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3.1 Introduction

In the crisp linear programming problem, the aim is to maximize or minimize a linear objective function
subject to some linear constraints. But in many real life practical situations the LPP can not be specified
precisely. The objective function and/or the constraint functions appears in the problem in the fuzzy
sense having a vague meaning. To handle such problems fuzzy linear programming problem is introduced.
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In such problems the decision maker has more flexibility. Fuzziness may occur in a linear programming
problem in many ways. The objective function may be fuzzy, the inequalities may he fuzzy or the problem
parameters e, A, b may be in terms of fuzzy numbers. Different methods are there to solve fuzzy LPP
depending on the character of fuzziness. Some of them will be discussed in detail in this module.

3.2 Classification of fuzzy LPP

The crisp linear programming problem may be stated as Optimize Z = CX

subject to the constraints Ax ≤=≥ b

and x ≥ 0

where C ∈ Rn , bT ∈ Rm , xT ∈ Rn and A is m× n real matrix. We shall use the following notations to
represents fuzzy quantities.
z̃ for fuzzy objective
b̃ for fuzzy resource
c̃ for fuzzy costs
Ã for fuzzy coefficients matrix
/ for fuzzy inequality.
In a fuzzy LPP, the fuzzy environment may occur in the following possible ways

(i) Instead of maximizing or minimizing the objective function the decision maker needs to achieve some
aspiration level which itself may not even be definable crisply. As for example the decision maker
may have a target to “improve the present sales situation considerably”.

(ii) The constraints appeared in the LPP might be vague. The inequalities “ ≤ or = or ≥ ”may not
mean in the strict mathematical sense. Some violations ’may be acceptable within some tolerance
limit. As for example the decision maker might say “try to contact about 1800 customers per week
and it must not be less than 1600 customers per week in any situation”.

(iii) The components of the cost vector c, the requirement vector b and the coefficient matrix A may
not be crisp numbers instead some or all of them may be fuzzy numbers. The inequalities in such
situation may be interpreted in terms of ranking of fuzzy numbers.

The class of fuzzy LPP can be broadly classified as follows .

(i) LPP with fuzzy inequalities and crisp objective function.

(ii) LPP with crisp inequalities and fuzzy objective function.

(iii) LPP with fuzzy inequalities and fuzzy objective function.
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(iv) LPP with fuzzy resources and fuzzy coefficient i.e. LPP with fuzzy parameters i.e, elements of c, b
and A are fuzzy numbers.

We have noted that there are different types of fuzzy LPP. Depending on the types of the fuzzy LPP the
methods of solving them are also different. The following table shows the types of the fuzzy LPP and the
standard available method for solving them.

Types Methods

1) Crisp LPP Simplex method

2)b̃ i)Parametric Programming
ii) Verdegay’s method
iii) Chana’s method .

3)z̃ and b̃ i)Wemer’s method
ii)Zimmermann’s method
iii)Lai and Hwang’s method

4)c̃ Parametric Programming

5)Ã

6)b̃ and c̃

7)Ã and b̃ Carlsson and Korhonen’s method

8)Ã and c̃

9)Ã and b̃ and c̃

10)Z̃ and Ã Lai and Hwang’s method

11)Z̃ and Ã and b̃

3.3 Bellman and Zadeh’s Principle

Let the fuzzy environment has a set of p goals G1, G2,..... Gp along with a set of n constrain Cl, C2,..... Cn
and each of them is expressed by fuzzy sets on the universal set X. For such a model decision making, Bell-
man and Zadeh proposed that a fuzzy decision is determined by an appropriate, aggregation of the fuzzy sets
G̃1, G̃2 . . . G̃p andC̃1, C̃2, . . . C̃n. In this approach the symmetry between goals and constraints is the main
feature. Bcllrnann and Zadeh suggested the aggregation operator be the fuzzy intersection. The fuzzy de-
cision D̃ is defined as the intersection of all G̃i and C̃j i.eD̃ = (G̃1

⋂
G̃2
⋂
. . .
⋂
G̃p)

⋂
(C̃1

⋂
C̃2
⋂
....
⋂
C̃p).

The membership function of D̃ is given by

µD̃(x) = min{µG̃1
(x), µG̃2

(x), . . . µG̃p
(x), µC̃1

(x, µC̃2
(x)), µC̃n

(x)} Once the fuzzy decision D̃ is found.

the optimal decision ẋ is determined as ẋ ∈ X satisfying µD̃(ẋ) = max
x

µD̃(x)
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3.3.1 Illustration of Bellman and Zadebts Principle

Zimmennann considered the fuzzy decision problem in which we are to find a real number which is in the
vicinity of 15 and is substantially larger than 10. The constaint of the point lying in the vicinity of 15 may
be regarded as a fuzzy constraint C̃ and the goal of having its value larger than 10 is regarded as a fuzzy
goal G̃. Let us e the membership function of C̃ and G̃ as follows.

