Soft Computing
Paper: MTM 402 (Unit-2)
Artificial Neural Network

Dr. Raghu Nandan Giri

Department of Applied Mathematics

April 3, 2020

Dr. R. N. Giri Artificial Neural Network

Introduction
o

o Artificial neural networks (ANNs) are biologically
inspired computer programs designed to simulate the
way in which the human brain processes information.

o An ANN is formed from hundreds of single units,
artificial neurons or processing elements, connected
with coefficients (weights), which constitute the neural
structure and are organized in layers.

o The power of neural computations comes from
connecting neurons in a network.

o The behavior of a neural network is determined by the
transfer functions of its neurons, by the learning rule,
and by the architecture itself.

Dr. R. N. Giri Artificial Neural Network

Introduction
(]

A Brief History of ANN

o In 1943, McCulloch and Pitts first modeled a simple
neural network using electrical circuits in order to
describe how neurons in the brain might work.

o In 1949, first learning law for artificial neural networks
was designed by Donald Hebb.

o In 1958, a learning method for McCulloch and Pitts
neuron model named Perceptron was invented by
Rosenblatt.

o In 1960, Widrow and Hoff developed models called
“ADALINE” and “MADALINE”.

o In 1961, Rosenblatt made an unsuccessful attempt but
proposed the “backpropagation” scheme for multilayer
networks.

o In 1969, Multilayer perceptron (MLP) was invented by
Minsky and Papert.

Dr. R. N. Giri Artificial Neural Network

logical Neural Network

00
neuron cell body
synapse f
nucleus
axon of
previous axon = =
neuron ¥ .
(neuron cell body =g "
I
JD. / 4 . nucleus \ \
N o y uxon dendrites of
tips next neuron

electrical

gnal

BN

dendrites

Fig. 1: Neuron cell.

cial Neural Network

Dr.

Biological Neural Network
oeo

o The term ‘Neural’ is derived from the basic functional
unit ‘neuron’ of human (animal) nervous system.

e Brain contains approximate 10! neurons, each of which
has 102-10° connections with other neurons.

o Neurons are organized in a fully connected network and
act like messenger in receiving and sending impulses.

o The connections can be inhibitory (decreasing strength)
or excitatory (increasing strength) in nature.

o The result is an intelligent brain capable of learning,
prediction and recognition.

o Neurons consist of four basic parts—Dendrite, Soma (cell
body), Axon, Synapse.

Dr. R. N. Giri Artificial Neural Network

Biological Neural Network
[ele] J

o Dendrite: They are tree-like branches, responsible for
receiving the information from other neurons. In other
sense, we can say that they are like the ears of neuron.

o Soma (cell body): It sums all the incoming signals
have received from dendrites.

o Axon: When the sum reaches a threshold value,
neuron fires and the signal travels down the axon to the
other neurons i.e. it is just like a cable through which
neurons send the information.

e Synapse: The point of interconnection of one neuron
with other neurons. The amount of signal transmitted
depend upon the strength (synaptic weights) of the
connections.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
o0

ANNs are digitized model of a human brain i.e. a biologi-
cally inspired computational model to simulate the way in
which human brain processes information. It is formed from
hundreds of single units, artificial neurons, connected with
coefficients (weights) which constitute the neural structure.
They are also known as processing elements as they pro-
cess information. Each processing element has weighted in-
puts, transfer function and one output. Processing element
is essentially an equation which balance inputs and outputs.
ANNSs learn (or are trained) through experience with appro-
priate learning example just like people do, not from pro-
gramming.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

(o] J

Comparison between Artificial and Biological Neural Network

The following table shows the comparison between ANN and BNN based on some
criteria mentioned.

ity

Criteria BNN ANN
Processing Massively parallel, slow | Massively parallel, fast but inferior
but superior than ANN than BNN
Size 10T neurons and 101° in- | 102 to 10% nodes (mainly depends
terconnections on the type of application and net-
work designer)
Learning They can tolerate ambigu- | Very precise, structured and for-

matted data is required to tolerate
ambiguity

Fault toler-
ance

Performance degrades with
even partial damage

It is capable of robust perfor-
mance, hence has the potential to
be fault tolerant

Storage ca-
pacity

Stores the information in
the synapse

Stores the information in continu-
ous memory locations

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
o

Advantages ANN

The advantages of artificial neural networks include:

a. Adaptive learning: An ability to learn how to do
tasks based on the data given for training or initial
experience.

b. Self-Organization: An ANN can create its own
organization or representation of the information it
receives during learning time.

c. Real Time Operation: ANN computations may be
carried out in parallel, and special hardware devices are
being designed and manufactured which take advantage
of this capability.

d. Fault Tolerance via Redundant Information
Coding: Partial destruction of a network leads to the
corresponding degradation of performance. However,
some network capabilities may be retained even with
major network damage.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
000

Working procedure of ANN

11
Wi
X W2
Vin
m > Z N f Output
Inputs wa
Activation function
Wm
Xm

Fig. 2: Artificial Neural Network.

ificial Neural Network

Artificial Neural Network
(o] le]

