
Hard Computing:

The variables are identified first and classified into two groups as input or conditional

variables or antecedents and output variables or action variable or consequents. The input and

output variables are expressed in term of the mathematical equation (say differential

equation). The differential equations are then solved by analytically or any numerical

methods. Control action is decided based on the solution of these mathematical equations.

Main features:

 It yields precise solution. Thus the control action is accurate.

 It is suitable for these problems which are easy to model mathematically and whose

stability is highly predictable.

Examples:

1) Traditional numerical optimization methods.

2) Stress analysis by Finite Element Method (FEM).

Soft Computing:

Soft computing methods are developed based on biological approaches or physical science

phenomena to solve real life problem where mathematics does not play control role. Soft

computing methods have inherited imprecision tolerance and random initial state of the soft

computing tools. This introduces a random variability in the model of mathematical systems

very similar to random variability which exists in the real system. The algorithm developed

based on soft computing may be computationally tractable, robust and adaptive in nature.

Soft computing is becomes more and more popular now-a-day in different areas such as

optimization intelligent and autonomous robot, pattern recognition, image processing etc.

Most of the real world problems are complex to model mathematically. In such cases we use

soft computing methods in which precision is considered to be secondary and are primarily

interested to acceptable solution.

Soft computing tools:

Soft computing tools are Fuzzy Logic(FL), Genetic Algorithm(GA), Neural Networks(NN),

Ant colony Optimization(ACO), Particle Swarm Optimization(PSO), Simulated

Annealing(SA) and so on and two or three combinations of the above tools i.e. FL-GA, GA-

NN, GA-FL-NN, SA-GA etc.

Features of soft computing:

 It does not require an extensive mathematical formulation of the problem.

 It may not be able to yield so much precise solution as that obtained by the hard

computing methods.

 Different members of this family are Able to perform various types of tasks.

 FL is a powerful technique for dealing with imprecision and uncertainty.

 NN is a potential tool for learning and adaptation.

 GA is an important tool for searching and optimization.

 Algorithm developed based on soft computing is an adaptive in nature. It can be

accommodate to the changes of a dynamic environment.

Applications:

 Application of soft computing to handwriting recognition.

 Application of soft computing to automotive systems and manufacturing.

 Application of soft computing to image processing and data compression.

 Application of soft computing to architecture.

 Application of soft computing to decision-support systems.

 Application of soft computing to power systems.

 Neurofuzzy systems.

 Fuzzy logic control.

Hybrid Computing:

Hybrid computing is a combination of the conventional hard computing and the emerging

soft computing. Both these computing methods have their inherent advantages and

disadvantages. To get the best solution a part of a problem can be solve by hard computing

and the remaining part by soft computing. So it is demanded now a day and hybrid

computing has been utilized by various investigators.

Drawback of the traditional optimization techniques:

 The final solution depends on the randomly chosen initial solution very often it gets

stuck to local optimum.

 For a discontinuous objective function the gradient cannot determine at the point of

discontinuous. Hence gradient based method cannot be applied for this type of

function.

 These methods may not be suitable for parallel computing.

 These methods are gives only one final optimum solution.

Genetic Algorithm (GA)

Genetic algorithms are computerized population based probabilistic search and optimization.

Algorithm based on the mechanism of natural genetics and Darwin‟s principle of natural

selection i.e. survival of fittest.

Prof. Holland of University of Michigan proposed the concepts of this algorithm in middle of

sixties. Several versions of GA are now-a-days available in the literature such as Binary

Coded GA, Real Coded GA, Micro GA, Messy GA, Multi Objective GA etc.

Working cycle of GA

Flowchart for GA

Procedure Description:

 A GA start with a population of initial solution generated at random.

 The fitness value of the objective function for each solution is calculated. Normally

GA works with maximization problem. For minimization problem

Start

Initialize a population of

solution Gen=0

Is
Gen>=MaxGen

Print the

optimum result Reproduction

Evaluate fitness for all solution

in the population

End
Cross Over

Mutation

Gen=Gen+1

Yes

No

Min f(X) =

𝑀𝑎𝑥 {−𝑓(𝑋)}

𝑀𝑎𝑥
1

𝑓(𝑋)
 ,𝑓(𝑋)≠0

𝑀𝑎𝑥
1

1+𝑓(𝑋)
 ,𝑓(𝑋)≥0

𝑀𝑎𝑥
1

1+{𝑓(𝑋)}2 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 .

