
Hard Computing: 

The variables are identified first and classified into two groups as input or conditional 

variables or antecedents and output variables or action variable or consequents. The input and 

output variables are expressed in term of the mathematical equation (say differential 

equation). The differential equations are then solved by analytically or any numerical 

methods. Control action is decided based on the solution of these mathematical equations. 

Main features:  

 It yields precise solution. Thus the control action is accurate. 

 It is suitable for these problems which are easy to model mathematically and whose 

stability is highly predictable. 

Examples:  

1) Traditional numerical optimization methods. 

2) Stress analysis by Finite Element Method (FEM). 

Soft Computing: 

Soft computing methods are developed based on biological approaches or physical science 

phenomena to solve real life problem where mathematics does not play control role. Soft 

computing methods have inherited imprecision tolerance and random initial state of the soft 

computing tools. This introduces a random variability in the model of mathematical systems 

very similar to random variability which exists in the real system. The algorithm developed 

based on soft computing may be computationally tractable, robust and adaptive in nature. 

Soft computing is becomes more and more popular now-a-day in different areas such as 

optimization intelligent and autonomous robot, pattern recognition, image processing etc. 

Most of the real world problems are complex to model mathematically. In such cases we use 

soft computing methods in which precision is considered to be secondary and are primarily 

interested to acceptable solution. 

Soft computing tools: 

Soft computing tools are Fuzzy Logic(FL), Genetic Algorithm(GA), Neural Networks(NN), 

Ant colony Optimization(ACO), Particle Swarm Optimization(PSO), Simulated 

Annealing(SA) and so on and two or three combinations of the above tools i.e. FL-GA, GA-

NN, GA-FL-NN, SA-GA etc. 

Features of soft computing: 

 It does not require an extensive mathematical formulation of the problem. 

 It may not be able to yield so much precise solution as that obtained by the hard 

computing methods. 

 Different members of this family are Able to perform various types of tasks. 

 FL is a powerful technique for dealing with imprecision and uncertainty. 



 NN is a potential tool for learning and adaptation. 

 GA is an important tool for searching and optimization. 

 Algorithm developed based on soft computing is an adaptive in nature. It can be 

accommodate to the changes of a dynamic environment. 

Applications: 

 Application of soft computing to handwriting recognition. 

 Application of soft computing to automotive systems and manufacturing. 

 Application of soft computing to image processing and data compression. 

 Application of soft computing to architecture. 

 Application of soft computing to decision-support systems. 

 Application of soft computing to power systems. 

 Neurofuzzy systems. 

 Fuzzy logic control. 

Hybrid Computing: 

Hybrid computing is a combination of the conventional hard computing and the emerging 

soft computing. Both these computing methods have their inherent advantages and 

disadvantages. To get the best solution a part of a problem can be solve by hard computing 

and the remaining part by soft computing. So it is demanded now a day and hybrid 

computing has been utilized by various investigators. 

Drawback of the traditional optimization techniques: 

 The final solution depends on the randomly chosen initial solution very often it gets 

stuck to local optimum. 

 For a discontinuous objective function the gradient cannot determine at the point of 

discontinuous. Hence gradient based method cannot be applied for this type of 

function. 

 These methods may not be suitable for parallel computing. 

 These methods are gives only one final optimum solution. 

Genetic Algorithm (GA) 

Genetic algorithms are computerized population based probabilistic search and optimization. 

Algorithm based on the mechanism of natural genetics and Darwin‟s principle of natural 

selection i.e. survival of fittest.  

Prof. Holland of University of Michigan proposed the concepts of this algorithm in middle of 

sixties. Several versions of GA are now-a-days available in the literature such as Binary 

Coded GA, Real Coded GA, Micro GA, Messy GA, Multi Objective GA etc. 

 

 



Working cycle of GA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowchart for GA  

 

 

 

 

Procedure Description: 

 A GA start with a population of initial solution generated at random. 

 The fitness value of the objective function for each solution is calculated. Normally 

GA works with maximization problem. For minimization problem  
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 The population solution is modified using stochastic operators-Reproduction, Cross 

Over, and Mutation. 

