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2.1 Introduction

In this module we first consider the definition and arithmetic of Intervals. The notion of Interval arithmetic
is then used to develop the arithmetic of Fuzzy numbers. Fuzzy numbers are nothing but particular fuzzy
sets. Hence operations on fuzzy sets are discussed first. Then the notion of Interval arithmetic and
operations on fuzzy sets are used for the development of fuzzy numbers arithmetic.
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2.2 Interval Numbers

2.2.1 Definition

An interval number is defined as an ordered pair of finite real numbers [a, b] where a ≤ b. When a = b the
interval number [a, b] degenerates to the scalar real number ‘a’.

An interval number can be thought as

(i) an extension of the concept of a real number and also as a subset of the real line [Moore 1979, Alefeld
& Herzberger ( 1983)].

(ii) a simplest form of tolerance-type uncertainty with no information about the probabilities within this
tolerance range (Nauyen & Kreinovich, 2005).

(iii) a grey number whose exact value is unknown but a range within which the value lies is known [Liu
& Lin, 1998].

Thus an interval number represents a set of possible values that a particular entity or variable may
assume without any prior assumption about exact value and probability measure. In other words, interval
numbers should be used whenever decision variables can assume different values, but a probability measure
on these values is not available or justifiable. In reality, inexactness of this kind occurs in countless numbers.
An interval number may also be called as an interval.

2.2.2 Set Operations on Intervals

Definition

(i) Equality: Two intervals [a, b] and [c, d] are said to be equal if and only if a = c and b = d.

(ii) Intersection: The intersection of two intervals [a, b] and [c, d] is defined as

[a, b] ∩ [c, d] = [ max{a, c},min{b, d} ]

Note: [a, b] ∩ [c, d] = φ if and only if a > d or c > b.

(iii) Union: The union of two intervals [a, b] and [c, d] is defined as

[a, b] ∪ [c, d] = [ min{a, c},max{b, d} ]

provided that [a, b] ∩ [c, d] 6= φ

(iv) Inclusion: The interval [a, b] is said to be included in [c, d] if and only if both c < a and b < d. It is
written as [a, b] ⊂ [c, d]

For given two intervals I1 = [a, b] and I2 = [c, d] the following six cases may arise:
(i) a > d (ii) c > b (iii) a > c and b < d (iv) c > a and d < b
(v) a < c < b < d and (vi) c < a < d < b.

Tabl 2.1 shows the various combinations of set-theoretic intersection and set-theoretic union for these
six possible combinations of a, b, c and d.
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Table 2.1: Various combinations of set-theoretic intersection and union.

Cases Intersection (∩) Union (∪)

(i) a > d φ [c, d] ∪ [a, b]
(ii) c > b φ [a, b] ∪ [c, d]
(iii) a > c, b < d [a, b] [c, d]
(iv) c > a, d < b [c, d] [a, b]
(v) a < c < b < d [c, b] [a, d]
(vi) c < a < d < b [a, d] [c, b]

2.2.3 Interval Arithmetic

Let [a1, b1], [a2, b2] and [a, b] be intervals. Then addition, subtraction, multiplication and division are
defined as follows:
(i) Addition :

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2]

(ii) Subtraction:

[a1, b1]− [a2, b2] = [a1 − b2, b1 − a2]

(iii) Multiplication:

[a1, b1]× [a2, b2] = [ min{a1a2, a1b2, b1a2, b1b2},max{a1a2, a1b2, b1a2, b1b2} ]

(iv) Division:

[a1, b1]/[a2, b2] = [ min{a1/a2, a1/b2, b1/a2, b1/b2},max{a1/a2, a1/b2, b1/a2, b1/b2} ]

provided that 0 /∈ [a2, b2]

(v) Scalar Multiplication :

k[a, b] = [ka, kb] for k ≥ 0
= [kb, ka] for k < 0

(vi) Reciprocal:

If 0 /∈ [a, b ] then [a, b]−1 = [ min {1/a, 1/b},max {1/a, 1/b} ]

If 0 ∈ [a, b ] then [a, b]−1 is undefined.

For non-negative intervals multiplication, division and reciprocal reduces to the following.