 The population solution is modified using stochastic operators-Reproduction, Cross

Over, and Mutation.

 Reproduction: As all these solution may not be equally good in terms of their

fitness values. “Reproduction” is used to select the good solution using their

fitness value. It forms as mating pool consisting of good solutions

probabilistically. It may be noted that the mating pool may contain multiple copies

of a particular good solution. The size of the mating pool is kept equal to that of

population of solution considered before reproduction. Thus the average fitness of

the mating pool is expected to e higher than that of the pre-reproduction

population of solution. Reproduction schemes are

 Proportional Selection (Roulette Wheel Selection).

 Ranking Selection.

 Tournament Selection.

 Cross Over: The mating pairs known as parents are selected at random from the

above pool which participates in cross-over depending on the value in an

exchange of properties between the parents and as results new children are

created. Normally if the parents are good children are expected to be good.

Different cross over‟s are

1) Single point cross over.

2) Two points cross over.

3) Multi-point cross over.

4) Uniform cross over etc.

 Mutation: In biology mutation means a sudden change of parameter on the gene

level. In GA it is used for achieving a local change around the current solution.

Thus if a solution get stuck at the local optimum. It helps to come out of that and

consequently it may jump into the global basin.

After the above three operations one generation of GA is completed and a new

population of solution is obtained. Different criteria are used to terminate the

program otherwise the above operations are repeated again.

Binary Coded GA

Let the optimization problem is

𝑀𝑎𝑥. 𝑦 = 𝑓(𝑥1, 𝑥2)
𝑆𝑢𝑏 .𝑡𝑜 𝑥1

𝑚𝑖𝑛 ≤𝑥1≤𝑥1
𝑚𝑎𝑥

𝑥2
𝑚𝑖𝑛 ≤𝑥2≤𝑥2

𝑚𝑎𝑥

Where x1 and x2 are real variables.

Step1: (Generation of population solutions)

An initial population of size N (say N=100, N=150 … depending on the complexity of

problem) is selected at random. The solutions are in the form of binary strings composed of

1‟s and 0‟s. The length of the binary string is decided based on a desired accuracy in the

value of the variables. For example, for accuracy of ε level the accuracy of the string=L (say)

=𝑙𝑜𝑔2

(
𝑥1
𝑚𝑎𝑥−𝑥1

𝑚𝑖𝑛

𝜀
)
. Complexity of a binary coded GA =Llog 𝐿.

The string selected at random are

10100…1001
01101…0101
……………………
01111…0011

Step2: (Fitness Evaluation)

As x1 and x2 are real valued variables. The binary sub-strings assigned to x1 and x2 are

decoded and corresponding real values are determined as 𝑥1 = 𝑥1
𝑚𝑖𝑛 +

𝑥1
𝑚𝑎𝑥−𝑥1

𝑚𝑖𝑛

2𝐿−1
 × 𝐷.

Where D= decoded value of the binary sub-string.

Similarly, 𝑥2 = 𝑥2
𝑚𝑖𝑛 +

𝑥2
𝑚𝑎𝑥−𝑥2

𝑚𝑖𝑛

2𝐿−1
 × 𝐷.

These values of x1 and x2 are put in the function f(x1, x2) and the functional value of (x1, x2)

represents the fitness of the corresponding population.

Step3: (Reproduction (Proportional selection/ Roulette wheel selection))

In this scheme, the probability of a string being selected for the mating pool is considered to

be proportional to its fitness. It is implemented with the help of a Roulette-Wheel as shown

below

 The total surface area of the wheel is divides into N-parts (Where N is the population size) in

proportional to the functional values f1, f2, f3…fN. The wheel is rotated in a particular

direction (either clockwise or anti-clockwise) and a fixed pointer is used to indicate the

winning area after it stops.