µC̃(x) = {1 + (x− 15)4}−1

µG̃(x) =

{
0 forx ≤ 10

1 + (x− 10)−2}−1 forx > 10

By the principle of Bellman and Zadeh, the fuzzy decision D̃ is given by C̃
⋂
G̃. The membership function

Figure 3.1: Fuzzy optimal decision.

of D̃ is given by
µD̃(x) = min{µC̃(x), µG̃(x)} To get the optimal decision ẋ we proceed as follows . µD̃(ẋ) = max

x
µD̃(x)

For α ∈ (0, 1) first determine all points for which µD̃(x) ≥ α. These decisions x satisfying µD̃(x) ≥ α will
have at least α degree of membership value. So particular ẋ for which α becomes maximum will be the
required optimal decision (as for α maximum µD̃(x) will also become maximum).
Hence the optimal decision ẋ is the solution of the problem:

Maximize α

subject to µG̃i
(x) ≥ α

µC̃i
(x) ≥ α

0 ≤ α ≤ 1,

x ≥ 0,
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3.3.2 Another classification of fuzzy LPP

The class of fuzzy LP can be classified also as

(i) Symmetric fuzzy LPP and

(ii) Non symmetric fuzzy LPP.

Symmeric fuzzy LPP : The symmetric models are based on the definition of fuzzy decision as proposed
by Bellman and Zadeh. The basic feature here is the symmetry of objectives and constraints. The decision
set here is obtained as the intersection of the fuzzy sets corresponding to the objectives and constraints.
Non Symmetric fuzzy LPP : In the non-symmetric fuzzy LPP the constraints and the objectives are
regarded as distinct entity. There are two approaches for non-symmetric model. In the first approach
a fuzzy set of decisions is determined first and then the crisp objective function is optimized over this
fuzzy set of decisions, This approach leads to a parametric LPP. In the second approach also a fuzzy set
or decisions is determined first and then a suitable membership function is determined for the objective
function. The problem is then solved as the symmetric case.

3.4 Verdegay’s approach to solve fuzzy LPP

Verdegay considered the fuzzy LPP where the inequality is fuzzy or the resource is fuzzy. The general
model of fuzzy LPP with fuzzy inequality is

Maximize z = cx

subject to (Ax)i ≤ bi, i = 1, 2, . . .m

x > 0,

Here the fuzzy constraint (Ax)i ≤ bi has the meaning that the constraint (Ax)i ≤ bi , is absolutely
satisfied, whereas the constraint (AX)i > bi +Pi is absolutely violated, Here Pi is the maximum tolerance
from Pi as determined by the decision maker.

The general model of fuzzy LPP with fuzzy resources is

Maximize z = cx

subject to (Ax)i ≤ b̃i, i = 1, 2, . . .m

x > 0,

where bi for all i are in [bi, bi + pi] with given Pi.
If in both the LPP with fuzzy constraints and in fuzzy resources the tolerance limit Pi is same and both
the LPP has same membership function then Vardegay proved that both the problems are equivalent.
Verdagay showed that this fuzzy LPP is equivalent 10 a crisp parametric LPP. The fuzzy constraint. or the
fuzzy resources arc transformed into crisp constraint by choosing appropriate membership function for each
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constraint. Here (Ax)i ∈ [bi, bi + pi] and the membership function is taken as a monotonically decreasing
function and the decrease is taken along a linear function. Thus the membership function corresponding
to the ith constraint is taken as .

µi(x) =


1 for (Ax)i ≤ bi
{bi + pi − (Ax)i}/pi for bi ≤ (Ax)i ≤ bi + pi
0 for (Ax)i > bi + pi

The crisp LPP equivalent to this fuzzy LPP is taken as

Maximize z = cx

subject to µi(x) ≥ α

0 ≤ α ≤ 1,

x ≥ 0,

i.e.,

Maximize z = cx

subject to (Ax)i ≤ bi + (1− α)pi

x > 0,

0 ≤ α ≤ 1,

This LPP is a standard parametric LPP with θ = 1- α as parameter. So the solution of the given fuzzy
LPP is obtained by solving this equivalent crisp parametric LPP. Here, we note that we have an optimal
solution for each α ∈ [0, 1]. So the solution with α grade of membership is actually fuzzy. Also we note
that this is a non-symmetric model. To develop the idea of fuzzy LPP we consider the following problem.
Also the notion of determining the membership function of fuzzy constraint will be clear from this example.

3.4.1 Example.

Three metals namely iron, copper and zinc are required to produce two alloys A and
B. To produce 1 metre rod of A, 1 kg iron, 1 kg copper and 0.5 kg zinc and to produce 1 metre rod of

B. 1 kg copper and 1 kg zinc are needed. Total available quantities of’metals ranges as follows
iron: 3 kg to 9 kg, copper: 4 kg to 8 kg and
zinc: 3 kg to 5 kg. The profits of selling one unit of A and B are respectively Rs. 2 and Re 1.

Find the maximum profit.
Solution. All informations of the problem can be put in the following table.

Alloy A B Availability quan-
tity

Iron 1 kg 0 kg 3 kg to 4kg
copper 1 kg 1 kg 4 kg to 6kg
Zinc 0.5 kg 1 kg 3 kg to 5 kg

Profit Rs. 2 Re 1
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Here the available quantities of the metals are not a fixed amount, they are given in a range. So the
problem is not a crisp problem, it becomes a fuzzy problem. To formulate this problem as a LPP, let xi
metre of alloy A and x2 metre of alloy B be produced. Then the fuzzy LPP becomes

Maximum z = 2x1 + x2

subject to x1 + 0x2 ≤ 3 or 4
x1 + x2 ≤ 4 or 6

0.5x1 + x2 ≤ 3 or 5
xj ≥ 0, j = 1, 2.