Multiplication :

[a1, b1]× [a2, b2] = [a1a2, b1b2]

Division:

[a1, b1]/[a2, b2] = [a1/b2, b1/a2]

Inverse:

[a, b]−1 = [1/b, 1/a]

Remarks :
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From [3, 14] + [5, 20] = [8, 34] we note that for any x ∈ [3, 14] and any y ∈ [5, 20], it is guaranteed that
x+ y ∈ [8, 34]. Also from [2, 8]− [3, 10] = [−8, 5] we note that for any x ∈ [2, 8] and for any y ∈ [3, 10], it
is guaranteed that x− y ∈ [−8, 5]. So interval arithmetic intends to obtain an interval as the result of an
operation such that the resulting interval contains all possible solutions.

Again interval arithmetic may produce some unusual results that could seem to be inconsistent with the
ordinary numerical solutions. As for example ordinary results gives [2, 6]− [2, 6] = [0, 0], but from interval
arithmetic we have [2, 6] − [2, 6] = [−4, 4] and not [0, 0]. Here we note that [0, 0] ∈ [−4, 4] i.e. [−4, 4]
contains 0 but not only 0, many others also i.e. 0 as well as all other possible solutions.

2.2.4 Algebraic Properties of Interval Arithmetic

We can easily prove the following properties of interval arithmetic.
Let X, Y, Z be intervals, then we have

i) X + Y = Y +X

ii) (X + Y ) + Z = X + (Y + Z)

iii) (XY )Z = X(Y Z)

iv) XY = Y X

v) Z + 0 = 0 + Z = Z and Z0 = 0Z = 0 where 0 = [0, 0]

vi) ZI = IZ = Z where I = [1, 1]

vii) Z(X + Y ) 6= ZX + ZY , except when

(a) Z = [z, z] is a point or

(b) X = Y = 0 or

(c) xy ≥ 0 for all x ∈ X and y ∈ Y .
In general, only the subdistributive law holds :

Z(X + Y ) ⊆ ZX + ZY.

2.3 Operations on Fuzzy Sets

Now we proceed to define certain standard set theoretic operations for fuzzy sets.

2.3.1 Definition: Empty fuzzy set

A fuzzy set Ã defined over the universe X is said to be empty if its membership function is identically zero
i.e. if µÃ(x) = 0 for all x ∈ X.

2.3.2 Definition: Subset

A fuzzy set Ã is said to be a subset of a fuzzy set B̃ if µÃ(x) ≤ µB̃(x) for all x ∈ X. This is denoted by

Ã ⊆ B̃.
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2.3.3 Definition: Equality of fuzzy sets

Two fuzzy sets Ã and B̃ are said to be equal if Ã ⊆ B̃ and B̃ ⊆ Ã i.e. if µÃ(x) = µB̃(x) for all x ∈ X.

2.3.4 Definition: Complement

The complement of a fuzzy set Ã defined over the universal set X is another fuzzy Ã′ defined by the
membership function

µÃ′(x) = 1− µÃ(x) for all x ∈ X

2.3.5 Definition: Union

The union of two fuzzy sets Ã and B̃ is another fuzzy set C̃ defined by the membership function

µC̃(x) = max{µÃ(x), µB̃(x)} for all x ∈ X.

2.3.6 Definition : Intersection

The intersection of two fuzzy sets Ã and B̃ is another fuzzy set C̃ defined by the membership function

µC̃(x) = min{µÃ(x), µB̃(x)} for all x ∈ X.

Before studying the properties of fuzzy sets we state the standard properties of crisp sets.

2.3.7 Properties of Crisp Sets

The following are the important properties of crisp sets.
i) Commutativity: A ∪B = B ∪A & A ∩B = B ∩A
ii) Associativity: (A ∪B) ∪ C = A ∪ (B ∪ C) & (A ∩B) ∩ C = A ∩ (B ∩ C)
iii) Distributive laws : A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) & A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
iv) De Morgan’s laws: (A ∪B)′ = A′ ∩B′ & (A ∩B)′ = A′ ∪B′
v) Law of contradiction: A ∩A′ = Φ
vi) Law of excluded middle: A ∪A′ = X.

2.3.8 Properties of Fuzzy Sets

Using the definitions of union, intersection and complement of fuzzy sets we now prove the properties of
fuzzy sets. It is seen that all the properties stated above for crisp sets holds good also for fuzzy sets except
the law of contradiction and the law of excluded middle. In the following theorem we prove this.

Theorem 2.1 Prove that for fuzzy sets commutative law, associative law, distributive law and De Morgan’s
law are true.