A particular sub-area representing a GA solution is selected to be winner probabilistically.

The probability that i
th

 area will be declared and is given by the expression p=
𝑓𝑖

 𝑓𝑖
𝑁
𝑖=1

. The

wheel is rotated for N-times and each times only one area is identified by the pointer to be the

winner. In this process a good string may be selected for a number of times. The procedure is

shown below

Code No. Of

GA string

GA string

fitness

Probability Of

being selection

1 𝑓1 𝑓1

𝐹

2 𝑓2 𝑓2

𝐹

3 𝑓3 𝑓3

𝐹

.

.

.

.

.

.

.

.

.

N 𝑓𝑁 𝑓𝑁
𝐹

Where F= 𝑓𝑖
𝑁
𝑖=1 .

To form the mating pool a sequence of random numbers r1, r2… (Between 0 and 1)(say) are

generated. If r1 is less than or equal to
𝑓𝑟

 𝑓𝑖
𝑁
𝑖=1

 then the r
th

 string is selected. Similarly, we

selected N-strings for mating pool. In this pool a good string may repeat more than once.

Step4: (Cross Over)

In cross over there is an exchange of properties between the parents and as a result two

children solution produced. Here we select the cross over probability say pc. Then the number

of string which will go for cross over is 𝑁 × 𝑝𝑐 .

To select the string the random numbers are generated say r11, r12, r13…. If r13≤pc then the

string 3 is selected for cross over. Similarly first (𝑁 × 𝑝𝑐 .) strings are selected for cross over

f1

f2

f3

fN

out of these string. Strings are selected in pair as parents. There are different types of cross

over

1. Single point cross over: We select a cross over site lying between 1 and L-1 at

random. where L indicates the string length. Normally left side of the string remains

unchanged and the right side is swapped.

Example, cross over site

Parents
0011 | 011110
1100 | 101001

Children
0011 | 101001
1100 | 011110

2. Two points cross over: We select two different cross over sites lying between 1 and

L-1 at random.

Example, cross over sites

Parents
1010 1110 111
0110 1001 011

Children
1010 1001 111
0110 1110 011

3. Multiple Cross over: We select different cross over sites lying between 1 and L-1 at

random.

Example, cross over sites

Parents
101 111 111 | 001

011 100 011 | 101

Children
101 100 111 | 101

011 111 011 | 001

4. Uniform cross over: At it bit position of the parent strings we toss a coin if a head

appears there will be a swapping of bit among the children strings otherwise they will

remain same as parent strings.

Step5: (Mutation)

A mutation probability is selected and normally it is kept to a low value say pm in the range

(
0.1

𝐿
,

1

𝐿
). To implement a bit-wise mutation scheme a random number lying between (0.0, 1.0)

is created at each bit position. If this number ≤ pm at that particular bit position, then that bit

will be mutated (i.e. 1 will be changes to 0 and vice verse).

Limitation of Binary coded GA

The main disadvantages of binary coded GA are the following: If we need more precision in

the values of variables we have to assign more number of bits to represent them. To ensure a

proper search in such a situation population size is kept to high value and as a result of which

computational complexity of the GA increases. Thus binary coded GA may not be able to

yield any arbitrary precision in the solution.

GA parameters setting

GA parameters are:

1) Population size (N).

2) Cross-over probability (pc).

3) Mutation probability (pm).

4) Maximum number of generation/ iterations (MAXGEN).

The performance of the genetic search depends on the amount of exploration (population

diversity) and exploitation (selection pressure). To have an effective search there must be a

proper balance between them and to ensure this the above GA parameters are to be selected

in the optimal sense. The optimal GA parameters are problem dependent i.e. vary from

problem to problem. Normally cross-over probability (pc) is in range (0.6 to 1.0), Mutation

probability (pm) is in range (0.001 to 0.011), Population size (N) is in range (50 to 150),

Maximum number of generation/ iterations (MAXGEN) is in range (100 to 250) or (500 to

1000) or (50 to 150).