Working procedure of ANN

Artificial neural networks can be viewed as weighted directed
graphs in which artificial neurons are nodes and directed
edges with weights are connections between neuron outputs
and neuron inputs shown in Fig. 2. It receives input from
the external world in the form of pattern and image in vector
form. These inputs are mathematically designated by the
notation xq, xo, ..., x, for m number of inputs with their
corresponding weights wq, ws, ..., w,, respectively. Weights
are the information used by the neural network to solve a
problem. Typically weight represents the strength of the
interconnection between neurons inside the neural network.
The weighted inputs are all summed up inside computing
unit (artificial neuron). For the general model of artificial
neural network shown in Fig. 2, the net input can be calcu-
lated as follows:

m
Yin = T1.W1 + T2 We + T3.W3 + ... + Ty Wiy = E €T;.W;
=1

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
ocoe

Working procedure of ANN

In case the weighted sum is zero, bias is added to make the
output non-zero or to scale up the system response. Bias has
the weight and input always equal to ‘1’

Yin = in.wi +b= in.wi, where wy = b, xg = 1.

i=1 i=0

The sum corresponds to any numerical value ranging from 0
to co. In order to limit the response to arrive at desired value,
the threshold value is set up. For this, the sum is passed
through activation function. The output can be calculated
by applying the activation function over the net input y;,
as ¥ = f(yin). The activation function is set of the transfer
function used to get desired output. There are linear as well
as the non-linear activation function.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
®00000000000000

Types of ANN

There have been many types of neural networks
designed but all can be described by depends upon
the following three building blocks -

o Network Topology
o Adjustments of Weights or Learning
o Activation Functions

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O@0000000000000
Types of ANN

Network Topology

The main architectures of artificial neural networks, consid-
ering the neuron disposition, as well as how they are inter-
connected and how its layers are composed, can be divided
as follows: (i) Single-Layer Feedforward Networks, (ii) Mul-
tilayer Feedforward Networks, (iii) Recurrent Networks.

@
@

@

Input Output
Layer Layer

Fig. 3: Single-Layer Feedforward Networks.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
00@000000000000

Types of ANN

Single-Layer Feedforward Networks

In this network, the neurons are organized in the form of layers. Its simplest form,
we have an input layer of source nodes that projects directly onto an output layer
of neurons (computation nodes), but not vice versa. In other words, this network is
strictly of a feedforward type. It is illustrated in Fig. 3 for the case of four nodes in
both the input and output layers. Such a network is called a single-layer network,
with the designation “single-layer” referring to the output layer of computation
nodes (neurons). We do not count the input layer of source nodes because no
computation is performed there.

Input

laver First Second Output
- hidden hidden layer
layer layer

Fig. 4: Multilayer Feedforward Networks.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
000@00000000000

Types of ANN

Multilayer Feedforward Networks

The second class of a feedforward neural network shown in Fig. 4 distinguishes
itself by the presence of one or more hidden layers, whose computation nodes are
correspondingly called hidden neurons or hidden units; the term “hidden” refers to
the fact that this part of the neural network is not seen directly from either the input
or output of the network. The function of hidden neurons is to interfere between
the external input and the network output in some useful manner. The neurons in
each layer of the network have as their inputs the output signals of the preceding
layer only. The set of output signals of the neurons in the output (final) layer of the
network constitutes the overall response of the network to the activation pattern
supplied by the source nodes in the input (first) layer. A feedforward network with
m source nodes, 1 neurons in the first hidden layer, p neurons in the second hidden
layer, and q neurons in the output layer is referred to as an m-l-q-q network.

INPUT LAYER
HIDDEN LAYER

Fig. 5: Recurrent Networks.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O000@0000000000
Types of ANN

Recurrent Networks

A recurrent neural network distinguishes itself from a feed-
forward neural network in that it has at least one feedback
loop. It may consist of a single layer of neurons with each
neuron feeding its output signal back to the inputs of all
the other neurons shown in Fig. 5. The idea behind recur-
rent neural network is to make use of sequential information.
In a traditional neural network we assume that all inputs
(and outputs) are independent of each other. But for many
tasks that’s a very bad idea. If you want to predict the next
word in a sentence you better know which words came before
it. Recurrent neural networks are called recurrent because
they perform the same task for every element of a sequence
with the output being depended on the previous computa-
tions. Another way to think about recurrent neural network
is that they have a “memory” which captures information
about what has been calculated so far. In theory, recurrent
neural network can make use of information in arbitrarily
long sequences, but in practice they are limited to looking

ot =
Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O0000e000000000
Types of ANN

Learning Processes

There are many different algorithms that can be used when training artificial neural
networks, each with their own separate advantages and disadvantages. The learn-
ing process within artificial neural networks is a result of updating the network’s
weights, with some kind of learning algorithm. Just as there are different ways in
which we learn from our surrounding environments, so it is with neural networks. In
a broad sense, we may categorize the learning processes as follows: (i). Supervised
Learning (ii). Unsupervised Learning (iii). Reinforcement Learning.

Neural
X (input) ——» __ » Y (Actual output)
Network

T

Error Signal

(D-v)
E
Si;l::lrl D (Desired Qutput)

Generator

h

Fig. 6: Supervised Learning.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O00000e00000000
Types of ANN

Supervised Learning

As the name suggests, this type of learning is done under the
supervision of a teacher. During the training of ANN under
supervised learning, the desired output for the network is
provided with the input shown in Fig. 6. By providing the
neural network with both an input and output pair it is pos-
sible to calculate an error based on it’s target output and
actual output. Then, the network parameters (weights) are
adjusted by a combination of the input and the correspond-
ing error. So, supervised learning is a closed-loop feedback
system, where the error is the feedback signal. The trained
network is used to emulate the system.