Proof. We prove distributive law and De Morgan’s law. Commutative law and associative law can be
proved easily.

Let Ã and B̃ and C̃ be fuzzy sets with membership functions µÃ(x), µB̃(x)} and µC̃(x) respectively. We

prove the distributive law Ã ∪ (B̃ ∩ C̃) = (Ã ∪ B̃) ∩ (Ã ∪ C̃)
We have
µÃ∪(B̃∩C̃)(x)
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= max [µÃ(x), µB̃∩C̃(x)]

= max [µÃ(x),min{µB̃(x), µC̃(x)}]
= max [α,min{β, γ}] where α = µÃ(x), β = µB̃(x) and γ = µC̃(x)

= f(x) [say]
Again
µ(Ã∪B̃)∩(Ã∪C̃)(x)

= min [µÃ∪B̃(x), µÃ∪C̃(x)]

= min [max{µÃ(x), µB̃(x)},max{µÃ(x), µC̃(x)}]
= min [max{α, β},max{α, γ}]
= g(x) [say]

For any fixed x ∈ X, there arise following six cases

i) α ≤ β ≤ γ

ii) α ≤ γ ≤ β

iii) β ≤ γ ≤ α

iv) β ≤ α ≤ γ

v) γ ≤ α ≤ β

vi) γ ≤ β ≤ α

We consider all these six cases in the following Table 2.2.
In all these six cases we see that f(x) = g(x). This is true for any x ∈ X. Hence we have

Table 2.2: Different cases for distributive law of fuzzy sets.

Case min{β, γ} f(x) max{α, β} max {α, γ} g(x)

i) α ≤ β ≤ γ β β β γ β
ii) α ≤ γ ≤ β γ γ β γ γ
iii) β ≤ γ ≤ α β α α α α
iv) β ≤ α ≤ γ β α α γ α
v) γ ≤ α ≤ β γ α β α α
vi) γ ≤ β ≤ α γ α α α α

µÃ∪(B̃∩C̃)(x) = µ(Ã∪B̃)∩(Ã∪C̃)(x) for all x ∈ X.

This proves that

Ã ∪ (B̃ ∩ C̃) = (Ã ∪ B̃) ∩ (Ã ∪ C̃)

We now prove the De Morgan’s law

(Ã ∪ B̃)′ = Ã′ ∩ B̃′

We have

µ(Ã∪B̃)′(x)

= 1 - µ(Ã∪B̃)(x)

= 1 - max{µÃ(x), µB̃(x)}
= 1 - max{α, β} where α = µÃ(x) and β = µB̃(x)
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= f(x) [say]

and µÃ′∩B̃′(x)

= min {µÃ′(x), µB̃′(x)} = min {1− µÃ(x), 1− µB̃(x)}
= min {1− α, 1− β}
= g(x) [say]

For any fixed x ∈ X, two cases will arise

Case (i) α ≤ β
Case (ii)α > β

We consider these two cases in the following Table 2.3.

Table 2.3: Different cases for De Morgan’s law of fuzzy sets.

Case max{α, β} f(x) min{1− α, 1− β} g(x)

i) α ≤ β β 1− β 1− β 1− β
ii)α > β α 1− α 1− α 1− α

In both the cases we see that f(x) = g(x). This is true for any x ∈ X. Hence (Ã ∪ B̃)′ = Ã′ ∩ B̃′

Theorem 2.2 Prove that the law of contradiction and law of excluded middle do not hold for fuzzy sets.

Proof. Law of contradiction is Ã ∩ Ã′ = Φ

and law of excluded middle is Ã ∪ Ã′ = X

We have µÃ∩Ã′(x)

= min {µÃ(x), µÃ′(x)}
= min {µÃ(x), 1− µÃ(x)}
= min {α, 1− α} where α = µÃ(x)

µφ(x) = 0 for x ∈ X
For any α ∈ (0, 1), min {α, 1− α} 6= 0

For α = 0 and α = 1 only min {α, 1− α} = 0

Thus min {α, 1− α} = 0 is not true in general for all x ∈ X .

i.e. µÃ∩Ã′(x) = µφ(x) is not true in general for all x ∈ X.

i.e. Ã ∩ Ã′ = Φ is not true.

