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Fuzzy logic

Fuzzy logic is useful in representing human knowledge
in a specific domain of application and reasoning with
that knowledge to make useful inferences or actions.

Fuzzy logic is a form of multi-valued logic derived from
fuzzy set theory to deal with reasoning that is
approximate rather than precise. Fuzzy logic is not a
vague logic system, but a system of logic for dealing
with vague concepts.

Fuzzy logic is a logic; its ultimate goal is to provide
foundations for approximate reasoning using imprecise
propositions based on fuzzy set theory, in a way similar
to the classical reasoning using precise propositions
based on the classical set theory.
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Fuzzy System

A Fuzzy System can be contrasted with a conventional (crisp)
system in three main ways:

A Linguistic Variable is defined as a variable whose
values are sentences in a natural or artificial language.
Thus, “if tall”, “not tall”, “very tall”, “very very tall”,
etc. are values of height, then height is a linguistic
variable.

Fuzzy Conditional Statements are expressions of the
form “If Ã THEN B̃”, where Ã and B̃ have fuzzy
meaning, e.g. “If x is small THEN y is large”, where
small and large are viewed as labels of fuzzy sets.

A Fuzzy Algorithm is an ordered sequence of
instructions which may contain fuzzy assignment and
fuzzy conditional statements, e.g., x = very small, IF x
is small THEN y is large. The execution of such
instructions is governed by the compositional rule of
inference.
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Fuzzy System

There are two important ideas in fuzzy systems theory:
The real world is too complicated for precise
descriptions to be obtained; therefore, approximation
(or fuzziness) must be introduced in order to obtain a
reasonable model.

Now-a-days, human knowledge becomes increasingly
important. We need a theory to formulate human
knowledge in a systematic manner and put it into
engineering systems, together with other information
like mathematical models and sensory measurements.
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Fuzzy Relations

Let X, Y be universal sets, then

R̃ = {((x, y), µR̃(x, y)) : (x, y) ∈ X × Y }

is called a fuzzy relation inX×Y . A fuzzy relation R̃ is a mapping
from the Cartesian space X × Y to the interval [0, 1], where the
strength of the mapping is expressed by the membership function
of ordered pairs from the two universes, or µR̃(x, y).
For discrete supports, fuzzy relations can be defined by matrices.
For example, let X = Y, A = {a1, a2, a3, a4} = {1, 2, 3, 4} and
B = {b1, b2, b3} = {0, 1, 2}. Then the following matrix expresses

a fuzzy relation R̃1 which is defined as “a is considerably larger
than b”

R̃1 :


b1 b2 b3

a1 0.6 0.6 0
a2 0.8 0.7 0
a3 0.9 0.8 0.4
a4 1.0 0.9 0.5
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Operations on Fuzzy Relations

Let R̃ and S̃ be fuzzy relations on the Cartesian space X × Y .
Then the following operations apply for the membership values
for various set operations:

Union : µR̃∪S̃(x, y) = max(µR̃(x, y), µS̃(x, y)) (1)

Intersection : µR̃∩S̃(x, y) = min(µR̃(x, y), µS̃(x, y)) (2)

Complement : µR̃′(x, y) = 1− µR̃(x, y) (3)

Containment : R̃ ⊂ S̃ ⇒ µR̃(x, y) ≤ µS̃(x, y) (4)

Let R̃2 be the fuzzy relation defined as “a is considerably close
to b” and expresses by the following matrix:

R̃2 :


b1 b2 b3

a1 0.2 0.2 0.5
a2 0.1 0.1 1.0
a3 0.0 0.0 0.3
a4 0.0 0.0 0.5
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Operations on Fuzzy Relations

Then,

R̃1 ∪ R̃2 :


b1 b2 b3

a1 0.6 0.6 0.5
a2 0.8 0.7 1.0
a3 0.9 0.8 0.4
a4 1.0 0.9 0.5


and

R̃1 ∩ R̃2 :


b1 b2 b3

a1 0.2 0.2 0.0
a2 0.1 0.1 0.0
a3 0.0 0.0 0.3
a4 0.0 0.0 0.5


Here, in this example, R̃1 ∪ R̃2 means that “a is either consider-
ably larger than or considerably close to b”, and R̃1 ∩ R̃2 means
that “a is considerably larger than, as well as considerably close
to b”.
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Max-Min composition

Example 2.1.

