where 

  � � D   (3.16)
    

   Such a steady state can be achieved and maintained as long 
as the dilution rate does not exceed a critical rate,  D  c . The 
critical dilution rate can be determined by combining Eqs. 
3.9 and 3.16:   

  

D
S

K Sc max
s

�
�

�
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟

  (3.17)

      

 Looking at Eq. 3.17, it can be seen that the operation effi-
ciency of a chemostat can be optimized under conditions 
in which  S       �      �   K  s , and therefore  D  c  �   �   max . But it must be 
remembered that when a chemostat is operating at  D  c , if 
the dilution rate is increased further, the growth rate will 
not be able to increase (since it is already at   �   max ) to offset 
the increase in dilution rate. The result will be washing out 
of cells and a decline in the operating efficiency of the che-
mostat. Thus,  D  c  is an important parameter because if the 
chemostat is run at dilution rates less than  D  c , operation 
efficiency is not optimized, whereas if dilution rates exceed 
 D  c , washout of cells will occur as shown in  Figure 3.10 .  
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 FIGURE 3.10        Steady-state relationships in the chemostat. The dilution rate is determined 
from the flow rate and the volume of the culture vessel. Thus, with a vessel of 1000       ml and a 
flow rate through the vessel of 500       ml/h, the dilution rate would be 0.5       1/h            . Note that at high 
dilution rates, growth cannot balance dilution and the population washes out. Thus, the sub-
strate concentration rises to that in the medium reservoir (because there are no bacteria to use 
the inflowing substrate). However, throughout most of the range of dilution rates shown, the 
population density remains constant and the substrate concentration remains at a very low value 
(i.e., steady state). Note that although the population density remains constant, the growth rate 
(doubling time) varies over a wide range. Thus, the experimenter can obtain populations with 
widely varying growth rates without affecting population density. Adapted with permission 
from Madigan  et al ., 1997.    
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Exponential phase is the growth phase itself and simplifying the mathematical development, 

dN/dt = µµµµN 

N=N0 e
µ(t-t0) 

Where t = time, N = cfu ml
-1

 at time t, N0 = cfu ml
-1

 at time t0, µ = specific growth rate constant (h
- 1

).  
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Under controlled conditions, in the laboratory, the evolution of the number of 

cells  over  time  can  be  followed  in  a  batch  culture.  Bacteria  growth  can  be 

represented  with  a  growth  curve,  which  consists  of  four  phases:  lag  phase, 

exponential or log phase, stationary phase and death phase. 

The concept of microbial growth and the mathematical expressions 

defining it, can be found in any textbook of Microbiology (Brock Biology 

of Microorganisms 2012, Prescott's Microbiology 2011). 

It is characterized by the following equation: 

ln N - ln N0 = µ (t-t0)    or    log10 N - log10 N0= µ X (t-t0)/ 2.303

µ = { (log10 N - log10 N0) X 2.303} / (t - t0)  

Mathematical modeling of bacterial growth 
curve/fermentation



It is possible to use other parameters such as the time required to double the population or generation 

time, g.  

g = 0.693/µ 

The inverse of the generation time is called growth rate (K), and it is expressed as generations / hour.  

K = 1/g 

It can be calculated the µmax (maximum specific growth rate) value for a given microorganism and 

substrate. For that, growth curves are performed with increasing concentrations of the substrate and 

the µ values are calculated for each concentration. 

µµµµ = µµµµmax S/(KS + S) 

Where KS = saturation constant for the substrate, the concentration where specific growth rate is half 

of µmax (µ = ½ µmax). 

It can be also used the following transformation of the equation: 

1/µµµµ = 1/µµµµmax + (Ks/µµµµmax) (1/S) 

In the stationary phase two interesting parameters can be determined: maximum biomass (cells or 

other parameter) and yield coefficient.  

M is calculated by the following expression: 

M = Mt – M0 

Where Mt = biomass (cells, etc) at time t (it is calculated in the stationary phase, where the number of 

cells is maximum) and M0 = inoculum biomass (cells, etc). The result is expressed in grams, 

milligrams, cells/ml, etc.  

The maximum yield coefficient is the amount of biomass, cells or other parameter, produced per 

substrate consumed and is given by: 

Y = Biomass produced/Substrate consumed = (Mt – M0)/(S0 – St) 

Where S0 = substrate at the beginning of the culture and St = substrate at time (t) when the number of 

cells is maximum. The result is expressed as g cells/g substrate or Nº cells/g substrate.  

So much for the theoretical aspects of the study of microbial growth, but how can the results be 

analyzed? We will see below how to work with the data. 

The simplest problems are those in which various terms are known (i.e. initial density of 

microorganisms, µ value and time), and we must determine an unknown term (in this example, final 

density of microorganisms). In these problems we must just replace the known terms in the equations 

described above and solve it. 



These problems are very simple, but we must be careful with the units or the need to transform some 

data for being possible to use in them in the formula (i.e. the µ value is unknown but it is known the g 

value). 

On this basis, solutions must be proposed for the following problems: 

Q1: How  many  bacteria  are  present  after  4  hours  if  a  culture  that  doubles  every  2  hours  is  

inoculated with 10
4
 CFU/ml? and after 24 and 48 hours?  

Willey, J.M., L.M. Sherwood, C.J. Woolverton. 2011. Prescott's Microbiology Companion Site, 8th 

ed. McGraw-Hill Ryerson Ltd. 

Madigan,  M.T.,  J.M.  Martinko,  D.A.  Stahl,  D.P.  Clark.  2012.  Brock  Biology  of 

Microorganisms, 13th ed. Benjamin Cummings. 

Sources:  HOW  TO  SOLVE  PRACTICAL  ASPECTS  OF  MICROBIOLOGY, 

DETERMINATION  OF  THE  PARAMETERS  DEFINING  THE  BACTERIAL GROWTH.  

Inés  Arana,  Maite  Orruño  &  Isabel  Barcina,  Department  of Immunology, Microbiology and 

Parasitology University of the Basque Country  Universidad del País Vasco (UPV/EHU)   

Q2 : If a culture in exponential phase has 100,00 cells/ml at a given time, and after 4 hours, the 

population is 100,000,000 cells/ml, which would the µ and g values be? 


	Mathematical modeling of bacterial growth curve and fermentation.pdf
	Mathermatical modeling of bacterial growth.pdf
	Untitled1 (Recovered 1).pdf