Again µÃ∪Ã′(x)

= max {µÃ(x), 1− µÃ(x)}
= max {α, 1− α} where α = µÃ(x)

=


1 for α = 0 or 1
1− α for 0 < α < 1/2
α for 1/2 ≤ α < 1

∴ µÃ∪Ã′(x) = 1 is not true in general for all α i.e. for all x ∈ X.

i.e. Ã ∪ Ã′ = X is not true.

Thus law of excluded middle is not true for fuzzy sets.
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2.4 Some Definitions

To develop the notion of fuzzy numbers and for the study of the arithmetic of fuzzy numbers we need
certain crisp sets associated with fuzzy sets under consideration. These crisp sets are called α- cut and is
defined below .

2.4.1 Definition : α− cut of fuzzy set Ã.

The α- cut of the fuzzy set Ã defined over the universal set X is the crisp set Aα defined by
Aα = {x ∈ X : µÃ(x) ≥ α}.

2.4.2 Support of a fuzzy set

Let Ã be a fuzzy set in X. Then the support of Ã, denoted by S(Ã) is the crisp set defined by
S(Ã) = {x ∈ X : µÃ(x) > 0}.

2.4.3 Height of a fuzzy set.

The height of a fuzzy set Ã is defined as
h(Ã) = sup{µÃ(x) : x ∈ X}

2.4.4 Normal fuzzy set

A fuzzy set Ã is said to be normal if its height is one i.e. if sup{µÃ(x) : x ∈ X} = 1.

If fuzzy set Ã is not normal we can normalize it by redefining the membership function as
µÃ(x)/h(Ã), x ∈ X.

2.4.5 Convex fuzzy set

A fuzzy set Ã in Rn is said to be a convex set if and only if for all x1, x2 ∈ Rn and 0 ≤ λ ≤ 1,
µÃ{λx1 + (1− λ)x2} ≥ min{µÃ(x1), µÃ(x2)}.

2.4.6 Fuzzy Number

A convex normal fuzzy set is called a fuzzy number.
The following theorem establishes a relation between the membership function and α-cuts of fuzzy

set.

Theorem 2.3 Let Ã be a fuzzy set in X with the membership function µÃ(x). Let Aα be the α-cuts of Ã
and χAα(x) be the characteristic function of the crisp set Aα for α ∈ (0, 1]. Then for each x ∈ X

µÃ(x) = sup{α ∧ χAα(x) : 0 < α ≤ 1}.

Proof. We have χAα(x) =

{
1 if x ∈ Aα
0 if x /∈ Aα

∴ For x ∈ Aα we have χAα = 1 and µÃ(x) ≥ α
and for x /∈ Aα we have χAα = 0 and µÃ(x) < α.
Now sup{α ∧ χAα(x) : 0 < α ≤ 1}
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= sup {α ∧ χAα(x) : 0 < α ≤ µÃ(x)} ∨ sup {α ∧ χAα(x) : µÃ(x) < α ≤ 1}
= sup {α ∧ 1 : 0 < α ≤ µÃ(x)} ∨ sup {α ∧ 0 : µÃ(x) < α ≤ 1}
= sup {α : 0 < α ≤ µÃ(x)}
= µÃ(x)

Remark : For given a fuzzy set Ã in X we consider a special fuzzy set denoted by αAα for α ∈ (0, 1]
whose membership function is defined as

µαAα(x) = α ∧ χAα(x) for all x ∈ X.

Let the set SA be defined as

SA = {α : µÃ(x) = α} for some x ∈ X .

We call this set as level set of Ã.

Result: From above theorem we now get the following theorem

Theorem 2.4 The fuzzy set Ã in X can be expressed in the form

Ã =
⋃
{αAα : α ∈ SA}

where
⋃

denotes the standard fuzzy union.

This theorem is called the representation theorem of fuzzy sets. This theorem essentially tell that a fuzzy
set Ã in X can always be expressed in terms of its α-cuts without explicitly resorting to its membership
function µÃ(x).

Theorem 2.4 is explained in the following example.

2.4.7 Example

Let Ã be the fuzzy set defined by the membership function

µÃ(x) =


0 ,x ≤ 1
(x− 1)/2 ,1 < x ≤ 3
(5− x)/2 ,3 < x ≤ 5
0 ,x > 5

Its graph is shown in Fig. 2.1.