Find the relational matrix of the concept “a young tall man”,
where “Young man”= 0

15 + 0.5
20 + 1

25 + 0.5
30 + 0

35 and “Tall man”

= 0
170 + 0.5

175 + 1
180 + 1

185 + 1
190 .

Fuzzy relations in different product spaces can be combined with
each other by composition. Among some other important com-
positions, the max-min composition is the most useful one in
applications.
Let R̃1(x, y) and R̃2(y, z) be two fuzzy relations. Their max-min

composition is defined to be the new relation R̃(x, z) = R̃1(x, y)◦
R̃2(y, z) with the membership function

µR̃(x, z) = max
y∈Y
{min{µR̃1

(x, y), µR̃2
(y, z)}}, (x, z) ∈ X × Z
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Max-Min composition

Example 2.2.

R̃1 is a relation that describes an interconnection between color
and ripeness of a tomato, and R̃2 represents an interconnection
between ripeness and taste of a tomato. Present a fuzzy
relational matrices for the MAX-MIN compositions. Where

R̃1 :

(Unripe Semiripe Ripe

Green 1 0.5 0
Y ellow 0.3 1 0.4
Red 0 0.2 1

)

and R̃2 :

(Sour Sweet− sour Sweet

Unripe 1 0.2 0
Semiripe 0.7 1 0.3
Ripe 0 0.7 1

)

Dr. R. N. Giri Fuzzy Logic



Introduction Fuzzy Relations Classical reasoning Fuzzy Proposition Fuzzy Rules Fuzzy Inference Defuzzification methods Fuzzy Inference System

Classical reasoning

We first recall how the classical reasoning works for precise propo-
sitions with two-valued logic. The following syllogism is an ex-
ample of such reasoning in linguistic terms:

(i). Everyone who is 40 years old or older is old.

(ii). David is 40 years old and Mary is 39 years old.

(iii). David is old but Mary is not.

This is a very precise deductive inference, correct in the sense of
the two-valued logic.
In this classical (precise) reasoning using the two-valued logic,
when the (output) logical variable represented by a logical for-
mula is always true regardless of the truth values of the (input)
logical variables, it is called a tautology. If, on the contrary, it
is always false, then it is called a contradiction. Various tau-
tologies can be used for making deductive inferences, which are
referred to as inference rules.
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Classical reasoning

The four frequently used inference rules in classical reasoning are:

modus ponens: (p ∧ (p⇒ q))⇒ q (5)

modus tollens: (q̄ ∧ (p⇒ q))⇒ p̄ (6)

syllogism: (p⇒ q) ∧ (q ⇒ r)⇒ (p⇒ r) (7)

contraposition: (p⇒ q)⇒ (q̄ ⇒ p̄) (8)

These inference rules are very easily understood and, indeed, have
been commonly used in one’s daily life. For example, the modus

ponens is interpreted as follows:

IF “p is true” AND the statement “IF p is true THEN q
is true” is true THEN “q is true”.

Using this logic, we see that the deductive inference

IF “40 years old or older is old” AND “IF 40 years old
or older is old THEN David is old” THEN “David is old”

is a modus ponens.
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Classical reasoning

The deductive inference
IF “Mary is not old” AND “IF Mary is 40 years old or
older THEN Mary is old” THEN “Mary is not 40 years
old or older”

is a modus tollens.
With the above discussion in mind, we now consider the following
example of approximate reasoning in linguistic terms that cannot
be handled by the classical (precise) reasoning using two-valued
logic:

(i). Everyone who is 40 to 70 years old is old but is very old if
he (she) is 71 years old or above; everyone who is 20 to 39
years old is young but is very young if he (she) is 19 years
old or below.