3.4.2 Membership function of the ith constraint

The graph of the LPP with lower limits of the available quantities of iron, copper and zinc i.e. 3 kg iron,
4 kg copper and 3 kg zinc. Also lines are drawn with quantities as upper limits i.e. 4 kg iron, 6 kg copper
and 5 kg zinc. The thick lines AB, BC, CD represents respectively the lower limits i.e. 3 kg iron, 4 kg
copper and 3 kg zinc whereas the dotted lines ÁB́, B́Ć andĆD́ represents respectively the upper limits
i.e. 4 kg iron, 6 kg copper and 5 kg zinc.

the line DM represents zinc = 3 kg and the line D́Ḿ represents zinc = 5 kg. So in the region ODM zinc
≤ 3 kg which is always available and hence in this region the membership function µ3(x) should have a
value 1. Again in the region beyond the line D́Ḿ ,amount of zinc is more than 5 kg which is not available,
hence in this region the membership function should have a value zero. In the region between the lines
DM and D́Ḿ , the value of the membership function should lie in the interval (0, 1), as the availability
of zinc there is in between 3 kg to 5 kg which is a doubtful situation. The membership function µ3(x)
should change its value there linearly from 1 on DM to on D́Ḿ . Hence the membership function µ3(x)
is defined as

µ3(x) =


1 for x ∈ region ODM
(5− x)/2 for x ∈ region DMD́Ḿ

0 for x ∈ beyond D́Ḿ
i.e.

µ3(x1, x2) =


1 for 0.5x1 + x2 ≤ 3
(5− 0.5x1 − x2)/2 for 3 < 0.5x1 + x2 < 5
0 for 0.5x1 + x2 ≥ 5

Similarly, the membership function J.ll (x) corresponding to the metal iron and f.L2 (x) corresponding
to the metal copper are defined as follows

µ1(x1, x2) =


1 for 0.5x1 ≤ 3
(4− x1) for 3 < x1 < 4
0 for x1 ≥ 4

µ2(x1, x2) =


1 for x1 + x2 ≤ 4
(6− x1 − x2)/2 for 4 < x1 + x2 < 6
0 for x1 + x2 ≥ 6
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Figure 3.2: Fuzzy region of fuzzy LPP.

To discuss Verdegay’s approach we.considerthe following example.

3.4.3 Example.

A company produces four items A, B, C and D. The inputs for the production are man-weeks, material
X and material Y . The availability of the resources and profits corresponding to the items A, B andC are
shown in the table below. Using Verdegay’s method find its solution.

Item Man Weeks Material X Material Y Unit Profit

A 1 7 3 4
B 1 5 5 5
C 1 3 10 9
D 1 2 15 11

Availability 15 to 18 120 100 to 120 Maximize
Solution. Here the availability of the material X is 120 unit which is a precise quantity. But the

available total man-weeks and material Y are imprecise and their maximum tolerances are respectively 3
and 20 units respectively as 18-15=3 and 120-100=20. Let x1,x2,x3 and x4, be the amount produced for
the items A, B, C and D respectively. Then the problem can be formulated as the following fuzzy LPP.

Maximum z = 4x1 + 5x2 + 9x3 + 11x4

s.t. x1 + x2 + x3 + x4 ≤ 15 to 18
7x1 + 5x2 + 3x3 + 2x4 ≤ 120

3x1 + 5x2 + 10x3 + 15x4 ≤ 100 to 120
xj ≥ 0, j = 1, 2, 3, 4.
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g1(x) = x1 + x2 + x3 + x4

g2(x) = 7x1 + 5x2 + 3x3 + 2x4

g3(x) = 3x1 + 5x2 + 10x3 + 15x4

cx = 4x1 + 5x2 + 9x3 + 11x4

Hence the problem becomes

Maximize z = cx

subject to g1(x) ≤ 15 to 18

g2(x) ≤ 120

g3(x) ≤ 100 to 120

x > 0,

The membership functions of the first and third constraints are given by

µ1(x) =


1 for g1(x) ≤ 15
(18− g1(x))/3 for 15 < g1(x) < 18
0 for g1(x) ≥ 18

µ3(x) =


1 for g1(x) ≤ 100
(120− g3(x))/3 for 100 < g3(x) < 120
0 for g3(x) ≥ 120

Using Verdegay’s method the crisp parametric programming problem equivalent to the given fuzzy LPP
is given by

Maximize z = cx

subject to µ1(x) ≤ α

g2(x) ≤ 120

µ3(x) ≤ α

0 ≤ α ≤ 1

x > 0,

Applied Mathematics, Vidyasagar University 9
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Figure 3.3: Non convex and normal fuzzy set.

Figure 3.4: Non convex and normal fuzzy set.

i.e.

Maximize z = cx

subject to g1(x) ≤ 15 + (1− α)3

g2(x) ≤ 120

g3(x) ≤ 100 + (1− α)20

0 ≤ α ≤ 1

x > 0,

Max z = 4x1 + 5x2 + 9x3 + 11x4

s.t. x1 + x2 + x3 + x4 6 15 + 3θ

7x1 + 5x2 + 3x3 + 2x4 6 120 + 0θ

3x1 + 5x2 + 10x3 + 15x4 6 100 + 20θ

xj > 0, j = 1, 2, 3, 4.

where θ = 1− α is the parameter and 0 ≤ θ ≤ 1. To solve this parametric programming problem we first
solve the corresponding LPP obtained by taking θ = 0 using simplex method. The tables are shown below
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where the variables x5,x6 and x7 are slack variables.