Let us consider four α-cuts viz. A.2, A.4, A.6 and A.8 in the following Fig. 2.1 and their corresponding
membership functions µ.2A.2(x), µ.4A.4(x) ,µ.6A.6(x) are shown.

Finally, the union of these four fuzzy sets i.e. (.2A.2) ∪ (.4A.4) ∪ (.6A.6) ∪ (.8A.8) is shown

i.e.
⋃
{αAα : α = .2, .4, .6, .8} is shown.

It is seen that this is close to the graph of Ã (Fig. 2.2)).

This explains the fact that if we consider all α ∈ (0, 1] then we get the graph of Ã i.e.⋃
{αAα : 0 < α ≤ 1} = Ã .

2.5 Some Useful and Important Fuzzy Numbers

Triangular Fuzzy Number: The graph of the membership function of triangular fuzzy number is of
triangular shape. It is described by a triplet i.e. Ã = (a1, a2, a3), The membership function is given by
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Figure 2.1: Example of representation theorem for fuzzy number

µÃ(x) =


0 for x ≤ a1
(x− a1)/(a2 − a1) for a1 < x ≤ a2
(a3 − x)/(a3 − a2) for a2 ≤ x < a3
0 for x ≥ a3

The graph is shown in Fig. 2.2.
Trapezoidal Fuzzy Number: The graph of a trapezoidal fuzzy number is of the shape of a trapezium.
It is described by a quadruplet i.e. Ã = (a1, a2, a3, a4). The membership function of such a number is

given by

µÃ(x) =


0 for x ≤ a1
(x− a1)/(a2 − a1) for a1 < x ≤ a2
1 for a2 < x ≤ a3
(a4 − x)/(a4 − a3) for a3 < x < a4
0 for x ≥ a4

The graph of trapezoidal fuzzy number is shown in Fig. 2.3.
Rectangular Fuzzy Number (Interval Number) : Its graph looks like a rectangle. It is a special

case of trapezoidal fuzzy number. It is nothing but an interval number. It is also represented by a
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Figure 2.2: Membership function of triangular fuzzy number.

Figure 2.3: Membership function of trapezoidal fuzzy number.

quadruplet i.e. Ã = (a1, a2, a3, a4) whose first two and last two components are alike i.e. Ã = (a1, a1, a2, a2).
The membership function is given by

µÃ(x) =


0 for x < a1
1 for a1 ≤ x ≤ a2
0 for x > a2

Its graph is shown in Fig. 2.4.

Note: We note the following important facts that

A trapezoidal number becomes Ã = (a1, a2, a3, a4) becomes

i) a triangular number if a2 = a3.

ii) an interval or a rectangular number if a1 = a2 and a3 = a4
iii) a real number if a1 = a2 = a3 = a4.

Gaussian Fuzzy Number: It is described by a triplet Ã = (m,σ1, σ2). The membership function is

Applied Mathematics, Vidyasagar University 11
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Figure 2.4: Membership function of rectangular fuzzy number.

given by

µÃ(x) =

e
− (x−m)2

2σ21 for x ≤ m

e
− (x−m)2

2σ22 for x > m

Its graph is shown in Fig. 2.5.
It is a symmetric curve about the line x = m if σ1 = σ2. In general it is not symmetric.

Figure 2.5: Membership function of rectangular fuzzy number.

2.6 Zadeh’s Extension Principle

Zadeh’s extension principle is a very important tool in fuzzy mathematics. This principle provides a
procedure to fuzzify a crisp function. This type of fuzzification helps us to study mathematical relationships
between fuzzy entities. Fuzzy arithmetic with fuzzy numbers is based on this principle.

Let f : X → Y be a crisp function. Let P (X) and P (Y ) be the sets of all fuzzy sets of X and Y
respectively. The function f : X → Y induces the function f : P (X)→ P (Y ) and the extension principle
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of Zadeh gives formulas to compute the membership function of the fuzzy set f(Ã) in Y in terms of the
membership function of fuzzy set Ã in X.

2.6.1 Definition: Zadeh’s Extension Principle

Let f : X → Y be a mapping of the form y = f(x) and Ã be any fuzzy set of the fuzzy power set P (X)ofX.
If Ã is mapped to B̃ by f i.e if f(Ã) = B̃ then the membership function of B̃ is given by

µf(Ã)(y) = µB̃(y) = sup{µÃ(x) : x ∈ X, y = f(x)}

More generally, let fuzzy sets Ã1, Ã2, ..., Ãn be defined on the universe X1, X2, ..., Xn respectively. The
mapping f : X1×X2×...×Xn → Y of the form f(x1, x2, ..., xn) = y allows us to determine the membership
function of the fuzzy set f(Ã1, Ã2, ..., Ãn) = B̃ as follows by the extension principle.