(ii). David is 40 years old and Mary is 39 years old.

(iii). David is old but not very old; Mary is young but not very
young.
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Classical reasoning

This is of course a meaningful deductive inference, which has
been frequently used in one’s daily life. This is an example
of what is called approximate reasoning.
In order to deal with such imprecise inference, fuzzy logic
can be employed. Briefly, fuzzy logic allows the imprecise
linguistic terms such as:

fuzzy predicates: old, rare, severe, expensive, high, fast

fuzzy quantifiers: many, few, usually, almost, little,
much

fuzzy truth values: very true, true, unlikely true, mostly
false, false, definitely false
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Fuzzy Proposition

A fuzzy logic proposition, P̃ , is a statement involving some
concept without clearly defined boundaries. Linguistic state-
ments that tend to express subjective ideas and that can be
interpreted slightly different by various individuals typically
involve fuzzy propositions. Most natural language is fuzzy,
in that it involves vague and imprecise terms. Statements
describing a person’s height or weight or assessments of peo-
ple’s preferences about colors or menus can be used as ex-
amples of fuzzy propositions. The truth value assigned to P̃
can be any value on the interval [0, 1]. The assignment of
the truth value to a proposition is actually a mapping from
the universe U to the interval [0, 1] of truth values, T, given
as

T : u ∈ U → [0, 1]
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Fuzzy Proposition and Connectives

We assign a fuzzy proposition to a fuzzy set in the universe of discourse.
Suppose fuzzy proposition P̃ is assigned to fuzzy set Ã; then the truth
value of a proposition, denoted T (P̃ ), is given by

T (P̃ ) = µÃ(x), where 0 ≤ µÃ(x) ≤ 1 (9)

Equation (9) indicates that the degree of truth for the proposition P̃ :

x ∈ Ã is equal to the membership grade of x in the fuzzy set Ã.
The logical connectives of negation, disjunction, conjunction, and im-
plication are also defined for a fuzzy logic. These connectives for two
simple propositions: proposition P̃ defined on fuzzy set Ã and propo-
sition Q̃ defined on fuzzy set B̃, are given as:

Negation: T ( ¯̃P ) = 1− T (P̃ ) (10)

Disjunction: P̃ ∨ Q̃ : x is Ã or B̃, T (P̃ ∨ Q̃) = max(T (P̃ ), T (Q̃))(11)

Conjunction: P̃ ∧ Q̃ : x is Ã and B̃, T (P̃ ∧ Q̃) = min(T (P̃ ), T (Q̃))(12)

Implication: P̃ → Q̃ : x is Ã, then x is B̃, T (P̃ → Q̃) = T ( ¯̃P ∨ Q̃)(13)
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Fuzzy Rules

In the field of artificial intelligence there are various ways to represent
knowledge. The most common way to represent human knowledge is
to form it into natural language expressions of the type

IF premise (antecedent), THEN conclusion (consequent)

The form in above expression is commonly referred to as the IF-THEN
rule-based form.
The implication connective can be modelled in rule-based form;

P̃ → Q̃ is, IF x is Ã, THEN y is B̃

and it is equivalent to the following fuzzy relation, R̃ = (Ã×B̃)∪( ¯̃A×Y ).

The membership function of R̃ is expressed by the following formula:

µR̃(x, y) = max[(µÃ(x) ∧ µB̃(y)), (1− µÃ(x))] (14)

When the logical conditional implication is of the compound form;

IF x is Ã, THEN y is B̃, ELSE y is C̃

and it is equivalent to the following fuzzy relation, R̃ = (Ã×B̃)∪( ¯̃A×C̃).