¥ (Actual output)

Artificial Neural Network

Artificial Neural Network
0000000 e0000000
Types of ANN

Unsupervised Learning

Unsupervised learning shown in Fig. 7 involves no target values
and learning is done without the supervision of a teacher. It tries
to autoassociate information from the inputs with an intrinsic
reduction of data dimensionality or total amount of input data.
Unsupervised learning is solely based on the correlations among
the input data, and is used to find the significant patterns or
features in the input data. Particularly suitable for biological
learning in that it does not depend on a teacher and it uses
intuitive primitives like neural competition and cooperation.

. Neural
X(input) —» ¥ {Actual output)
Network

!

Error Signal
Error
. R (Reinforcement signal)
Signal
Generator

Fig. 8: Reinforcement Learning.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O0000000e000000
Types of ANN

Reinforcement Learning

Reinforcement learning shown in Fig. 8 is a special case of
supervised learning, where the exact desired output is un-
known. It is based only on the information as to whether or
not the actual output is close to the estimate. This learning
procedure rewards the neural network for its good output
result and punishes it for the bad output result. The aim of
reinforcement learning is to maximize the reward the system
receives through trial-and-error. It is used in the case when
the correct output for an input pattern is not available and
there is need for developing a certain output.

There are many types of Neural Network Learning Rules,
they based on two supervised learning, and unsupervised
learning processes.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
000000000 e00000
Types of ANN

Hebbian Learning Rule

This rule, one of the oldest and simplest, was introduced by Don-
ald Hebb in his book ‘The Organization of Behavior’ in 1949. It is
a kind of feed-forward, unsupervised learning. This rule is that
the connections between two neurons might be strengthened if
the neurons fire at the same time and might weaken if they fire
at different times. According to Hebbian learning rule, following
is the formula to increase the weight of connection at every time

step.
Awgj(t) = nai(t).y;(t)

Here, Aw;;(t)= increment by which the weight of connection
increases at time step t, = the positive and constant learning
rate, z;(t) = the input value from pre-synaptic neuron at time
step t, y;(t) = the output of pre-synaptic neuron at same time
step t.

This learning rule required the weight initialization at small ran-
dom values around 0. When inputs of both the nodes are either
positive or negative, then a strong positive weight exists between
the nodes. If the input of a node is positive and negative for
other, a strong negative weight exists between the nodes.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0000000000800 00
Types of ANN

Perceptron Learning Rule

This rule is an error correcting the supervised learning algorithm of single layer
feedforward networks with hard-limit activation function, introduced by Rosenblatt.
The basic concept is to calculate the error by comparison between the desired /target
output and the actual output. If there is any difference found, then a change must be
made to the weights of connection. According to perceptron learning rule, following
is the formula to update the weight of each connection.

Aw; = n(t — y)z;

where 7 is positive constant called the learning rate, y is actual output of the neuron
and t is the desired/target output.
Comments about the perceptron learning rule:

o If the example is correctly classified the term (¢t — y) equals zero, and no
update on the weight is necessary.

@ If the perceptron outputs 1 and the real answer is 1, the weight is increased.

@ If the perceptron outputs a 1 and the real answer is -1, the weight is
decreased.

@ Provided the examples are linearly separable and a small value for 7 is used,
the rule is proved to classify all training examples correctly (i.e, is consistent
with the training data).

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
00000000000 e000
Types of ANN

Delta Learning Rule

It is introduced by Bernard Widrow and Marcian Hoff, also called
Least Mean Square (LMS) method, to minimize the error over
all training patterns. It is kind of supervised learning algorithm
with having continuous activation function. The base of this rule
is gradient-descent approach, which continues forever. Delta rule
updates the synaptic weights so as to minimize error between
the target output and the actual output. To update the synaptic
weights, delta rule is given by

Aw; = n(t = y) f' (yin)zi

The delta rule is commonly stated in simplified form for a neuron
with a linear activation function as Aw; = n(t — y);.

Note: Delta rule is similar to the perceptron learning rule, with
some differences: (i) Error in perceptron learning rule is re-
stricted to having values of 0, 1 or —1 but in delta rule may have
any value. (ii). Delta rule can be derived for any differentiable
output/activation function f, whereas in perceptron learning rule
only works for step activation function.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0000000000000
Types of ANN

Activation Functions

The basic processing element, neuron, of ANN apply a nonlinear mapping (not
necessarily linear) called an activation function before delivering the output to the
next neuron. Depending on the problem at hand and on the location of the node
within a given layer, the activation functions can take different forms.

(a) Lincar function (1) Step function (€) Ramp function

—— 6=0 —

Fig. 9: Activation Functions.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0000000000000 e0
Types of ANN

Activation Functions

Let us denote the weighted sum of input into a neuron by y;,. The activation
or output of the neuron, y, is then given by applying the activation (or transfer)
function, f, to yin: y = f(ym). Some typical choices are given below.

Linear or Identity Function: If f is an identity function,

Yy = f(y'bn) = Yin-
As we will see later, identity activation functions are used for neurons in the input
layer of an ANN.
Binary Step Function with Threshold:
— . — 1 Zf Yin 2 97

y=f(yin) = { 0 if yom <.
The threshold value is specified by 6. The output has binary values (0 or 1) only.
Bipolar Step Function with Threshold:

_ . _ 1 4if yin >0,
Y= f(ym) = { —1 if yin <0.
The threshold value is specified by 6. The output has bipolar values (1 or -1) only.
Ramp Function:

0 ng Yin < 617
Y= f(ym) = y972717 11 Zf 01 < Yin < 927
1 Z.f Yin > 92

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0000000000000 0e
Types of ANN

Activation Functions

The ramp function is a truncated version of the linear function. From its shape, the
ramp function looks like a more definitive version of the sigmoid function in that its
maps a range of inputs to outputs over the range [0, 1] but this time with definitive
cut off points 01 and 02.