c 4 5 9 11 0 0 0

cB xB b y1 y2 y3 y4 y5 y6 y7 min ratio

0 x5 15 1 1 1 1 1 0 0 15
0 x6 120 7 5 3 2 0 1 0 60

0 x7 100 3 5 10 15 0 0 1 100/15

z = 0 zj − cj −4 −5 −9 −11 0 0 0

0 x5 25/3 4/5 2/3 1/3 0 1 0 −1/15 125/12

0 x6 320/3 33/5 13/5 5/3 0 0 1 −/15 1600/99
11 x4 20/3 1/5 1/3 2/3 1 0 0 1/15 100/3

z = 220/3 zj − cj −9/5 −4/3 −5/3 0 0 0 11/15

4 x1 125/12 1 5/6 5/12 0 5/4 0 −1/12 25
0 x6 455/12 0 −7/6 −13/12 0 −33/4 1 5/12

11 x4 55/12 0 1/6 7/12 1 −1/4 0 1/12 55/7

z = 1105/12 zj − cj 0 1/6 −11/12 0 9/4 0 7/12

4 x1 50/7 1 5/7 0 0 −5/7 10/7 0− 1/7
0 x6 325/7 0 −6/7 0 13/7 −61/7 1 4/7
9 x3 55/7 0 2/7 1 12/7 −3/7 0 1/7

z = 695/7 zj − cj 0 3/7 0 11/7 13/7 0 5/7

Using parametric programming technique the final table of this simplex method can be used to get
the optimal values of the basic variables and the corresponding value of the objective function for the
parametric LPP as follows.
The optimal values of the basic variables for the parametric LPP are given by
xB = b+ 3θy5 + 0θy6 + 20θy7

x1x6
x3

 =


50
7

325
7

55
7

+ 3θ


10
7

−61
7

−3
7

+ 0θ

0
1
0

+ 20θ


−1
7

4
7

1
7



x1x6
x3

 =


50
7 + 10θ

7

325
7 −

103θ
7

55
7 + 11θ

7


The optimal value of the objective function is given by

Ż = Z + 3θ(Z5 − C5) + 0θ(Z6 − C6) + 20θ(Z7 − C7)

=
695

7
+ 3θ(

13

7
) + 0 + 20θ

5

7
= (695 + 139θ)/7

(3.1)
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Hence the optimal solution of the parametric LPP i.e. of the given fuzzy LPP is

x1 =(50 + 10θ)/7

x2 =0

x3 =(55 + 11θ)/7

x4 =0

and Zmax =(695 + 139θ)/7 where 0 ≤ θ ≤ 1

(3.2)

We note that the answer depends on the choice of the value ofθ by the decision maker.

3.5 Werners’ method for solving fuzzy LPP

The general fuzzy LPP with fuzzy inequality is

Maximize z = cx

subject to (Ax)i ≤ bi, i = 1, 2, . . .m

x > 0,

Wemers proposed that because of fuzzy inequality constraint its effect will fall on the objective unction
and as a result the objective function should also be fuzzy.
Let the tolerances for the m constraints because of fuzzy inequalities be p1, p2, . . . , pm So the lower and
upper limits of the resources will be bi, and bi + pi for each i = 1, 2, . . . ,m. Here we note that the given
fuzzy LPP may be given equivalently also as fuzzy resource lying in (bi, li + pi).
:. The constraints (Ax)i ≤ bi, i = 1, 2, . . . ,m are satisfied completely and the constraints (Ax)i > bi + pi,
i = 1, 2, . . . ,m are never satisfied. The constraints (Ax)i ≤ b́i where b́i ∈ (bi, li + pi) are satisfied partly.
Thus the value of the membership function for should be 1 for (Ax)i ≤ b́i,bi < b́i < bi + pi should lie in (0,
1) and for (Ax)i > bi + pi it should be O. Hence the membership function for ith constraint (i = 1,2,. . . m)
is given by

µi(x) =


1 for (Ax)i ≤ bi
{bi + pi − (Ax)i}/pi for bi < (Ax)i < bi + pi
0 for (Ax)i > bi + pi

To construct the membership function for the objective function Wemers suggested to solve two LPP
one with lower limit of resources and other with upper limit of resources. These two LPP s are thus

Maximize z = cx

subject to (Ax)i ≤ bi, i = 1, 2, . . .m .........(1)

x > 0,

and

Maximize z = cx

subject to (Ax)i ≤ bi + pi, i = 1, 2, . . .m ...........(2)

x > 0,
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3.5.1 Example to explain Werners’ method

Let the LPP with fuzzy resources be

Max Z = 4x1 + 5x2 + 9x3 + 11x4

s.t. g1(x) =x1 + x2 + x3 + x4 6 1̃5

g2(x) =7x1 + 5x2 + 3x3 + 2x4 6 8̃0

g3(x) =3x1 + 5x2 + 10x3 + 15x4 6 1̃00

xj > 0, j = 1, 2, 3, 4.

and the tolerances as p1 = 5,4p2 = 40,p3 = 30. To get membership function for the objective function
we have to solve two LPPs one with the. lower limits of fuzzy resources and other with the upper limits of
fuzzy resources. These two LPP are follows.

Max Z = 4x1 + 5x2 + 9x3 + 11x4

s.t. x1 + x2 + x3 + x4 6 15

7x1 + 5x2 + 3x3 + 2x4 6 80

3x1 + 5x2 + 10x3 + 15x4 6 100

xj > 0, j = 1, 2, 3, 4.

and

Max Z = 4x1 + 5x2 + 9x3 + 11x4

s.t. x1 + x2 + x3 + x4 6 20

7x1 + 5x2 + 3x3 + 2x4 6 120

3x1 + 5x2 + 10x3 + 15x4 6 130

xj > 0, j = 1, 2, 3, 4.