The membership function of R̃ is expressed by the following formula:

µR̃(x, y) = max[(µÃ(x) ∧ µB̃(y)), ((1− µÃ(x)) ∧ µC̃(y))] (15)
Dr. R. N. Giri Fuzzy Logic
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Fuzzy Rules

Table 1: The canonical form for a fuzzy rule-based system

Rule 1 : IF condition C1 , THEN restriction R1

Rule 2: IF condition C2, THEN restriction R2

.

.

.
Rule r: IF condition Cr, THEN restriction Rr

By using the basic properties and operations defined for fuzzy sets,
any compound rule structure may be decomposed and reduced to a
number of simple canonical rules as given in Table 1. The fuzzy level
of understanding and describing a complex system is expressed in the
form of a set of restrictions on the output based on certain conditions
of the input. These restriction statements are usually connected by
linguistic connectives such as “AND”, “OR”, or “ELSE”. The most
common structures for decomposition of fuzzy rules are follows:
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Fuzzy Rules

Multiple conjunctive antecedents: Let the fuzzy rule of the form:

IF x is Ã1 AND Ã2 AND . . . AND ÃL THEN y is B̃s

Assuming a new fuzzy subset Ãs as

Ãs = Ã1 ∩ Ã2 ∩ . . . ∩ ÃL

expressed by means of membership function

µÃs(x) = min[µÃ1(x), µÃ2(x), . . .µÃL(x)]

based on the definition of the standard fuzzy intersection operation,
the compound rule may be rewritten as

IF x is Ãs THEN y is B̃s

Multiple disjunctive antecedents: Let the fuzzy rule of the form:

IF x is Ã1 OR Ã2 OR . . . OR ÃL THEN y is B̃s

could be rewritten as IF x is Ãs THEN y is B̃s, where the fuzzy set Ãs

is defined as
Ãs = Ã1 ∪ Ã2 ∪ . . . ∪ ÃL

µÃs(x) = max[µÃ1(x), µÃ2(x), . . .µÃL(x)]
which is based on the definition of the standard fuzzy union operation.
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Fuzzy Rules

Aggregation of fuzzy rules:
Most rule-based systems involve more than one rule. The pro-
cess of obtaining the overall consequent (conclusion) from the
individual consequents contributed by each rule in the rule-base
is known as aggregation of rules. In determining an aggregation
strategy, two simple extreme cases exist

1. Conjunctive system of rules: In the case of a system of
rules that must be jointly satisfied, the rules are connected
by “AND” connectives. In this case the aggregated output
(consequent), B̃, is found by the fuzzy intersection of all

individual rule consequents, B̃i, where i = 1, 2, . . . r as

B̃ = B̃1AND B̃2AND . . . AND B̃r

or, B̃ = B̃1 ∩ B̃2 ∩ . . . ∩ B̃r, which is defined by the
membership function

µB̃(y) = min[µB̃1(y), µB̃2(y), . . . , µB̃r(y)], for y ∈ Y
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Fuzzy Rules

2. Disjunctive system of rules: For the case of a
disjunctive system of rules where the satisfaction of at least
one rule is required, the rules are connected by the “OR”
connectives. In this case the aggregated output is found by
the fuzzy union of all individual rule contributions, as

B̃ = B̃1OR B̃2OR . . . OR B̃r

or, B̃ = B̃1 ∪ B̃2 ∪ . . . ∪ B̃r which is defined by the
membership function

µB̃(y) = max[µB̃1(y), µB̃2(y), . . . , µB̃r(y)], for y ∈ Y

Dr. R. N. Giri Fuzzy Logic
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Fuzzy Inference

The aim of fuzzy logic is to provide foundations for approximate rea-
soning with imprecise propositions using fuzzy set theory as the prin-
cipal tool. In order to achieve this goal, the generalized modus ponens,
generalized modus tollens, and generalized hypothetical syllogism were
proposed, which are the fundamental principles in fuzzy logic. These
generalization are based on compositional rule of inference.
Generalized Modus Ponens: The modus ponens of the classical
logic cannot be used in the fuzzy logic environment because such an
inference can take place if, and only if, the fact or premise is exactly
the same as the antecedent of the IF-THEN rule. In fuzzy logic the
generalized modus ponens is used. It allows an inference when the
antecedent is only partly known or when the fact is only similar but
not equal to it. The modus ponens is generalized to get fuzzy inference
rules as follows