Binary Sigmoid Function:

1

Yy = f(ym) = m7

where « is a positive parameter. This function switches from 0 to 1 in the vicinity
of 0 as the argument goes from —oo to +oo.
Bipolar Sigmoid Function:

1 — e~ Win—0)
y = f(yin) = 1+ e oWin0)’
where « is a positive parameter. This function switches from —1 to 1 in the vicinity
of 0 as the argument goes from —oco to +o0.
Gaussian function:

_ Win =02
y:f(yin) = e 202

The maximal function value of a gauss function is found for 6 activation. The
function is even: f(-x)=f(x).

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
[Jele}

Biases and Thresholds

A bias acts exactly as a weight on a connection from a unit whose activation
is always 1. Increasing the bias increases the net input to the unit. If a bias
is included, the activation function is typically taken to be

oy J LS yin 205
y_f(yzn)_{il Lf yin<0§

where,

Yin = b+ szwz

Some authors do not use a bias weight, but instead use a fixed threshold 6
for the activation function. In that case,

a1 if yin >0
y—f(ym)—{ =1 if yin <0

where,

Yin = E TiWi.
i

However, as the next example will demonstrate, this is essentially equivalent
to the use of an adjustable bias.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
oeo
Biases and Thresholds

The role of a bias or a threshold

In this example, we consider the separation of the input space into regions where
the response of the net is positive and regions where the response is negative. To
facilitate a graphical display of the relationships of two input neurons and one
output neuron, the architecture is given in Fig. 10.

Output unit

Input unit

Fig. 10: Single-layer neural network for logic function.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
[e]e] J
Biases and Thresholds

The role of a bias or a threshold

The boundary between the values of 1 and x2 for which the net gives a positive
response and the values for which it gives a negative response is the separating line

b+ xiwi + xowe =0,
or, (assuming that wa # 0),

—b —w1
T2 = — + ——x1.

w2 w2
For a positive response from the output unit, the net input it receives, namely,
b+ x1w1 + zo2wsz, be greater than 0. During training, values of wi, w2 and b are
determined so that the net will have the correct response for the training data.
In terms of a threshold, a positive response from the output unit, the net input
it receives, namely, x1wi + zaw2, be greater than the threshold 6. This gives the
equation of the line separating positive from negative output as

1wy + x2ws = 0,
or, (assuming that wa # 0),
0 —wq

T2 = — +
w2 w2

7.

The form of the separating line found by using above two concepts, there is no
advantage to including both a bias and a nonzero threshold for a neuron that uses
the step function as its activation function. On the other hand, including neither
a bias nor a threshold is equivalent to requiring the separating line (or plane or
hyperplane for inputs with more components) to pass through the origin.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

Linear Separability

In general, for any output unit, the desired response is ‘1’ if its corresponding
input is a member of class or ‘0’ if it is not. The purpose of training is to
made the input pattern to get similar with the training pattern by adjusting
the weights.
The activation function is taken as step function. This function retains a 1 if
net input is positive and a —1 if the net input is negative. The net input to
the output neuron is, yi, = b+ ZZ w;x;. The relation, b+ ZZ w;x; = 0 gives
the boundary region of the net input. The boundary between the region
where y;, > 0 and y;, < 0 is called the ‘decision boundary’. The equation
denoting this decision boundary can represent a line, plane or hyper plane.
On training, if the weights of training input vectors of correct response +1
lie on one side of the boundary, then the problem is linear separable else it
is linearly non-separable.
Say with two input vectors, the equation of line separating the positive region
and negative region is given by, b + x1wi + x2w2 =0

—b

—w
To=—+ —x1, wa #0
w2 w2

These two regions are called the decisions regions of the net.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

Linear Separability

Example 3.1.

Suppose we have two Boolean inputs z1, z2 € {0,1}, one Boolean output
t € {0, 1} and the training set is given by the following input/output pairs

1 | T2 | T1 N\ T2
0 0 0
0 1 0
1 0 0
1 1 1

Then the learning problem is to find weight wi and w2 and threshold (or
bias) value 6 such that the computed output of our network (which is given
by the binary step function) is equal to the desired output for all examples.

v

A straightforward solution is w1 = w2 = 1/2, 0 = 0.6. Really, from the

equation
1 if > 0.
21 Ay = 1:U1/2.+1'2/2706
0 otherwise

it follows that the output neuron fires if and only if both inputs are on.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

Linear Separability

Suppose we have two Boolean inputs z1, z2 € {0,1}, one Boolean output
t € {0, 1} and the training set is given for logical OR function. Then the
learning problem is to find weight w; and w2 and threshold (or bias) value
6 such that the computed output of our network (which is given by the
binary step function) is equal to the desired output for all examples.