Constraint optimization problem using GA

A constraint optimization problem (either Max. or Min.) may be expressed as

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑓 𝑋 1

𝑋 = 𝑥1,𝑥2 , 𝑥3 …𝑥𝑛

sub. to

𝑔𝑖 𝑋 ≤ 0, 𝑖 = 1,2, …𝑛 (2)

𝑖 𝑋 ≤ 0, 𝑖 = 1,2, …𝑝 (3)

and

𝑥1
𝑚𝑖𝑛 ≤ 𝑥1 ≤ 𝑥1

𝑚𝑎𝑥

𝑥2
𝑚𝑖𝑛 ≤ 𝑥2 ≤ 𝑥2

𝑚𝑎𝑥
.
𝑥𝑛
𝑚𝑖𝑛 ≤ 𝑥𝑛 ≤ 𝑥𝑛

𝑚𝑎𝑥

There are some number of constraint handling techniques in GA which are

1) Penalty function method/ Approach.

2) Method of maintain a feasible population over infeasible solution.

3) Approach aiming at preserving feasibility of solution.

4) Approach separating the objectives and constraints.

Penalty function method: In this approach the fitness function solution (say i
th

 solution) is

expressed by the modifying its objective function as

Fi(X) = fi(X) ± pi (4)

Where pi indicates the penalty used to penalize as infeasible solution. For a feasible solution

pi is set equal to 0.0 as for infeasible solution

𝑝𝑖 = 𝑐 𝑄𝑖𝑘(𝑋) 2𝑞
𝑘=1 (5)

where c is the user defined penalty coefficient and 𝑄𝑖𝑘(𝑋) 2are penalty terms for the k
th

constraint corresponding to i
th

 objective function taking both constraints (2) and (3) into

account here q=n+p. The above penalty could be again either static or dynamic or adaptive in

nature.

Advantages of GA

1) Normally its gives global optimal solution i.e. the chance of its solution for being

trapped into the local minimum is less.

2) They can handle the integer programming problem efficiently.

3) As gradient information of the objective function is not required by a GA. It can

optimize discontinuous objective function also.

4) It is suitable for parallel implementation.

5) The same GA with little bit of modification in the string can solve a variety of

problem. Thus it is a versatile optimization tool.

Disadvantages of GA

1) It is computationally expensive and consequently has a slow convergence rate.

2) It works like a black-box optimization tool.

3) There is no mathematically convergence proof till-to-day.

4) A use must have a proper knowledge how to select an appropriate set of GA

parameters.

Real coded GA

For the real coded GA, several version of cross over and mutation are available.

Cross over operators:

1. Simple cross over: It is define as follows:

If X1=(x1,x2…xq) and X2=(y1,y2…yq) are crossed after the k
th

 position the resulting off

spring are 𝑋1
′ =(x1,x2…xk,yk+1,yk+2…yq) and 𝑋2

′ =(y1,y2…yk,xk+1,xk+2…xq).

Example,

X1= (x1, x2) = (-2.4, 11.5)

X2= (y1, y2) = (4.5, 10.3)

𝑋1
′ = (-2.4, 10.3) and 𝑋2

′ = (4.5, 11.5)

But such an operation produces off spring outside of the domain D. To avoid this, we use

the property of convex spaces that there exists aε[0,1] such that

 𝑋1
′ =(x1, x2…xk, ayk+1+(1-a) yk+1,ayk+2+(1-a) yk+2…ayq+(1-a) yq)

and 𝑋2
′ =(y1,y2…yk, axk+1+(1-a) xk+1,axk+2+(1-a) xk+2…axq+(1-a) xq).

2. Arithmetic Cross over: It is define as a linear combination of two vectors. If 𝑋1
𝑡

and 𝑋2
𝑡 are crossed. The resulting off springs are 𝑋1

𝑡+1 =a𝑋1
𝑡 + (1 − 𝑎)𝑋2

𝑡

and 𝑋2
𝑡+1 = (1-a)𝑋1

𝑡 + 𝑎𝑋2
𝑡 . Where a is either a constant (uniform arithmetic cross

over) or a variable whose value depends on the age of population (non-uniform

arithmetic cross over).