The optimum value of the objective function of these LPPs are respectively zo = 99.29 and z1 = 0 The
membership functions of the objective function and the constraints are as follows.

µ0(x) =


1 for cx ≥ 130
(cx− 99.29)/30.71 for 99.29 < cx < 130
0 for cx ≤ 99.29

µ1(x) =


1 for g1(x) ≤ 15
(20− g1)/5 for 15 < g1(x) < 20
0 for g1 ≥ 20

µ2(x) =


1 for g1(x) ≤ 80
(120− g2)/40 for 80 < g2(x) < 120
0 for g2 ≥ 120

Applied Mathematics, Vidyasagar University 13
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µ3(x) =


1 for g1(x) ≤ 100
(130− g3)/30 for 100 < g3(x) < 130
0 for g3 ≥ 130

Using Werners’ method the crisp LPP equivalent to the given fuzzy LPP is

Maximize z = α

subject to µ0(x) ≥ α

µ1(x) ≥ α

µ2(x) ≥ α

µ3(x) ≥ α

0 ≤ α ≤ 1

x > 0,

Max z = α

s.t. 4x1 + 5x2 + 9x3 + 11x4 − 30.71α 6 99.29

x1 + x2 + x3 + x4 + 5α 6 20

7x1 + 5x2 + 3x3 + 2x4 + 40α 6 120

3x1 + 5x2 + 10x3 + 15x4 + 30α 6 130

0x1 + 0x2 + 0x3 + 0x4 + α 6 1

xj > 0, j = 1, 2, 3, 4.,

α ≥ 0

The optimum solution is obtained as x1 = 8.57, x2 = 0, x3 = 8.93, x4 = 0
Zmax = 114.64,α = 0.5.

Actual used resources are found as
17.5,86.78 and 115.01 respectively.

3.6 Zimmermann’s method to solve fuzzy LPP

The general model of a LPP with fuzzy objective and fuzzy constraints is given by

m̃ax z = cx

subject to (Ax)i / bi, i = 1, 2, . . .m

x > 0,

The fuzzy constraint (Ax)i / bi. for each i = 1, 2, . . .m has the meaning that if (Ax)i ≤ bi then the
ith constraint is absolutely satisfied, if (Ax)i ≥ bi + pi then the ithconstraint is absolutely violated, where
pi is the maximum tolerance from bi. If bi < (Ax)i < bi + pi then the ith constraint is satisfied partially,
For(Ax)i ∈ (bi, bi + pi), the membership function is monotonically decreasing as a linear function. The
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membership function is defined for each i = 1, 2, . . . , n, as

µi(x) =


1 for (Ax)i ≤ bi
{bi + pi − (Ax)i}/pi for bi < (Ax)i < bi + pi
0 for (Ax)i > bi + pi

The fuzzifier m̃ax is understood in the sense of the satisfaction of an aspiration levels z0 as best as possi-
ble, Let p0 be the permissible tolerance for the objective function. The membership functionµ0(x) for the
objective function is taken to be nondecreasing and continuous and is defined as

µ0(x) =


1 for cx ≥ z0
(cx+ p0 − z0)/pi for z0 − p0 < cx < z0
0 for cx ≤ z0 − p0

To identify the fuzzy decision Zimmermann employed Bellman and Zade .This leads . to the following
crisp LPP

Maximize z = α

subject to µ0(x) ≥ α

µi(x) ≥ α, i = 1, 2, . . . ,m

x > 0,

0 ≤ α ≤ 1,

or,

Maximize z = cx

subject to cx ≥ z0 − (1− α)p0

(Ax)i ≤ bi + (1− α)pi, i = 1, 2, . . . ,m

x > 0,

0 ≤ α ≤ 1,

We note here that if (x∗, α∗) is, the optimal solution of this equivalent crips LPP thenα̇ is the degree upto
which the aspiration level z0 of the decision maker is met.
In expain Zimmermann method for solving fuzzy LPP Zimmermann consider the following example.

3.6.1 Example. Zirnmennann considered the example

M̃ax Z = x1 + x2

s.t. − x1 + 3x2 / 21

x1 + 3x2 / 27

4x1 + 3x2 / 45

3x1 + x2 / 30

xj > 0, j = 1, 2, 3, 4.

Applied Mathematics, Vidyasagar University 15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unit: 1.3 Application Fuzzy Sets

The aspiration level zo and tolerance levels pi are taken as zo = 14.5, po = 2, p1 = 3, p2 = 6 and p3 = 6.
Using Zimmermann’s method the crisp LPP equivalent to this fuzzy LPP is given by

Maximize Z = α

s.t. x1 + x2 ≥ 14.5− 2(1− α)

− x1 + 3x2 ≤ 21 + 3(1− α)

x1 + 3x2 ≤ 27 + 6(1− α)

4x1 + 3x2 ≤ 45 + 6(1− α)

3x1 + x2 ≤ 30

α ≤ 1,

xj > 0, j = 1, 2. α ≥ 0

or,

Maximize Z = α

s.t. 2α− x1 − x2 ≥ −12.5

3α− x1 + 3x2 ≤ 24

6α+ x1 + 3x2 ≤ 33

6α+ 4x1 + 3x2 ≤ 51

3x1 + x2 ≤ 30

α ≤ 1,

xj > 0, j = 1, 2. α ≥ 0

Using simplex method the optimal solution is obtained as x∗1 = 6, x∗2 = 7.75,zmax = 13.75 and α∗ = 0.625.