A straightforward solution is w1 = w2 = 1, § = 0.8. Really, from the equation

T1V T2 = { 0 otherwise

it follows that the output neuron fires if and only if at least one of the inputs is
on. The removal of the threshold from our network is very easy by increasing
the dimension of input patterns. Really, the identity

wW1x1 + wako + ... + WnTyn > 0 <= w11 + W2k + ... + Wy —1 X0 >0

means that by adding an extra neuron to the input layer with fixed input
value —1 and weight 6 the value of the threshold becomes zero. It is why in
the following we suppose that the thresholds are always equal to zero.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

McCulloch-Pitts Model

The McCulloch-Pitts neuron is perhaps the earliest artificial neuron was dis-
covered in 1943. The requirements for McCulloch-Pitts neurons may be
summarized as follows:

@ The activation of the McCulloch-Pitts neuron is binary as

1 4 7in297
y:f(ym):{ 0 z}[;m<9.

@ Neurons is a McCulloch-Pitts network are connected by directed,
weighted paths.

@ If the weight on a path is positive the path is excitatory, otherwise it is
inhibitory.

@ All excitatory connections into a particular neuron have the same
weight, although different weighted connections can be input to
different neurons.

@ Each neuron has a fixed threshold. If the net input into the neuron is
greater than the threshold, the neuron fires.

@ The threshold is set such that any non-zero inhibitory input will
prevent the neuron from firing.

@ It takes one time step for a signal to pass over one connection.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

McCulloch-Pitts Model

Architecture

The architecture of the McCulloch-Pitts neuron is shown in the Fig. 11. ‘y’ is the
McCulloch-Pitts neuron, it can receive signal from any number of other neurons.
The connections weights from x1, x2, ..., x, are excitatory, denoted by ‘w’ and the
connections weights from n+41, Tnt2, ..., Tn+m are inhibitory denoted by ‘-p’.

Fig. 11: Architecture of the McCulloch-Pitts neuron.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

McCulloch-Pitts Model

Architecture

The McCulloch-Pitts neuron, y, has the activation function

_ . _ 1 Zf yinzga
y*f(ym)*{ 0 if yin <0

where 0 is the threshold and y;, is the net input signal received by neuron y.
The threshold should satisfy the relation § > nw — p if at least one inhibition
connection present. This is the condition for absolute inhibition.
The McCulloch-Pitts neuron will fire if it receives k or more excitatory inputs and
no inhibitory inputs, where kw > 6 > (k — 1)w.
Limitations:

@ Weights and thresholds are analytically determined, cannot learn.

@ Very difficult to minimize size of a network.

@ What about non-discrete and/or non-binary tasks?

Generate the output of logical AND function by McCulloch-Pitts neuron model.

Solution: The logical AND function returns a true value only if both the inputs
true, else it returns a false value. ‘1’ represents true value and ‘O’ represents false
value. The truth table for AND function is

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

McCulloch-Pitts Model

McCulloch-Pitts neuron example

x1 xo x1 A\ x2

0 0 0

0 1 0 1
1 0 0

1

1 1
A McCulloch-Pitts neuron to imple- @/0 =,
1 =

ment logical AND function is shown in
the Fig. 12. The threshold on output
unit ‘y’ is 2. Fig. 12: MP neuron for AND gate

The net input is given by
Yin = »_; weights x input
Yin = 1* 21+ 1%2x2
Yin = T1 + T2
The output is, ¥y = f(yin), where
_ . _ 1 'Lf Yin = 2,
y*f(yzn)*{ 0 if yin <2
Now present the inputs:
Q 21 =22=0, yjp =21 + 22 = 0, therefore, y = f(yin) = 0 since y;n, =0 < 2.

Q z1=0,22 =1, yin, = x1 + 22 = 1, therefore, y = f(yin) = 0 since
Yin = 1 < 2. This is same for the input ;1 = 1, 2 = 0.

@ 1 =22 =1, yin =1 + x2 = 2, therefore, y = f(yin) = 1 since yi, = 2.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

McCulloch-Pitts Model

McCulloch-Pitts neuron example

Example 3.4.

o Generate the output of logical OR function by
McCulloch-Pitts neuron model.

o Realize the NOT function using McCulloch-Pitts neuron
model.

o Generate the output of ANDNOT function by
McCulloch-Pitts neuron model.

o Realize the Exclusive-OR, function using McCulloch-Pitts
neuron model.

o Realize the following functions using McCulloch-Pitts
neuron model:

o NOR gate
o NAND gate
o f(x1, w2, ©3) = x1 b x3 + x| w5 x3 + x1 T2 5

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

®00000000
Hebb Net

Hebb Net

The first learning law for artificial neural networks was designed by Donald Hebb
in 1949. The law states that if two neurons are activated simultaneously, then the
strength of the connection between them should be increased. For Hebb net, the
input and output data should be in bipolar form. If it is in binary form, the Hebb
net cannot learn, which is an extreme limitation of the Hebb rule for binary data.

OutputUnit

InputUnit

Fig. 13: Architecture of a Hebb Net.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
O®0000000
Hebb Net

Architecture

The architecture of Hebb net is shown in Fig. 13. The shown Hebb net is a single
layer net, which consists of an input layer with any input units and an output layer
with only one output unit. This is the basic architecture that performs pattern
classification. The bias included for the net always found to be ‘1’, which helps in
increasing the net input. This architecture resembles a single layer feed forward
network.

Algorithm:

Initially all the weights and bias are set to zero. Then we can present the input
pattern to be classified. At the input layer, the activation function used is identity,
hence the output from the input layer remains same as the input presented. Also,
the activation for the output unit is also set. Then the weights are updated based
on the Hebb learning rule. An epoch is completed after presenting all the samples
of the input pattern. The step wise algorithm to train Hebb net is as follows:

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O0@000000
Hebb Net

Hebb learning Algorithm

@ Step 1: Initially all weights and bias to zero
w; =0, b=0fori=1ton,
where n is the number of input neurons. Set n = 1.