Mutation operators:

1. Random mutation: Mutated solution is obtained as prmutated =proriginal+(r-0.5)∆

Where r is lying between 0.0 and 1.0, ∆ is the max value of per mutation defines by the

user.

Example,

Let proriginal=15.6, r=0.7, ∆=2.5

Therefore, prmutated=1.5.6+(0.7-0.56).2.5=16.1

2. Uniform mutation:

This operator requires a single parent x (say) and produce a single off spring 𝑥′ (say). The

operator selects a random component kε{1, 2…q} of a vector x=(x1, x2…xq) and produce

𝑥′ =(x1, x2…𝑥𝑘
′ …xq). Where 𝑥𝑘

′ is a random value (uniform probability distribution) from

the range [𝑥𝑘
𝑚𝑖𝑛 , 𝑥𝑘

𝑚𝑎𝑥].

Example, Max f(x) =

 𝑥3 − 12𝑥2 + 45x
using real coded genetic algorithm with 0≤x≤4.

Sol.: Here, range of x is 0≤x≤4 and let the population size =5.

Also given probability of cross over =0.4 & probability of mutation=0.2.

Generate random no. between (0, 4) are 1.852, 3.828, 1.380, 1.472, and 1.776.

Let initial population solution are𝑥1
=1.852 𝑥2

=3.828, 𝑥3
=1.380, 𝑥4

=1.472, 𝑥5
=1.776.

Chromosome

No.

Initial

Value of x

Fitness value Probability Cumulative

probability

1. 1.852 48.53 0.207
(=

48.53

234.02
)
 0.207

2. 3.828 52.51 0.224 0.431

3. 1.380 41.88 0.179 0.610

4. 1.472 43.43 0.186 0.796

5. 1.776 47.67 0.204 1.000

 Total=234.02

Generate random no. between (0, 1) are

0.46, 0.30, 0.82, 0.90, and 0.56.

Selected chromosomes are x
3

,

x
2
, x

5
, x

5
, x

3
i.e, after selection population

becomes
 𝑥1

′ =1.380, 𝑥2
′ =3.828,

𝑥3
′ =1.776, 𝑥4

′ =1.776,

𝑥5
′ =1.380.

Let no. of chromosome will go for cross over =0.4×5=2

Generate random no. between (0, 1) are 0.346, 0.130, 0.982, 0.090, and 0.656.

Chromosomes selected for cross over are 𝑥1
′ and𝑥2

′ . (As 0.346, 0.130 are less than 0.4).

Let λ be a random number between (0, 1) and 0.346 (say). Using arithmetic cross over off-springs are

𝑥1
′′ = 𝜆𝑥1

′ + 1 − 𝜆 𝑥2
′ = 2.970

𝑥2
′′ = 1 − 𝜆 𝑥1

′ + 𝜆𝑥2
′ = 2.224

After cross over operation (arithmetic cross over) off-springs are 𝑥1
′′ =2.970, 𝑥2

′′ =2.224

Population after cross over are𝑥1
′′ =2.970, 𝑥2

′′ =2.224, 𝑥3
′ =1.776, 𝑥4

′ =1.776, 𝑥5
′ =1.380.

Let no. of chromosomes mutated = 0.2×5=1.

Generate random nos. are 0.19, 0.59, 0.65, 0.45, and 0.96.

Chromosomes to be mutated= 𝑥1
′′ (As 0.19 less than 0.2).

Using random mutation, where r=0.55 and ∆=1.20.

pr
mutated

=pr
original

+(r-0.5)∆ = 2.970+(0.55-0.5)×1.2 = 3.57.

After

mutation operator (random mutation)Population becomes 𝑥1
′′′ =3.570, 𝑥2

′′ =2.224, 𝑥3
′ =1.776,

𝑥4
′ =1.776, 𝑥5

′ =1.380.

After one iteration population with corresponding fitness values as follows

Here best fitted value = 53.98, which is greater than the best fittest value at the beginning i.e. 52.51.

Chromosome No. Value of x Fitness value

1 3.570 53.98

2 2.224 51.72

3 1.776 47.60

4 1.776 47.60

5 1.380 41.87