Implication: IF x is Ã THEN y is B̃
Fact: x is Ã′

Conclusion: y is B̃′

For fuzzy sets Ã, Ã′, B̃ and B̃′ and given fuzzy propositions (fact
or premise and implication), we infer a new fuzzy proposition for the

conclusion such that closer the set Ã′ to Ã, the closer the set B̃′ and
B̃. Dr. R. N. Giri Fuzzy Logic
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Fuzzy Inference

To compute the membership function of B̃′, the max-min
composition of fuzzy set Ã′ with the fuzzy relation R̃, which
is known implication relation (IF-THEN rule) is used i.e.

B̃′ = Ã′ ◦ R̃
In terms of membership function,

µB̃′(y) = max
x∈X

[min[µÃ′(x), µR̃(x, y)]]

A typical problem in this fuzzy approximate reasoning is as
follows:

Implication: “a red apple is a ripe apple”
Fact: “the apple is very red”
Conclusion: “the apple is very ripe”
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Fuzzy Inference

Generalized Modus Tollens: The classical Modus Tollens
can be framed for fuzzy inference rules as follows:

Implication: IF x is Ã THEN y is B̃
Fact: y is B̃′

Conclusion: x is Ã′

For fuzzy sets Ã, Ã′, B̃ and B̃′ and given fuzzy proposi-
tions (fact or premise and implication), we infer a new fuzzy
proposition for the conclusion such that closer the set Ã′ to
Ã, the closer the set B̃′ and B̃.
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Fuzzy Inference

To compute the membership function of Ã′, the max-min compo-
sition of fuzzy set B̃′ with the fuzzy relation R̃, which is known
implication relation (IF-THEN rule) is used i.e.

Ã′ = R̃ ◦ B̃′

In terms of membership function,

µÃ′(y) = max
y∈Y

[min[µB̃′(y), µR̃(x, y)]]

A typical problem in this fuzzy approximate reasoning is as fol-
lows:

Implication: “If Rabi is much younger then he can work more”
Fact: “Rabi cannot work much”
Conclusion: “Rabi is not so young”
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Fuzzy Inference

Generalized Hypothetical Syllogism: We now take up the
extension of the classical Hypothetical Syllogism to generalized
fuzzy hypothetical syllogism based on two conditional fuzzy pro-
duction rules. This may be stated as follows:

Implication 1: IF x is Ã THEN y is B̃
Implication 2: y is B̃′ THEN z is C̃

Conclusion: x is Ã THEN z is C̃ ′

For the fuzzy sets Ã, B̃, B̃′, C̃ and C̃ ′ and fuzzy propositions
(implications 1, 2), the new fuzzy proposition in the conclusion

is inferred such that closer the set B̃ to B̃′, the closer the set C̃ ′

to C̃.
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Fuzzy Inference

To compute the membership function of the fuzzy relation cor-
responding to the conclusion, R̃c, the max-min composition of
fuzzy relations corresponding to the implications 1 and 2, R̃1

and R̃2, is used i.e.
R̃c = R̃1 ◦ R̃2

In terms of membership function,

µR̃c
(x, z) = max

y∈Y
[min[µR̃1

(x, y), µR̃2
(y, z)]]

A typical problem in this fuzzy approximate reasoning is as fol-
lows:

Implication 1: “If tomato is ripe then it taste sweet”
Implication 2: “The sweet tomato is much red”
Conclusion: “The ripe tomato is red”
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Defuzzification methods

Defuzzification refers to the way of a crisp value expected from
fuzzy sets as a representative. In general, there are seven methods
used for defuzzifying the fuzzy output functions. They are:

(1) Max-membership principle: This method is given by the
expression,

µC̃(z∗) ≥ µC̃(z) for all z ∈ Z.
This method is also referred as height method.