@ Step 2: For each input training vector and target output pair (S, t) perform
Step 3-6.

© Step 3: Set activations for input units with input vector
z; = S; fori =1 ton.
@ Step 4: Set activation for output unit with the output neuron y = ¢.
@ Step 5: Adjust the weights by applying Hebb rule,
w; (new) = w;(old) + z;y for i =1 to n.
© Step 6: Adjust the bias
b(new) = b(old) + y.

This algorithm requires only one pass through the training set.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

[e]o]e] le]elelele]
Hebb Net

Hebb Net examples

Realise a Hebb net for the AND function with bipolar inputs and targets. I

Solution: The training patters AND function are

Input Target
1 T2 o Y
1 1 1 1
1 -1 1 -1
-1 1 1 -1
-1 -1 1 -1

The weight change is calculated using

Aw; = x;y and Ab=1y.

Input Target Weights Changes Weights
(r1 x2 o) y Awy Aws Ab wp ws b
Initial (O 0 0
1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1 0 2 0
-1 1 1 -1 1 -1 -1 1 1 -1
-1 -1 1 -1 1 1 -1 2 2 -2

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
[e]o]e]e] lelelele]
Hebb Net

Hebb Net examples

This completes one epoch of training. The straight line separating the regions can
be obtained after presenting each input pair. Thus,

Ty = — + Ll
After 1st input, @ = =% + T%xl
To = —1 —x1

Similarly, after 2nd, 3rd and 4th epochs, the separating lines are,
220 =0, zo=1—21, 22 =1— 1.

For the 3rd and 4th epoch the separating lines remains the same, hence this line
separates the boundary regions as shown in Fig. 14.

Fig. 14: Hebb Net for AND function.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

[e]o]e]e]e] lelele]

Hebb Net

Hebb Net examples

The same procedure can be repeated for generating the logic functions OR, NOT,
ANDNOT, etc.

Example 3.6.
Apply the Hebb net to the training patters that define XOR function with bipolar
input and targets.

Solution: The training patters for XOR function

Input Target
1 T2 Z0 Y
1 1 1 -1
1 -1 1 1
-1 1 1 1
-1 -1 1 1
Input Target Weights Changes Weights
(x1 x2 o) y Awy Awe Ab w1 ws b
Initial (O 0 0
1 1 1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 1 1 -1 1 0 -2 0
-1 1 1 1 -1 1 1 -1 -1 1
-1 -1 1 -1 1 1 -1 0 0 0

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

0O00000e00
Hebb Net

Hebb Net examples

The final weights are obtained for XOR function are w1 = w2 = b = 0. Hence it is
clear that the separating line cannot be drawn.
Thus, Hebb rule cannot be used to form a training pattern to define XOR function.

(a) Using the Hebb rule, find the weights required to perform the following
classifications: vectors (1, 1, 1, 1) and (—1, 1, —1, —1) are members of class
(with target value 1); vectors (1, —1, 1, —1) and (1, —1, —1, 1) are not
members of class (with target value -1).

(b) Using each of the training x vectors as input, test the response of the net.

[Targer Weights Changes Weights
@, =5 N ES Aw, Aw, Aw, Aw, &b __w, w, w, w, 3
e © P o o »

f ' 1 1 f ' 1 1 h ' N 1 1 ' N 1

h a ' 1 1 ' 1 1 a ' ' 0 2 o 2 0

a ' a a ' ' a 1 a a ' a s ' ' 1

' 4 ' 1 ' ' ' ' ' ' ' 2 a o o 0

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
000000080
Hebb Net

Hebb Net examples

Example 3.8.

Limitations of Hebb rule training for binary
patterns.

Consider the following input and target output pairs:

Input Target
Ty T2 T3 Y

I 1 1 1

1 1 0 0

1 0 1 0

0o 1 1 0

This example shows that the Hebb rule may fail, even if the
problem is linearly separable (and even if 0 is not the target).
The plane 1 + 22 + x3 + (—2.5) = 0, i.e., a weight vector of
(1, 1, 1) and a bias of —2.5 is separates the input patterns.

It is easy to see that the updated weights do not produce the
correct output for the first pattern.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0O0000000e
Hebb Net

Hebb Net examples

Example 3.9.

Limitation of Hebb rule training for bipolar
patterns.

Consider the following input and target output pairs:

Input Target
Ty T2 T3 Y
I 1 1 1
1 1 -1 -1
1 -1 1 -1
-1 1 -1

This example shows that the Hebb rule may fail, even with
the input patterns (and target classifications) in bipolar form.
The plane 1 + x5 + 3 + (—2) = 0, i.e., a weight vector of
(1, 1, 1) and a bias of —2 is separates the input patterns.

It is easy to see that the updated weights do not produce the
correct output for the first pattern.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
®000000000000

Perception

Perception

Frank Rosenblatt [1962] and Minsky and Papert [1988], developed large classes of
artificial neural networks called Perceptron. The perceptron learning rule uses an
iterative weight adjustment that is more powerful than the Hebb rule. The original
perceptron is found to have three layers, sensory, associator and response units as
shown in Fig. 15.

Sensory Associator Response
Unit Unit Unit

Fig. 15: Original perception Network.

