Nonlinear polarization of the medium
At the time of the pre-laser optics it was reasonably believed that the medium
characteristics are independent of the intensity of light passing through this
medium. Pre-laser light sources produced light field intensities not exceeding
10° V/m. Whereas, the intra-atomic fields are characterized by intensities of the
order of 10® to 10'* V/m makes it evident why light waves of such sources could
not produce a somewhat detectable effect on the atomic fields and,
consequently, on the medium behaviour. Therefore, the medium response, in the
form of polarization P, to the external perturbation, in the form of a light wave
electric field E, turned out to be linear
P=yE
Where, y is the dielectric susceptibility of the medium. This relationship coined
the term "linear optics" used in relation to the pre-laser (incoherent) optics. On
the other hand, lasers yield light fields with intensities as high as 10" to 10"
V/m. This electric field strength are comparable with those within the atom.
Now the dielectric susceptibility of the medium becomes a function of the light
field intensity as
HE)= Yo+ Y E+ E + GE +1.E + ...
Where x,, ¥, 1> X3 Xs-.--. €tc. are the medium parameters which define its
polarizability. The polarization P becomes
P=yE=yE+ 1, E + poF +E + ...
The polarization P becomes nonlinear in the light field intensity.
The nonlinear term Py, = ;(IEZ describes the nonlinear polarization of the

medium, y; being the nonlinear susceptibility.

Interaction of light waves in nonlinear media
Let a plane monochromatic light wave of frequency v travel at velocity v in the
z direction of a nonlinear medium (exhibiting a nonlinear polarization for this

wave). The electric field strength of this wave may be defined as



E(z,t) = Eycos [va(t — g)]

The nonlinear polarization becomes

Pyi(z,t) = %zlEc? + %%Eécos [ (e - %)]

The second term of this equation indicates that there is a wave of polarization
propagating in the medium in the same direction and at the same speed, but this
wave oscillates at the twice higher frequency 2v, rather than v. This wave of
polarization may be thought of as the kind of "radiation aerial" traversing the
medium at velocity v. Under certain conditions this "aerial" may cause emission
of a new light wave at the frequency of the wave of polarization. This is called
second harmonic generation.

Consider now the case with two waves, one at frequency v, and the other at

frequency Vv, being launched into the non-linear medium.
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The interaction of light waves at frequencies v, and v, launched in a material
with the nonlinear polarization may cause generation of new light waves at the

sum (V1+V,), difference (v;-v,) and double 2v, and 2v, frequencies.

Second harmonic generation in nonlinear crystals
Under certain conditions the wave of nonlinear polarization may give birth to
the second optical harmonic, a generated light wave at frequency 2v. The
polarization wave propagates in the medium at the velocity v; = ¢/n(v), while
the second harmonic propagates at the velocity v, = ¢/n(2v). n(v) and n(2v) are
the refractive indices of the medium for frequency v and 2v. For the transfer of
energy from the polarization wave to the new light wave to be efficient, the
waves must be matched in velocity. This leads to the condition n (v) = n (2v),
referred to as the phase-matching condition. The refractive index depends on
the direction in the anisotropic crystal. A light wave launched in an anisotropic
crystal splits into two waves travelling at different velocities. In a large group of
anisotropic crystals, called uniaxial crystals, one of these light waves is called
the ordinary wave; its refractive index is independent of the direction of
propagation. The other light wave is called the extraordinary wave and the
corresponding refractive index depends on the direction of propagation. The
different refractive index behaviour in an anisotropic crystal is usually described
in terms of the so-called index ellipsoid. Figure a shows a section through the
surfaces of refractive indices for the ordinary (sphere) and extraordinary
(ellipsoid) waves. The ellipsoid axis OA is the optic axis of the uniaxial crystal.
As can be seen, the refractive indices are the same along the optic axis,
therefore a light wave travelling in this direction does not split into the ordinary
and extraordinary waves. In case the wave-vector forms an angle 0 with the
crystal optic axis OA, the "splitting" does take place, as away from the axis the

ordinary refractive index is np and the extraordinary refractive index is
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Nonlinear crystal

n‘(6).The extraordinary wave is polarized in
the plane passing through the wave vector
and the optic axis (exactly this plane is shown
in Figure a), whereas the ordinary wave is
polarized normally to this plane. The section
through the surfaces of refractive index,
shown in figure a, corresponds to a certain

frequency of the incident light. Suppose now

that this frequency doubles. The refractive index normally increases with

frequency. Therefore, the dimensions of the refractive-index sphere and

ellipsoid increase accordingly. Figure b shows for comparison the sections

through these surfaces plotted for a frequency v (solid lines) and the doubled

frequency 2v (dashed lines). The dashed ellipse is seen to intersect with the

solid circle; one of the points of intersection is point B. This means that for light

waves propagating in the OB direction (i.e, close to the cone where OB is a

generating element) the phase-matching condition is satisfied n, (V) = n. (2v)

The cone angle 0,, is obviously the phase-matching angle. For all directions

lying on this cone the ordinary refractive index at frequency Vv equals the

extraordinary refractive index at frequency 2v.

Examples of inorganic nonlinear crystals

Material Symbol Formula
Potassium dihydrogen phosphate KDP KH,PO,
Ammonium dihydrogen phosphate ADP NH,H,PO,
Cesium dihydrogen arsenatc CDA CsH,As0,
Cesium dideuterium arsenate D-CDA CsD,AsO,
Lithium niobate . LiNbO,
Lithium iodate - LilOg4

Barium-sodium niobate

—  Ba,NaNb;0,,



Self-focusing of light in a nonlinear medium
For an isotropic medium or crystal having a centre of symmetry
P(-E) =—P(E)
This means that all the terms containing an even number of multipliers E must
vanish
P=€YE+ENE +EJ)E +oonnn.
Hence the first nonlinear correction is given by the cubic term and the

polarization assumes the form
P=¢gyE+€,y,E’
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Hence, the square of the electric field strength has been averaged over a period
of oscillation and hence E, is the amplitude of the electric field strength of the

wave.



Self-focusing length

The self-focusing length is the distance 1 over which the beam is focused at the
axis or collapses to the axis in a nonlinear medium

Let,

‘a’ is the radius of a laser beam

‘Ey’ 1s the amplitude of the electric field strength at the axis

The amplitude at a distance ‘a’ from the axis is assumed to be equal to zero

A phase difference, over the path difference / is
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The phase difference for two paths must be equal
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