 

 Reproduction: As all these solution may not be equally good in terms of their 

fitness values. “Reproduction” is used to select the good solution using their 

fitness value. It forms as mating pool consisting of good solutions 

probabilistically. It may be noted that the mating pool may contain multiple copies 

of a particular good solution. The size of the mating pool is kept equal to that of 

population of solution considered before reproduction. Thus the average fitness of 

the mating pool is expected to e higher than that of the pre-reproduction 

population of solution. Reproduction schemes are  

 Proportional Selection (Roulette Wheel Selection). 

 Ranking Selection. 

 Tournament Selection. 

 

 Cross Over: The mating pairs known as parents are selected at random from the 

above pool which participates in cross-over depending on the value in an 

exchange of properties between the parents and as results new children are 

created. Normally if the parents are good children are expected to be good. 

Different cross over‟s are 

1) Single point cross over. 

2) Two points cross over. 

3) Multi-point cross over. 

4) Uniform cross over etc. 

 

 

 Mutation: In biology mutation means a sudden change of parameter on the gene 

level. In GA it is used for achieving a local change around the current solution. 

Thus if a solution get stuck at the local optimum. It helps to come out of that and 

consequently it may jump into the global basin. 

After the above three operations one generation of GA is completed and a new 

population of solution is obtained. Different criteria are used to terminate the 

program otherwise the above operations are repeated again. 



Binary Coded GA 

Let the optimization problem is 

𝑀𝑎𝑥. 𝑦 = 𝑓(𝑥1, 𝑥2)
𝑆𝑢𝑏 .𝑡𝑜     𝑥1

𝑚𝑖𝑛  ≤𝑥1≤𝑥1
𝑚𝑎𝑥

𝑥2
𝑚𝑖𝑛  ≤𝑥2≤𝑥2

𝑚𝑎𝑥

 

Where x1 and x2 are real variables. 

Step1:   (Generation of population solutions) 

An initial population of size N (say N=100, N=150 … depending on the complexity of 

problem) is selected at random. The solutions are in the form of binary strings composed of 

1‟s and 0‟s. The length of the binary string is decided based on a desired accuracy in the 

value of the variables. For example, for accuracy of ε level the accuracy of the string=L (say) 

=𝑙𝑜𝑔2

(
𝑥1
𝑚𝑎𝑥−𝑥1

𝑚𝑖𝑛

𝜀
)
. Complexity of a binary coded GA =Llog 𝐿. 

The string selected at random are  

10100…1001
01101…0101
……………………
01111…0011

 

Step2: (Fitness Evaluation) 

As x1 and x2 are real valued variables. The binary sub-strings assigned to x1 and x2 are 

decoded and corresponding real values are determined as     𝑥1 = 𝑥1
𝑚𝑖𝑛 +

𝑥1
𝑚𝑎𝑥−𝑥1

𝑚𝑖𝑛

2𝐿−1
 × 𝐷. 

Where D= decoded value of the binary sub-string. 

Similarly, 𝑥2 = 𝑥2
𝑚𝑖𝑛 +

𝑥2
𝑚𝑎𝑥−𝑥2

𝑚𝑖𝑛

2𝐿−1
 × 𝐷. 

These values of x1 and x2 are put in the function f(x1, x2) and the functional value of (x1, x2) 

represents the fitness of the corresponding population. 

Step3: (Reproduction (Proportional selection/ Roulette wheel selection)) 

In this scheme, the probability of a string being selected for the mating pool is considered to 

be proportional to its fitness. It is implemented with the help of a Roulette-Wheel as shown 

below 



                                                           

 The total surface area of the wheel is divides into N-parts (Where N is the population size) in 

proportional to the functional values f1, f2, f3…fN. The wheel is rotated in a particular 

direction (either clockwise or anti-clockwise) and a fixed pointer is used to indicate the 

winning area after it stops. 

A particular sub-area representing a GA solution is selected to be winner probabilistically. 

The probability that i
th

 area will be declared and is given by the expression p=
𝑓𝑖

 𝑓𝑖
𝑁
𝑖=1

. The 

wheel is rotated for N-times and each times only one area is identified by the pointer to be the 

winner. In this process a good string may be selected for a number of times. The procedure is 

shown below 
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Where F= 𝑓𝑖
𝑁
𝑖=1 . 