3.7 Illustrative Examples

3.7.1 Example.

Using Verdegay’s method solve the fuzzy LPP considered in example 78.4.1 Solution. The fuzzy LPP is

Maximize Z = 2x1 + x2

s.t. x1 + 0x2 ≤ 3 or 4

x1 + x2 ≤ 4 or 6

0.5x1 + x2 ≤ 3 or 5

xj > 0, j = 1, 2.

The membership functions of the constraints are given by

µ1(x1, x2) =


1 for x1 ≤ 3
(4− x1) for 3 < x1 < 4
0 for x1 ≥ 4
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µ2(x1, x2) =


1 for x1 + x2 ≤ 4
(6− x1 − x2)/2 for 4 < x1 + x2 < 6
0 for x1 + x2 ≥ 6

µ3(x1, x2) =


1 for 0.5x1 + x2 ≤ 3
(5− 0.5x1 − x2)/2 for 3 < 0.5x1 + x2 < 5
0 for 0.5x1 + x2 ≥ 5

Using Verdegay’s method the crisp parametric programming problem equivalent to the given fuzzy LPP
is given by

Maximize z = 2x1 + x2

subject to µ0(x) ≥ α

µ1(x) ≥ α

µ2(x) ≥ α

µ3(x) ≥ α

α ≥ 0

x, α > 0, where x = (x1, x2)

Maximize z = 2x1 + x2

s.t. x1 ≤ 3 + (1− α)

x1 + x2 ≤ 4 + (1− α)2

0.5x1 + x2 ≤ 3 + (1− α)2

α ≤ 1

α, xj > 0, j = 1, 2.

Letθ = 1− α. since 0 ≤ α ≤ 1 we have 0 ≤ θ ≤ 1
The Lpp becomes

Maximize z = 2x1 + x2

s.t. x1 ≤ 3 + θ

x1 + x2 ≤ 4 + 2θ

0.5x1 + x2 ≤ 3 + 2θ

θ ≥ 0

θ ≤ 1

xj > 0, j = 1, 2.
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or,

Maximize z = 2x1 + x2

s.t. x1 ≤ 3 + θ

x1 + x2 ≤ 4 + 2θ

x1 + 2x2 ≤ 6 + 4θ

0 ≤ θ ≤ 1

xj > 0, j = 1, 2.

To solve this parametric LPP we first solve the LPP taking θ = 0 i.e. we solve the following

Maximize z = 2x1 + x2

s.t. x1 ≤ 3

x1 + x2 ≤ 4

x1 + 2x2 ≤ 6

xj > 0, j = 1, 2.

Introducing slack variables x3, x4,x5 we get

Maximize z = 2x1 + x2 + 0x3 + 0x4 + 0x5

s.t. x1 + 0x2 + 0x3 = 3

x1 + x2 + x4 = 4

x1 + 2x2 + x5 = 6

xj > 0, j = 1, 2, 3, 4, 5.

cj 2 1 0 0 0

cB xB b y1 y2 y3 y4 y5 min ratio

0 y3 3 1 0 1 0 0 3
0 y4 4 1 1 0 1 0 4
0 y5 6 1 2 0 0 1 6

z = 0 zj − cj −2 −1 0 0 0

2 y1 3 1 0 1 0 0 -

0 y4 1 0 1 −1 1 0 1
0 y5 3 0 2 −1 0 1 3/2

z = 6 zj − cj 0 −1 2 0 0

2 y1 3 1 0 1 0 0
1 y2 1 0 1 −1 1 0
0 y5 1 0 0 1 −2 1

z = 7 zj − cj 0 0 1 1 0

From this final table we get the optimal values of the basic variables for the parametric LPP as xB =
b+ θy3 + 2θy4 + 4θy5. x1x2

x5

 =

3
1
1

+ θ

 1
−1
1

+ 2θ

 0
1
−2

+ 4θ

0
0
1
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or, x1x2
x5

 =

 3 + θ
1− θ + 2θ

1 + θ − 4θ + 4θ


or, x1x2

x5

 =

3 + θ
1θ

1 + θ


The optimal value of the objective function is given by

Ż = Z + θ(Z3 − C3) + 2θ(Z4 − C4) + 4θ(Z5 − C5)

= 7 + θ · 1 + 2θ · 1 + 4θ · 0
= 7 + 3θ.

(3.3)

Hence the optimal solution of the parametric LPP is x1 = 3 + θ
x2 = 1 + θ
and zmax = 7 + 3θ where 0 ≤ θ ≤ 1.

3.7.2 Example

. Using Werners’ method solve the fuzzy LPP considered in Example 78.4.1. Solution. The fuzzy LPP is

Maximize Z = 2x1 + x2

s.t. x1 + 0x2 ≤ 3 or 4

x1 + x2 ≤ 4 or 6

0.5x1 + x2 ≤ 3 or 5

xj > 0, j = 1, 2.

In the Wemers’ method the membership function of the objective function is found with the help of optimal
values of the objective function of the following two LPP.

Maximize Z = 2x1 + x2

s.t. x1 + 0x2 ≤ 3

x1 + x2 ≤ 4

0.5x1 + x2 ≤ 3

xj > 0, j = 1, 2.
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and

Maximize Z = 2x1 + x2

s.t. x1 + 0x2 ≤ 4

x1 + x2 ≤ 6

0.5x1 + x2 ≤ 5

xj > 0, j = 1, 2.