(2) Centroid method: This is the most widely used method.
This can be called as center of gravity or center of area
method. It can be defined by the algebraic expression

z∗ =

∫
Z µC̃(z)zdz∫
Z µC̃(z)dz∫

is used for algebraic integration.

Dr. R. N. Giri Fuzzy Logic
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Defuzzification methods

(3) Weighted average method: This method cannot be used for asymmetrical
output membership functions, can be used only for symmetrical output
membership functions. Weighting each membership function in the obtained
output by its largest membership value forms this method. The evaluation
expression for this method is

z∗ =

∑
µC̃(z̄)z̄∑
µC̃(z̄)∑

is used for algebraic sum.

(4) Mean-max membership: This method is related to max-membership principle,
but the present of the maximum membership need not be unique, i.e., the
maximum membership need not be a single point, it can be a range. This
method is also called as middle of maxima method the expression is given as

z∗ =
a+ b

2

where a× b are the end points of the maximum membership range.

(5) Centre of sums,

(6) Centre of largest area, and

(7) First of maxima or last of maxima
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Fuzzy Inference System

The fuzzy inference system is a popular computing framework
based on the concepts of fuzzy set theory, fuzzy IF-THEN rules
and fuzzy reasoning. It has found successful applications in a
wide variety of fields such as automatic control, data classifica-
tions, decision analysis, expert systems, robotics and patterns
recognition. Because of its multidisciplinary nature, the fuzzy
inference system (FIS) is known by numerous other names, such
as fuzzy-rule base system, fuzzy expert system, fuzzy logic con-
troller, and fuzzy associative memory. This is a major unit of a
fuzzy logic system.

Fig. 1: Example of FIS.
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Fuzzy Inference System

The basic FIS can take either fuzzy inputs or crisp inputs, but
the outputs it produces are almost always fuzzy sets. When the
FIS is used as a controller, it is necessary to have a crisp output.
Therefore in this case defuzzification method is adopted to best
extract a crisp value that best represents a fuzzy set. The Fig. 1
illustrates the overview of FIS.

Fig. 2: Fuzzy Inference System.
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Working of Inference System

Fuzzy inference system consists of a fuzzification interface, a rule
base, a database, a decision-making unit, and finally a defuzzi-
fication interface. A FIS with five functional block described in
Fig. 2. The function of each block is as follows:

a fuzzification interface which transforms the crisp inputs
into degrees of match with linguistic values;

a rule base containing a number of fuzzy IF-THEN rules;

a database which defines the membership functions of the
fuzzy sets used in the fuzzy rules;

a decision-making unit which performs the inference
operations on the rules; and

a defuzzification interface which transforms the fuzzy results
of the inference into a crisp output.

The working of FIS is as follows. The crisp input is converted
in to fuzzy by using fuzzification method. After fuzzification the
rule base is formed. The rule base and the database are jointly
referred to as the knowledge base. Defuzzification is used to
convert fuzzy value to the real world value which is the output.Dr. R. N. Giri Fuzzy Logic
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Fuzzy Inference Methods

The most important three types of fuzzy inference methods are
(i) Mamdani’s fuzzy inference method (ii) Takagi-Sugeno (TS)
fuzzy inference method (iii) Tsukamoto fuzzy inference method,
which have been widely employed in various applications. The
differences between these three fuzzy inference methods lie in
the consequent of the fuzzy rules and thus their aggregation and
defuzzification procedures differ accordingly.
Mamdani FIS: Ebsahim Mamdani proposed this system in the
year 1975 to control a steam engine and boiler combination by
synthesizing a set of fuzzy rules obtained from peoples working
on the system. In this case, the output membership functions are
expected to be fuzzy sets. After aggregation process, each output
variable contains a fuzzy set, hence defuzzification is important
at the output stage. The following steps have been followed to
compute the output from this inference method.
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Mamdani FIS

1. Determining a set of fuzzy rules

2. Fuzzifying the inputs using the input membership functions

3. Combining the fuzzified inputs according to the fuzzy rules
to establish a rule strength

4. Finding the consequence of the rule by combining the rule
strength and the output membership function

5. Combining the consequences to get an output distribution

6. Defuzzifying the output distribution (this step is only if a
crisp output (class) is needed).

The fuzzy rules are formed using “IF-THEN” statements and
“AND/ OR” connectives. The consequence of the rule can be
obtained in two steps:

(i). Computing the rule strength by combining the fuzzified
inputs using the fuzzy combination process.