To form the mating pool a sequence of random numbers r1, r2… (Between 0 and 1)(say) are 

generated. If r1 is less than or equal to 
𝑓𝑟

 𝑓𝑖
𝑁
𝑖=1

 then the r
th

 string is selected. Similarly, we 

selected N-strings for mating pool. In this pool a good string may repeat more than once. 

Step4:  (Cross Over) 

In cross over there is an exchange of properties between the parents and as a result two 

children solution produced. Here we select the cross over probability say pc. Then the number 

of string which will go for cross over is 𝑁 × 𝑝𝑐 . 

To select the string the random numbers are generated say r11, r12, r13…. If r13≤pc then the 

string 3 is selected for cross over. Similarly first (𝑁 × 𝑝𝑐 .) strings are selected for cross over 

f1 

f2 

f3 

  

fN 



out of these string. Strings are selected in pair as parents. There are different types of cross 

over  

1. Single point cross over:  We select a cross over site lying between 1 and L-1 at 

random. where L indicates the string length. Normally left side of the string remains 

unchanged and the right side is swapped. 

Example,                                                                                  cross over site 

Parents   
0011 | 011110
1100 | 101001

  

Children   
0011 | 101001
1100 | 011110

   

2. Two points cross over: We select two different cross over sites lying between 1 and 

L-1 at random. 

Example,                                                                                               cross over sites 

Parents   
1010   1110   111 
0110   1001  011

  

Children   
1010   1001  111 
0110   1110  011

   

3. Multiple Cross over: We select different cross over sites lying between 1 and L-1 at 

random. 

Example,                                                                                           cross over sites 

Parents   
101   111   111 | 001 

011   100  011 | 101
  

Children   
101   100   111 | 101 

011   111  011 | 001
  

4. Uniform cross over: At it bit position of the parent strings we toss a coin if a head 

appears there will be a swapping of bit among the children strings otherwise they will 

remain same as parent strings. 

Step5: (Mutation) 

A mutation probability is selected and normally it is kept to a low value say pm in the range 

(
0.1

𝐿
,

1

𝐿
 ). To implement a bit-wise mutation scheme a random number lying between (0.0, 1.0) 

is created at each bit position. If this number ≤ pm at that particular bit position, then that bit 

will be mutated (i.e. 1 will be changes to 0 and vice verse). 

Limitation of Binary coded GA 

The main disadvantages of binary coded GA are the following: If we need more precision in 

the values of variables we have to assign more number of bits to represent them. To ensure a 

proper search in such a situation population size is kept to high value and as a result of which 

computational complexity of the GA increases. Thus binary coded GA may not be able to 

yield any arbitrary precision in the solution. 



GA parameters setting 

GA parameters are:  

1) Population size (N). 

2) Cross-over probability (pc). 

3) Mutation probability (pm). 

4) Maximum number of generation/ iterations (MAXGEN). 

The performance of the genetic search depends on the amount of exploration (population 

diversity) and exploitation (selection pressure). To have an effective search there must be a 

proper balance between them and to ensure this the above GA parameters are to be selected 

in the optimal sense. The optimal GA parameters are problem dependent i.e. vary from 

problem to problem. Normally cross-over probability (pc) is in range (0.6 to 1.0), Mutation 

probability (pm) is in range (0.001 to 0.011), Population size (N) is in range (50 to 150), 

Maximum number of generation/ iterations (MAXGEN) is in range (100 to 250) or (500 to 

1000) or (50 to 150). 

 

Constraint optimization problem using GA 

 

A constraint optimization problem (either Max. or Min.) may be expressed as  

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑓 𝑋 .  .    .   .   .  1 

𝑋 =  𝑥1,𝑥2 , 𝑥3 …𝑥𝑛 
 

sub. to 

𝑔𝑖 𝑋 ≤ 0, 𝑖 = 1,2, …𝑛  .   .   .  . (2)

𝑖 𝑋 ≤ 0, 𝑖 = 1,2, …𝑝  .   .   .  . (3)
 

and 

𝑥1
𝑚𝑖𝑛  ≤ 𝑥1 ≤ 𝑥1

𝑚𝑎𝑥  

𝑥2
𝑚𝑖𝑛  ≤ 𝑥2 ≤ 𝑥2

𝑚𝑎𝑥  
.    .     .    .      .    .     . 
𝑥𝑛
𝑚𝑖𝑛  ≤ 𝑥𝑛 ≤ 𝑥𝑛

𝑚𝑎𝑥  
 

There are some number of constraint handling techniques in GA which are  

1) Penalty function method/ Approach. 