The optimal solution of the first LPP is x1 = 3, x2 = 1 and maximum value of z is 7 :. zo = 7. The
optimal solution of the second LPP is x1 = 4, x2 = 2 and the maximum value of z is 10 :. z1 = 10. The
membership function of the objective function is given by

µ0(x) =


1 for 2x1 + x2 ≥ 10
(2x1 + x2 − 7)/3 for 7 < 2x1 + x2 < 10
0 for 2x1 + x2 ≤ 7

The membership function of the constraints are given by

µ1(x1, x2) =


1 for x1 ≤ 3
(4− x1) for 3 < x1 < 4
0 for x1 ≥ 4

µ2(x1, x2) =


1 for x1 + x2 ≤ 4
(6− x1 − x2)/2 for 4 < x1 + x2 < 6
0 for x1 + x2 ≥ 6

µ3(x1, x2) =


1 for 0.5x1 + x2 ≤ 3
(5− 0.5x1 − x2)/2 for 3 < 0.5x1 + x2 < 5
0 for 0.5x1 + x2 ≥ 5

Using Wemers’ method the crisp LPP equivalent to the given fuzzy LPP is given by

Maximize z = cx

subject to cx ≥ z1 − (1− α)(z1 − z0)
(Ax)i ≥ bi + (1− α)pi

x > 0,

0 ≤ α ≤ 1,
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or,

Maximize z = α

subject to 2x1 + x2 ≥ 10− (1− α)3

x1 ≤ 3 + (1− α) · 1
x1 + x2 ≤ 4 + (1− α)2

0.5x1 + x2 ≤ 3 + (1− α)2

x1, x2 ≥ 0,

0 ≤ α ≤ 1,

or,

Maximize z = α

subject to 2x1 + x2 + 3α ≥ 7

x1 + 0x2 + α ≥ 4

x1 + x2 + 2α ≤ 6

0.5x1 + x2 + 4α ≤ 10

α ≤ 1,

α, x1, x2 ≥ 0,

Solution of this crisp LPP gives the optimal solution of the given fuzzy LPP.

3.7.3 Example.

Using Zimmermann’s method solve the fuzzy LPP considered in the example 78.4.1
Solution. The fuzzy LPP is

˜Maximize Z = 2x1 + x2

s.t. x1 + 0x2 ≤ 3 or 4

x1 + x2 ≤ 4 or 6

0.5x1 + x2 ≤ 3 or 5

xj > 0, j = 1, 2.

Let us take here the aspiration level of the objective function value as 12 and the permissible tolerance
of it as 3. According to Zimmermann’s method the membership function of the objective function is given
by

µ0(x) =


1 for 2x1 + x2 ≥ 12
(2x1 + x2 − 9)/3 for 9 < 2x1 + x2 < 12
0 for 2x1 + x2 ≤ 9
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The membership function of the constraints are given by

µ1(x1, x2) =


1 for x1 ≤ 3
(4− x1) for 3 < x1 < 4
0 for x1 ≥ 4

µ2(x1, x2) =


1 for x1 + x2 ≤ 4
(6− x1 − x2)/2 for 4 < x1 + x2 < 6
0 for x1 + x2 ≥ 6

µ3(x1, x2) =


1 for 0.5x1 + x2 ≤ 3
(5− 0.5x1 − x2)/2 for 3 < 0.5x1 + x2 < 5
0 for 0.5x1 + x2 ≥ 5

Using Zimmermann’s method the crisp LPP equivalent to the given fuzzy LPP is given by

Maximize z = α

subject to µ0(x1, x2) ≥ α

µi(x1, x2) ≥ α, i = 1, 2, 3

α, x1, x2 > 0,

α ≤ 1,

or,

Maximize z = α

subject to 2x1 + x2 ≥ 12− (1− α)3

x1 ≤ 3 + (1− α) · 1
x1 + x2 ≤ 4 + (1− α) · 2
0.5x1 + x2 ≤ 3 + (1− α)2

α, x1, x2 ≥ 0,

α ≤ 1,

or,

Maximize z = α

subject to 2x1 + x2 + 3α ≥ 9

x1 + 0x2 + α ≤ 4

x1 + x2 + 2α ≤ 6

0.5x1 + x2 + 4α ≤ 5

α ≤ 1,

α, x1, x2 ≥ 0,

Using simplex method we get the optimal solution of this crisp LPP and that is the optimal solution of
the given fuzzy LPP.

22 Applied Mathematics, Vidyasagar University



Fuzzy Mathematics with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.8 Linear Programming Problems with Fuzzy Parameters

Definition: The partial ordering ≤ for triangular fuzzy number is defined by (al, am, ar) ≤ (bl, bm, br)
iff al ≤ bl, am ≤ bm and ar ≤ br.
Theorem: (Pareto Optimality) For a problem with p objective functions, the point x∗ ∈ X is a Pareto
Optimal solution if there does not exist x ∈ X such that if Zi(x) ≥ Zi(x∗) for all i and Zj(x) > Zj(x

∗) for
at least one j.
The Linear Programming problem with fuzzy parameters are given as

Maximize Z̃ =
n∑
j=1

c̃j xj

Subject to the constraints
n∑
j=1

ãij xj ≤ b̃i, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.4)

where c̃j , ãij and b̃i are fuzzy numbers.
Considering the fuzzy parameters as triangular fuzzy numbers, we have

Maximize Z̃ =

n∑
j=1

(cl, cm, cr)j xj

Subject to the constraints
n∑
j=1

(al, am, ar)ij xj ≤ (bl, bm, br)i, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.5)

where (cl, cm, cr)j is the j-th fuzzy coefficient in the objective function. (al, am, ar)ij is the fuzzy coeffi-
cient of j-th variable in the i-th constraints and (bl, bm, br)i is the i-th fuzzy resource. These problem can
be solved by converting into equivalent crisp multi-objective linear problem as

Maximize (Z1, Z2, Z3)

where Z1 =

n∑
j=1

clj xj , Z2 =

n∑
j=1

cmj xj , Z3 =

n∑
j=1

crj xj .