(ii). Clipping the output membership function at the rule
strength
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Mamdani FIS

Fig. 3: Mamdani FIS.
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The Takagi-Sugeno fuzzy model was proposed by Takagi, Sugeno,
and Kang in the year 1985. This method was advice in an effort
to develop a systematic approach to generating fuzzy rules from
a given input-output data set. Sugeno-Takagi fuzzy model is also
know as Sugeno model. A typical fuzzy rule in a Sugeno fuzzy
model has the format

IF x is Ã AND y is B̃ THEN z = f(x, y)

Where Ã, B̃ are fuzzy sets in antecedent and z = f(x, y) is a crisp
function in the consequent. Generally, f(x, y) is a polynomial
function for the inputs x and y, but it can be any general function
as long as it describes the output of the system within the fuzzy
region specified in the antecedent of the rule to which it is applied.
When f(x, y) is a constant the inference system is called a zero-
order Sugeno model, which is a special case of the Mamdani
system in which each rule’s consequent is specified as a fuzzy
singleton. When f(x, y) is a linear function of x and y, the
inference system is called a first-order Sugeno model.
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Takagi-Sugeno FIS

Fig. 4: Takagi-Sugeno FIS.
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Takagi-Sugeno FIS

The main steps of the fuzzy inference process namely,
1 Fuzzifying the inputs-Here, the inputs of the system are

made fuzzy.

2 applying the fuzzy operators-In this step, the fuzzy
operators must be applied to get the output.

are exactly same.
Advantages of Sugeno and Mamdani Method:

Sugeno Method:
1 It is computationally efficient.
2 It works well with linear techniques.
3 It works well with optimization and adaptive techniques.
4 It has guaranteed continuity of the output surface.
5 It is well suited to mathematical analysis.

Mamdani Method:
1 It is intuitive.
2 It has widespread acceptance.
3 It is well suited to human input.
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In the Tsukamoto fuzzy inference model, the consequent of each
fuzzy IF-THEN rule is represented by a fuzzy set with a mono-
tonical membership function. As a result, inferred output of
each rule defined as a crisp value induced by the rule of firing
strength. The overall output is taken as the weighted average
of each rule’s output. Since each rule infers a crisp output, the
Tsukamoto fuzzy model aggregates each rule’s output by method
of weighted average and thus avoids the time consuming process
of defuzzification. However, the Tsukamoto fuzzy model is not
used often. Since it is not transparent as either Mamdani or
Sugeno fuzzy models.
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Tsukamoto FIS

Fig. 5: Tsukamoto FIS.
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Fuzzy Logic Control for Washing Machine

Consider washing time control of the washing machine, and de-
sign a fuzzy controller with two inputs and one output. Choose
mud and axunge as the inputs and choose washing time as the
output. We can define three fuzzy sets for mud and axunge, and
define five fuzzy sets for washing time.
Consider MF for mud as SD (mud small), MD (mud middle),
and LD (mud much) , the range of mud is in [0, 100], and the
MF is designed as follows:

µmud =


µSD(x) = 50−x

50 , 0 ≤ x ≤ 50

µMD(x) =

{
x
50 , 0 ≤ x ≤ 50
100−x

50 , 50 ≤ x ≤ 100

µLD(x) = x−50
50 , 50 ≤ x ≤ 100

(16)