2) Method of maintain a feasible population over infeasible solution. 

3) Approach aiming at preserving feasibility of solution. 

4) Approach separating the objectives and constraints. 

 

Penalty function method: In this approach the fitness function solution ( say i
th

 solution) is 

expressed by the modifying its objective function as 

Fi(X) = fi(X) ± pi .   .  .   .  .    .   . (4) 

Where pi indicates the penalty used to penalize as infeasible solution. For a feasible solution 

pi is set equal to 0.0 as for infeasible solution 

𝑝𝑖 = 𝑐   𝑄𝑖𝑘(𝑋) 2𝑞
𝑘=1 .     .    .   .   .  . (5) 



where c is the user defined penalty coefficient and  𝑄𝑖𝑘(𝑋) 2are penalty terms for the k
th

 

constraint corresponding to i
th

 objective function taking both constraints (2) and (3) into 

account here q=n+p. The above penalty could be again either static or dynamic or adaptive in 

nature. 

 

Advantages of GA 

1)  Normally its gives global optimal solution i.e. the chance of its solution for being 

trapped into the local minimum is less. 

2) They can handle the integer programming problem efficiently. 

3) As gradient information of the objective function is not required by a GA. It can 

optimize discontinuous objective function also. 

4) It is suitable for parallel implementation. 

5) The same GA with little bit of modification in the string can solve a variety of 

problem. Thus it is a versatile optimization tool. 

Disadvantages of GA 

1) It is computationally expensive and consequently has a slow convergence rate. 

2) It works like a black-box optimization tool. 

3) There is no mathematically convergence proof till-to-day. 

4) A use must have a proper knowledge how to select an appropriate set of GA 

parameters. 

 

 

 

 

 

 

 

Real coded GA 

For the real coded GA, several version of cross over and mutation are available. 

Cross over operators:  

1. Simple cross over: It is define as follows: 

If X1=(x1,x2…xq) and X2=(y1,y2…yq) are crossed after the k
th

 position the resulting off 

spring are 𝑋1
′ =(x1,x2…xk,yk+1,yk+2…yq) and 𝑋2

′ =(y1,y2…yk,xk+1,xk+2…xq). 

Example,  

X1= (x1, x2) = (-2.4, 11.5) 

X2= (y1, y2) = (4.5, 10.3) 

𝑋1
′ = (-2.4, 10.3) and 𝑋2

′ = (4.5, 11.5) 

But such an operation produces off spring outside of the domain D. To avoid this, we use 

the property of convex spaces that there exists aε[0,1]  such that    

   𝑋1
′ =(x1, x2…xk, ayk+1+(1-a) yk+1,ayk+2+(1-a) yk+2…ayq+(1-a) yq)  

and 𝑋2
′ =(y1,y2…yk, axk+1+(1-a) xk+1,axk+2+(1-a) xk+2…axq+(1-a) xq).  

2. Arithmetic Cross over: It is define as a linear combination of two vectors. If    𝑋1
𝑡  

and 𝑋2
𝑡  are crossed. The resulting off springs are 𝑋1

𝑡+1 =a𝑋1
𝑡 + (1 − 𝑎)𝑋2

𝑡    



and 𝑋2
𝑡+1 = (1-a)𝑋1

𝑡 + 𝑎𝑋2
𝑡 . Where a is either a constant (uniform arithmetic cross 

over) or a variable whose value depends on the age of population (non-uniform 

arithmetic cross over). 

Mutation operators: 

1. Random mutation: Mutated solution is obtained as prmutated =proriginal+(r-0.5)∆ 

Where r is lying between 0.0 and 1.0, ∆ is the max value of per mutation defines by the 

user.  