The sensory and association units have binary activation and an activation of +1, 0
and —1 is used for the response unit. All the units have their corresponding weighted
interconnection. Training in perceptron will continue until no error occurs. This
net solves the problem and is also used to learn the classification. The perceptrons
are of two types: single layer and multi layer perceptrons.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
O®@00000000000
Perception

Single layer perception

A single layer perceptron is the simplest form of a neural network used for the
classification of patterns that are linearly separable. Fundamentally, it consists of a
single neuron with adjustable weights and bias. The linearity and integrity learning
makes the perceptron network very simple. Training in the perceptron continues
till no error occurs.

Architecture:

The input to the response unit will be the output from the associate unit, which is
binary vector. Since only the weight between the associate and the response unit is
adjusted, the concept is limited to single layer network.

Output unit

Input unit

Fig. 16: Single layer perception Network.
Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
O0@0000000000
Perception

Architecture

In the architecture shown in Fig. 16, only the associate unit
and the response unit is shown. The sensor unit is hidden, be-
cause only the weights between the associate and the response
unit are adjusted. The input layer consists of input neurons
from X7, Xo, ... X,. There always exists a common bias of ‘1’.
The input neuron are connected to the output neurons through
weighted interconnections. This is a single layer network because
it has only one layer of interconnection between the input and the
output neurons. This network perceives the input signal received
and performs the classification.

Algorithm:

To start the training process, initially the weights and the bias are
set to zero. It is also essential to set the learning rate parameter,
which ranges between o to 1. The output is compared with the
target, where if any difference occurs, we go in for weight updat-
ing based on perceptron learning rule, else the network training is
stopped. The algorithm can be used for both binary and bipolar
input vectors. It uses a bipolar target with fixed threshold and
adjustable bias. The training algorithm is follows:

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
O00®000000000
Perception

Perceptron Algorithm

@ Step 1 Initialize weights and bias (for simplicity, set weights and bias to
zero). Set learning rate 7, (0 < n < 1) (for simplicity, n can be set to 1).

Step 2 While stopping condition is false, do Steps 3-7.
Step 3 For each training pair S : t, do Steps 4-6.

Step 4 Set activations of input units: z; = s; for i = 1 to n.

©00O0

Step 5 Compute response of output unit:

Yin =b+ Y _ wiws;
i
L if yin >0,
y = f(yin) = 0 if —0<yin <9,
-1 7‘f Yin < —6
@ Step 6 Update weights and bias for i = 1 to n.
If y #t and x; # 0,
w; (new) = w;(old) + ntx;,
b(new) = b(old) + nt.
Else
w; (new) = w;(old),
b(new) = b(old).
@ Step 7 Test stopping condition: If no weights changed in Step 3, stop; else,
continue.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
O000@00000000
Perception

Perceptron Algorithm

Note that only weights connecting active input units (z; # 0)
are updated. Also, weights are updated only for patterns
that do not produce the correct value of y. This means that
as more training patterns produce the correct response, less
learning occurs. This is in contrast to the training of the
Adaline.

Perceptron Algorithm for Several Output Classes:
The perceptron algorithm for single output class is extended
for several output classes. Here, there exits more number of
output neurons, but the weight updation in this case also is
based on the perceptron learning rule. The algorithm is as
follows:

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0000080000000

Perception

Perceptron Algorithm for Several Output Classes

o
(2]
(8]
2]
(5]

Step 1 Initialize weights and bias. Set learning rate n, (0 <n < 1).
Step 2 While stopping condition is false, do Steps 3-7.

Step 3 For each training pair S : ¢, do Steps 4-6.

Step 4 Set activations of input units: z; = s; for i = 1 to n.

Step 5 Compute response of output unit:

Yjin = b_y’ + inw,;j; forj=1tom
[

1 Zf Yjin > 61
Y =S Wiin) =4 0 if —0<yjin <0,
-1 lf Yj,in < -0
@ Step 6 Update weights and bias for i =1 ton and 7 = 1 to m.
If y; #t; and z; # 0,
wij(new) = w;j(old) + ntjx;,
bj(new) = b;(old) + nt;.
Else
wij(new) = wg;(old),
bj(new) = bj(old).
@ Step 7 Test stopping condition: If no weights changed in Step 3, stop; else,
continue.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
0000008000000

Perception

Example

Example 3.10.

Develop a perceptron for the AND function with bipolar inputs and targets.

Solution: The training patters for AND function can be,

Input Target
x1 T2 x0 t

1 1 1 1
-1 1 1 -1

1 -1 1 -1
-1 -1 1 -1

Forming the table, initialized all the weights and the bias to be zero i.e. w; = wa =
0Oand b=0 and take n =1, 0 = 0.

Calculate the net input as y;,, = xob+ 1w + zaw2 and then apply the activation
function given as

1 if yin >0,
y=1Ff(in) =9 0 if yin=0,
=1 if yin <O

Update weights and bias for each activation input z;, if y # ¢, then
w; (new) = w;(old) + ntz;,
b(new) = b(old) + nt.
All the input vectors, updated weights and bias are presented in-the following table:

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

O000000e00000
Perception

Example

Input Net Output Target Weights Changes Weights
(x1 @2 o) Yin y t Awy; Awgy Ab wy w2 b
Initial (0 0 0)
1 1 1 0 0 1 1 1 1 1 1 1
-1 1 1 1 1 -1 1 -1 -1 2 0 0
1 -1 1 2 1 -1 -1 1 -1 1 1 -1
-1 -1 1 -3 -1 -1 0 0 0 1 1 -1

This completes one epoch of training. The final weights after the first epoch is
completed are, w; = 1, wa = 1 and b = —1. The straight line separating the
regions can be obtained after first epoch is g = 1 — x1. The decision boundary is
given in Fig. 17.

x=1-31

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
O0000000e0000

Perception

Example

In similar way, the perceptron network can be developed for logic functions OR,
NOT, ANDNOT, etc.