Consider MF for axunge as NG (no axunge) , MG (middle ax-
unge) , and LG (much axunge) , the range value of axunge is set
as [0, 100], and the MF is designed as follows:
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µaxunge =


µNG(y) = 50−y

50 , 0 ≤ y ≤ 50

µMG(y) =

{ y
50 , 0 ≤ y ≤ 50
100−y

50 , 50 ≤ y ≤ 100

µLG(y) = y−50
50 , 50 ≤ y ≤ 100

(17)

and consider washing time as VS (very small), S (small), M (mid-
dle), L (long), and VL (very long), and the value is in the range
of [0, 60]. MF of washing time is:

µtime =



µV S(z) = 10−z
10 , 0 ≤ z ≤ 10

µS(z) =

{
z
10 , 0 ≤ z ≤ 10
25−z

15 , 10 ≤ z ≤ 25

µM (z) =

{
z−10

15 , 10 ≤ z ≤ 25
40−z

15 , 25 ≤ z ≤ 40

µL(z) =

{
z−25

15 , 25 ≤ z ≤ 40
60−z

20 , 40 ≤ z ≤ 60
µV L(z) = z−40

20 , 40 ≤ z ≤ 60

(18)
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FIS for Washing Machine

Fig. 6: Membership functions of input and output variables.
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FIS for Washing Machine

Design fuzzy rules according to the input is mud and axunge, and
the output is washing time. If design three membership functions
for each input , then can design 9 rules. The format of the rule
is

Table 2: Fuzzy rules of the washing machine

Washing time, z Axunge, y
NG MG LG

Mud, x SD VS S M
MD M M L
LD L L VL

“IF Mud is Ã AND Axunge is B̃ THEN Washing time is C̃”

which is shown in Table 2.
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If x0 (mud) = 60, y0, (axunge) = 70, then

µSD(60) = 0, µMD(60) =
4

5
, µLD(70) =

1

5

µNG(70) = 0, µMG(70) =
3

5
, µLG(70) =

2

5
Then, four fuzzy rules are activated, and the results are shown
in Table 3.

Table 3: Fuzzy rules of activation

Washing time, z Axunge, y
NG (0) MG (3

5) LG (2
5)

Mud, x SD (0) 0 0 0
MD (4

5) 0 µM (z) µL(z)
LD (1

5) 0 µL(z) µV L(z)
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From Table 3, four fuzzy rules are inspired as

Rule 1: IF x is MD and y is MG THEN z is M
Rule 2: IF x is MD and y is LG THEN z is L
Rule 3: IF x is LD and y is MG THEN z is L
Rule 4: IF x is LD and y is LG THEN z is VL

Since “AND” is used in the inference, then fuzzy intersection
operator can be used and strength for premise of each fuzzy rule
can be calculated as follows:

Strength of Rule 1 premise: min(4/5, 3/5) = 3/5
Strength of Rule 2 premise: min(4/5, 2/5) = 2/5
Strength of Rule 3 premise: min(1/5, 3/5) = 1/5
Strength of Rule 4 premise: min(1/5, 2/5) = 1/5

The inference of each fuzzy rule is shown in Table 4.
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Table 4: Inference of each fuzzy rule

Washing time, z Axunge, y
NG (0) MG ( 3

5 ) LG ( 2
5 )

Mud, x SD (0) 0 0 0
MD ( 4

5 ) 0 min(3/5, µM (z)) min(2/5, µL(z))
LD ( 1

5 ) 0 min(1/5, µL(z)) min(1/5, µV L(z))

The inference of each fuzzy rule graphically shows in Fig. 7. Using cen-
troid defuzzification method in output distribution, the washing time
is 33.7 minute.
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Fig. 7: Graphical representation of Rules.

Dr. R. N. Giri Fuzzy Logic


	Introduction
	Fuzzy Relations
	Classical reasoning
	Fuzzy Proposition
	Fuzzy Rules
	Fuzzy Inference
	Defuzzification methods
	Fuzzy Inference System
	Fuzzy Logic Control for Washing Machine