Example, 

Let proriginal=15.6, r=0.7, ∆=2.5 

Therefore, prmutated=1.5.6+(0.7-0.56).2.5=16.1 

2. Uniform mutation: 

This operator requires a single parent x (say) and produce a single off spring 𝑥′  (say). The 

operator selects a random component kε{1, 2…q}  of a vector x=(x1, x2…xq) and produce 

𝑥′  =(x1, x2…𝑥𝑘
′ …xq). Where 𝑥𝑘

′  is a random value (uniform probability distribution) from 

the range [𝑥𝑘
𝑚𝑖𝑛 , 𝑥𝑘

𝑚𝑎𝑥 ]. 

 

 

 

 

 

 

 

 

 

 

 
Example,   Max f(x) =

 𝑥3 − 12𝑥2  + 45x 
using real coded genetic algorithm with 0≤x≤4. 

Sol.:                 Here, range of x is 0≤x≤4 and let the population size =5. 

 
Also given probability of cross over =0.4 & probability of mutation=0.2.

  
Generate random no. between (0, 4) are 1.852, 3.828, 1.380, 1.472, and 1.776. 

Let initial population solution are𝑥1
=1.852  𝑥2

=3.828,  𝑥3
=1.380,  𝑥4

=1.472,   𝑥5
=1.776. 

 

Chromosome 

No.  

Initial 

Value of x  

Fitness value  Probability  Cumulative 

probability  

1.  1.852  48.53  0.207 
(=

48.53

234.02
)
 0.207  

2.  3.828  52.51  0.224  0.431  

3.  1.380  41.88  0.179  0.610  

4.  1.472  43.43  0.186  0.796  

5.  1.776  47.67  0.204  1.000  

  Total=234.02 



Generate random no. between (0, 1) are 

0.46, 0.30, 0.82, 0.90, and 0.56. 

Selected chromosomes are x
3

, 

x
2
, x

5
, x

5
, x

3
i.e, after selection population 

becomes
 𝑥1

′ =1.380, 𝑥2
′ =3.828, 

𝑥3
′ =1.776, 𝑥4

′ =1.776, 

𝑥5
′ =1.380. 

 
Let no. of chromosome will go for cross over =0.4×5=2 

Generate random no. between (0, 1) are 0.346, 0.130, 0.982, 0.090, and 0.656.  

Chromosomes selected for cross over are 𝑥1
′  and𝑥2

′ . (As 0.346, 0.130 are less than 0.4). 

Let λ be a random number between (0, 1) and 0.346 (say). Using arithmetic cross over off-springs are 

𝑥1
′′ = 𝜆𝑥1

′ +  1 − 𝜆 𝑥2
′ = 2.970 

𝑥2
′′ =  1 − 𝜆 𝑥1

′ + 𝜆𝑥2
′ = 2.224 

After cross over operation (arithmetic cross over) off-springs are 𝑥1
′′ =2.970, 𝑥2

′′ =2.224  

Population after cross over are𝑥1
′′ =2.970, 𝑥2

′′ =2.224, 𝑥3
′ =1.776, 𝑥4

′ =1.776, 𝑥5
′ =1.380. 

Let no. of chromosomes mutated = 0.2×5=1. 

Generate random nos. are   0.19, 0.59, 0.65, 0.45, and 0.96. 

Chromosomes to be mutated= 𝑥1
′′  (As 0.19 less than 0.2). 

Using random mutation, where r=0.55 and ∆=1.20. 

pr
mutated

=pr
original

+(r-0.5)∆ = 2.970+(0.55-0.5)×1.2 = 3.57. 

After  

mutation operator (random mutation)Population becomes 𝑥1
′′′ =3.570, 𝑥2

′′ =2.224, 𝑥3
′ =1.776, 

𝑥4
′ =1.776, 𝑥5

′ =1.380. 

After one iteration population with corresponding fitness values as follows 

 

 

 

 

 

 

 

 

Here best fitted value = 53.98, which is greater than the best fittest value at the beginning i.e. 52.51. 

 

 

 

 

 

 

Chromosome No.  Value of x  Fitness value  

1 3.570  53.98  

2 2.224  51.72  

3 1.776  47.60  

4 1.776  47.60  

5 1.380  41.87  