Example 3.11.

Develop a perceptron for the AND function with binary inputs and bipolar targets
without bias upto two epochs. (Take first with (0, 0) and next without (0, 0)).

(a). With (0, 0) and without bias.

Epoch-1:

Input Net Output Target Weights Changes Weights
(1 ®2) Yin y t Awy Awy w1 w2

Initial (0 0)

1 1 0 0 1 1 1 1 1

1 0 1 1 -1 -1 0 0 1

0 1 1 1 -1 0 -1 0 0

0 0 0 0 -1 0 0 0 0

The separating lines for 1st and 2nd inputs are x1 +x2 = 0 and x2 = 0 respectively.
Which are not decision boundary.

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network

0000000008000
Perception

Example

(b). Without (0, 0) and bias.

Epoch-1:
Input Net Output Target Weights Changes Weights
(z1 x2) ¥in y t Awy Awy wi w2
Initial (0 0)
1 1 0 0 1 1 1 1 1
1 0 1 1 -1 -1 0 0 1
0 1 1 1 -1 0 -1 0 0

The separating lines here also, without bias are 1 +x2 = 0 and x2 = 0 respectively.
Thus from all this, it is clear that without bias the convergence does not occur.
Even after neglecting (0,0) the convergence does not occur.

Using the perceptron learning rule, find the weights required to perform the
following classifications. Vectors (1, 1, 1, 1) and (-1, 1, —1, —1) are members of
class (having target value 1); vectors (1, 1, 1, —1) and (1, —1, —1, 1) are members
of class (having target value -1). Use learning rate of 1 and starting weights of 0.
Using each of the training and vectors as input, test the response of the net.

Dr. R. N. Giri Artificial Neural Network

Artificial Neura
0000000000800

Perception

Example

[Net Output Target Weights Changes Weights
@,z =, z, To Yin Y t Aw, Aw, Aw, Aw, b w, w, w, w,
Epoch-1
) : :) : o o : !) : : ! : : ! :)
) |) a . 3) a a a a ! 4 0 0 o > 0
4 ' . a . . a , a , . a , a ! .
\ 4 ' \ ' \ ' 4 ' ' : o 0 0
Epoch2
! :) ! : o o)) :)) : a 3 :) !
! \ . a ! \ a a a a . a 2 2 o B 0
a ' a a ' p ' ' 0 o 0 0 o = 2 o B 0
| o o | ' 5 4 o 0 o 0 0 o 5 P o > 0
Fpoch s
1 ' 1 1 ' 1 1 o o o o o = o P o
1 ' 1 a ' 2 1 a 0 o 0 0 o 2 o P 0
a ' ' ' P ' ' 0 o 0 0 0 2 P o P 0
\ o ' 1 ' 2 4 0 o o 0 o = P o 5 0

From the Tast epoch, it seen that fina] weights are W, — Wy = 0y Wy —2amab =0

Dr tificial Neural Network

Artificial Neural Network
000000000000

Perception

Example

For the following noisy versions of training patterns, identify the response of
network by separating it into correct, incorrect and indefinite.

(0, -1, 1), (0, 1, —1), (0, 0, 1), (0, 0, —1), (0, 1, 0), (1, 0, 1)
(1,0, -1), (1, -1, 0), (1, 0, 0), (1, 1, 0), (0, —1, 0), (1, 1, 1)

Solution: The concept used for this problem is

If 21wy 4+ x2wa + x3ws > 0, then the response is correct.

If z7w1 + zaw2 + x3ws < 0, then the response is incorrect.

If zyw1 + zow2 + x3w3 = 0, then the response is indefinite or undetermined.

The weights take for bipolar activation function are, w; = 0, w2 = —2 and w3z = 2

Dr. R. N. Giri Artificial Neural Network

Artificial Neural Network
000000000000 e
Perception

Multi-layer perception

Multilayer perceptron networks is an important class of neural networks. The net-
work consists of a set of sensory units that constitute the input layer and one and
more hidden layer of computation nodes. The input signal passes through the
network in the forward direction. The network of this type is called multilayer
perceptron (MLP).

The multilayer perceptrons are used with supervised learning and have led to the
successful backpropagation algorithm. The disadvantages of the single layer per-
ceptron is that it cannot be extended to the multilayer version. In MLP networks
there exists a non-linear activation function. The widely used non-linear activation
function is logistic sigmoid function. The MLP network also has various layers of
hidden neurons. The hidden neurons make the MLP network active for highly com-
plex tasks. The layer of the network are connected by synaptic weights. The MLP
thus has a high commotional efficiency.

A disadvantage of MLP may also be the presence of non-linearity and complex
connection of the network which leads to highly complex theoritical analysis. Also
the existence of hidden neurons makes the learning process tedious.

THe MLP networks are usually fully connected networks. There are various multi-
layer perceptron networks which includes Back Propagation, Radial basis function,
etc.

Dr. R. N. Giri Artificial Neural Network

	Introduction
	A Brief History of ANN

	Biological Neural Network
	Artificial Neural Network
	Advantages ANN
	Working procedure of ANN
	Types of ANN
	Biases and Thresholds
	Linear Separability
	McCulloch-Pitts Model
	Hebb Net
	Perception