Subject to the constraints
n∑
j=1

alij xj ≤ bli, i = 1, 2, ...,m.

n∑
j=1

amij xj ≤ bmi, i = 1, 2, ...,m.

n∑
j=1

arij xj ≤ bri, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.6)
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The above multi-objective optimization problem can be solved by weighted objective function. The reduced
problem is as

Maximize w1 Z1 + w2 Z2 + w3 Z3

where Z1 =
n∑
j=1

clj xj , Z2 =
n∑
j=1

cmj xj , Z3 =
n∑
j=1

crj xj .

Subject to the constraints
w1 + w2 + w3 = 1
n∑
j=1

alij xj ≤ bli, i = 1, 2, ...,m.

n∑
j=1

amij xj ≤ bmi, i = 1, 2, ...,m.

n∑
j=1

arij xj ≤ bri, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.7)

Solution can be obtained by solving the problem with different weights.

3.9 Multi-objective fuzzy linear programming Problem

The multi-objective fuzzy linear programming problem is given as

Maximize Z̃1, Z̃2, ..., Z̃p

where Z̃k =
n∑
j=1

c̃kj xj , k = 1, 2, ..., p.

Subject to the constraints
n∑
j=1

ãij xj ≤ b̃i, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.8)

where c̃kj , ãij and b̃i are fuzzy numbers.

Considering the objective function coefficient (c̃kj ), technological coefficient (ãij) and resource coefficient

(b̃i) as triangular fuzzy numbers. The above problem can be represented as

Maximize Z̃1, Z̃2, ..., Z̃p

where Z̃k =

n∑
j=1

(cl, cm, cr)kj xj , k = 1, 2, ..., p.

Subject to the constraints
n∑
j=1

(al, am, ar)ij xj ≤ (bl, bm, br)i, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.9)

where (cl, cm, cr)kj is the j-th fuzzy coefficient in the k-th objective function. (al, am, ar)ij is the fuzzy
coefficient of j-th variable in the i-th constraints and (bl, bm, br)i is the i-th fuzzy resource. Since the
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coefficient of objective function is represented by triangular fuzzy numbers. Therefore, each objective
function gives rise to 3 crisp objective functions. Hence the converted problem will involve 3p objective
functions to be optimized. The converted problem becomes

Maximize (Z1
1 , Z

1
2 , Z

1
3 , Z

2
1 , Z

2
2 , Z

2
3 , ..., Z

p
1 , Z

p
2 , Z

p
3 , )

where Zk1 =

n∑
j=1

clkj xj , Z
k
2 =

n∑
j=1

cmk
j xj , Z

k
3 =

n∑
j=1

crkj xj , k = 1, 2, ..., p.

Subject to the constraints
n∑
j=1

alij xj ≤ bli, i = 1, 2, ...,m.

n∑
j=1

amij xj ≤ bmi, i = 1, 2, ...,m.

n∑
j=1

arij xj ≤ bri, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.10)

The weighted objective function of the above problem using pareto method can be represented as

Maximize w11Z
1
1 + w12 Z

1
2 + w13 Z

1
3 + w21 Z

2
1 + ...+ wp2 Z

p
2 + wp3 Z

p
3 , )

where Zk1 =
n∑
j=1

clkj xj , Z
k
2 =

n∑
j=1

cmk
j xj , Z

k
3 =

n∑
j=1

crkj xj , k = 1, 2, ..., p.

Subject to the constraints
wk1 + wk2 + wk3 = 1, k = 1, 2, ..., p.
n∑
j=1

alij xj ≤ bli, i = 1, 2, ...,m.

n∑
j=1

amij xj ≤ bmi, i = 1, 2, ...,m.

n∑
j=1

arij xj ≤ bri, i = 1, 2, ...,m.

xj ≥ 0, j = 1, 2, ..., n.

(3.11)

Solution can be obtained by solving the problem with different weights.
Ex.

Maximize Z̃1 = (7, 10, 14)x1 + (20, 25, 35)x2, Z̃
2 = (10, 14, 25)x1 + (25, 35, 40)x2

Subject to the constraints
(1, 3, 4)x1 + (2, 6, 7)x2 ≤ (8, 13, 15)
(3, 4, 6)x1 + (1, 6, 10)x2 ≤ (3, 7, 9)
x1, x2 ≥ 0.

(3.12)

3.10 Summary

In this module we have discussed applications of the fuzzy set theory developed in the earlier modules.
Applicatons area arc confined here mainly to fuzzy linear programming, Classification of fuzzy LPP is dis-
cussed. The pioneering work of Bellman and Zadeh for getting decision of fuzzy environment is considered
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for solving fuzzy LPP. Different methods developed by verdegay, Wemers and Zimmermann are discussed
in details with examples to explain the methods.
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