Study Material

Dept. of Applied Malhematics

With Oceanology and Compuler forg.

Exper No. - MTM 205

Paper Name - Continuum Mechanics

Somestir - 2

Topic of decturer: Motion in Two dimension, Concept of Stream function, and its different properties

Teacher; Prof. Shyamed Kr Mondal

decturer No- 05

techen in its.

Mechanics of Continous Media VI = - VOI = -V (L+ Pr) = -VPZ=VZ

which
$$\Rightarrow \frac{\partial \varphi}{\partial x} = 0, \frac{\partial \varphi}{\partial y} = 0, \frac{\partial \varphi}{\partial z} = 0$$
 everywhere

 $\Rightarrow \varphi$ is independent of x, y, z

i.e., φ = constant everywhere.

$$\varphi_1 - \varphi_2 = \text{constant}.$$

す=-ヤヤン

i.e., φ_1 and φ_2 can differ only by a constant. Therefore the velocity distribution given by φ_1 and φ_2 are identical and hence two motions are identical.

Motion in Two Dimensions: 6.15

Suppose a fluid moves in such a way that at any given instant the flow pattern in a certain plane is the same as that in all other parallel planes within the fluid. Then the flow is said to be two-dimensional.

If we take any one of the parallel planes to be the plane z = 0, then at any point in the fluid having cartesian co-ordinates (x, y, z), all physical quantities (velocity, pressure, density, etc.) associated with the fluid are independent of z. Evidently in this case

$$w = 0$$
 and $u = u(x, y, t)$, $v = v(x, y, t)$ where $\vec{V} = (u, v, w) = (u, v, 0)$.

Lagrange's Stream Function (Current function): 6.16

In case of two-dimensional motion, the differential equation of the stream lines are given by

$$\frac{dx}{u} = \frac{dy}{v}$$

i.e.
$$vdx - udy = 0$$
(i)

The equation of continuity for incompressible fluid, in two dimensions is

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad(ii)$$

i.e.
$$\frac{\partial v}{\partial y} = \frac{\partial}{\partial x} (-u)$$

Above result shows that (i) is an exact differential and let it will be $d\psi$, i.e.,

$$vdx - udy = d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy$$

which
$$\Rightarrow v = \frac{\partial \psi}{\partial x}, -u = \frac{\partial \psi}{\partial y}$$
(iii)

Directorate of Distance Education

Mechanics of Continous Media.....

Now, (i) takes the form as

$$d\psi = 0$$

Int.,
$$\psi = \text{constant}$$
 (iv)

This function $\psi = \psi(x, y)$ is called the stream function or current function.

Since the stream lines are given by (i), so it follows that stream function is constant along the stream line Note-1. Stream function exists for all types of two dimensionsl motion-rotational or irrotational.

Note-2. The necessary conditions for the existence of ψ are:

- i) the flow must be continuous,
- ii) the flow must be incompressible.

Note-3. The existence of a stream function is a consequence of stream lines and equation of continuity for incompressible fluid. If with in thiog years to north, 0 = zoneig ont of the stream lines and equation of continuity for incompressible fluid.

Note-4. φ and ψ are conjugate functions. The variable inverse φ and ψ are conjugate functions.

Proof. For irrotational fluid motion we have

$$\vec{V} = -\vec{\nabla} \varphi$$
 where φ is velocity potential

$$\Rightarrow u = -\frac{\partial \varphi}{\partial x}, v = -\frac{\partial \varphi}{\partial y}$$

If ψ is a stream function, then only to not supplementation of a particular function of the particu

$$u = -\frac{\partial \psi}{\partial y}, \ v = \frac{\partial \psi}{\partial x}$$

$$\therefore \frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y}, \quad \frac{\partial \varphi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

So,
$$\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial y} \right)$$
$$= \frac{\partial}{\partial x} \left(-\frac{\partial \varphi}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial x} \right) = 0$$

Again,
$$u = -\frac{\partial \varphi}{\partial x}$$
, $v = -\frac{\partial \varphi}{\partial y}$ and equation of continuity is

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\therefore \frac{\partial}{\partial x} \left(-\frac{\partial \varphi}{\partial x} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \varphi}{\partial y} \right) = 0$$

$$- \left[\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right] = 0$$
i.e. $\nabla^2 \varphi = 0$ (ii)

(i) and (ii) implies that
$$\varphi$$
 and ψ both satisfies Laplace's equation i.e., φ and ψ are conjugate functions. Note-5 Existence of φ and ψ :

- i) The stream function ψ exists whether the motion is irrotational or not.
- ii) The velocity potential φ exists only when the motion is irrotational.
- iii) When motion is irrotational, φ exists.
- iv) φ and ψ both satisfy Laplace's equation and

$$\frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y}, \frac{\partial \varphi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

Note-6 The family of curves $\varphi(x, y) = \text{constant}$ and $\psi(x, y) = \text{constant}$, cut orthogonally at their points of intersection.

Proof. $\varphi(x,y) = \text{constant } d\varphi = 0$

i.e.,
$$\frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy = 0$$

$$\frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y} = m_1, \text{ say}$$

which is the gradient of tangent to the curve φ = constant.

Again, $\psi(x, y) = \text{constant} \Rightarrow d\psi = 0$

i.e.
$$\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = 0$$

$$\therefore \frac{dy}{dx} = -\frac{\psi_x}{\psi_y} = m_2, \text{ say}$$

which is the gradient of tangent to the curve ψ = constant.

Mechanics of Continous Media

Now,
$$m_1 \times m_2 = \left(-\frac{\varphi_x}{\varphi_y}\right) \times \left(-\frac{\psi_x}{\psi_y}\right) = \frac{u}{v} \times \frac{v}{(-u)} = -1$$

Hence the curves of constant potential and constant stream functions cut orthogonally at their points of intersection.

(11) the flow must be incompressible.

3.3. The difference of the values of ψ at the two points represents the flux of a fluid across any curve joining the two points.

Proof. Suppose ds is a line element at a point P(x, y) of a

curve AB. Let the tangent PT make an angle θ with x-axis. Let PN be normal at P and (u, v) the velocity components of the fluid at P. Direction cosines of the normal PN are

 $\cos (90+\theta)$, $\cos \theta$, $\cos 90$, i.e., $-\sin \theta$, $\cos \theta$, 0.

(For PN makes angles $90+\theta$, θ , 90 with x, y, z axes respectively

Inward normal velocity=
$$\hat{\mathbf{n}}$$
.q, in usual notation
$$= u \left(-\sin \theta\right) + v \left(\cos \theta\right) + (0) \cdot 0$$

$$= -u \sin \theta + v \cos \theta.$$

Flux across the curve AB from right to left = density.normal velo.area of the cross section

$$= \int_{AB} \rho (\hat{\mathbf{n}}.\mathbf{q}) ds = \int_{AB} \rho (-u \sin \theta + v \cos \theta) ds$$

$$= \rho \int_{AB} \left[-u \frac{dy}{ds} + v \frac{dx}{ds} \right] ds \text{ as } \tan \theta = \frac{dy}{dx}$$

340

Fluid Dynamics

$$= \int_{a_0} \left[\left(\frac{\partial \phi}{\partial y} \right) dy + \left(\frac{\partial \phi}{\partial z} \right) dz \right] = \int_{a_0} dy = 0, -4.$$

where ϕ_1 and ϕ_2 are the values of ϕ at A and B respectively.

Firm account AB is p [4, -4].

This prives the required result.