µB̃(y) = sup [ min{µÃ1
(x1), µÃ2

(x2), ..., µÃn(xn)} : y = f(x1, x2, ..., xn) ]

Zadeh’s extension principle is a very powerful idea and is one of the fundamentals of fuzzy set theory.
It gives us the rule of calculation of an output of a fuzzy system when we know the structure of the input
fuzzy system.

2.7 Arithmetic of Fuzzy Numbers

Using Zadeh’s extension principle, the arithmetic operations on fuzzy numbers are defined as follows.
Let Ã and B̃ be two fuzzy numbers then addition, subtraction, multiplication and division are defined

as follows.
Addition: µÃ+B̃(z) = sup

z=x+y
[ min{µÃ(x), µB̃(y)} ]

Subtraction: µÃ−B̃(z) = sup
z=x−y

[ min{µÃ(x), µB̃(y)} ]

Multiplication: µÃ.B̃(z) = sup
z=x.y

[ min{µÃ(x), µB̃(y)} ]

Division: µÃ/B̃(z) = sup
z=x/y

[ min{µÃ(x), µB̃(y)} ]

77.7.1 Example. Using the addition rule for fuzzy numbers show that 3+7=10 for real numbers.
Solution. We know that every real number is a particular fuzzy number. Let 3 = Ã & 7 = B̃.
Then their membership functions are

µÃ(x) =

{
1 for x = 3
0 for x 6= 3

and

µB̃(y) =

{
1 for y = 7
0 for y 6= 7

From definition the membership function of Ã+ B̃ is given by

µÃ+B̃(z) = sup
z=x+y

[ min{µÃ(x), µB̃(y)} ]

For z = 10 we have µÃ+B̃(z) = sup
x+y=10

[ min{µÃ(x), µB̃(y)} ]

Applied Mathematics, Vidyasagar University 13
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x µÃ(x) µB̃(10− x) β(x)

x = 3 1 1 1
x 6= 3 0 0 0

= sup
x

[ min{µÃ(x), µB̃(10− x)} ] = sup
x

[ β(x) ] (say)

∴ µÃ+B̃(z) = sup {1, 0} = 1
For z 6= 10 we have µÃ+B̃(z) = sup

x
[ min{µÃ(x), µB̃(z − x)} ] = sup

x
[ β(x) ] (say)

x µÃ(x) µB̃(z − x) β(x)

x = 3 1 0 0
x 6= 3 0 0 or 1 0

∴ µÃ+B̃(z) = sup {0, 0} = 0
Hence we have

µÃ+B̃(z) =

{
1 for z = 10
0 for z 6= 10

This proves that Ã+ B̃ = 10
77.7.2 Example. Using addition rule for fuzzy numbers, prove that [3, 5] + [4, 8] = [7, 13]
Solution. Let Ã = [3, 5], B̃ = [4, 8] and C̃ = [7, 13]
Then

µÃ(x) =


0 for x < 3
1 for 3 ≤ x ≤ 5
0 for x > 5

; µB̃(y) =


0 for y < 4
1 for 4 ≤ y ≤ 8
0 for y > 8

and µC̃(z) =


0 for z < 7
1 for 7 ≤ z ≤ 13
0 for z > 13

We have to prove that Ã+ B̃ = C̃
From the addition rule for fuzzy numbers we have
µÃ+B̃(z) = sup

x+y=z
[ min{µÃ(x), µB̃(y)} ]

= sup
x+y=z

[ min{µÃ(x), µB̃(z − x)} ]

= sup
x+y=z

[ g(x) ], where g(x) = min {µÃ(x), µB̃(z − x)}.

For any z < 7 we have

x µÃ(x) µB̃(z − x) g(x)

x < 3 0 0 or 1 0
3 ≤ x ≤ 5 1 0 as −∞ < z − x < 4 0
x > 5 0 0 as −∞ < z − x < 2 0

∴ For any z < 7 we have µÃ+B̃(z) = sup{0, 0, 0} = 0
For any z with 7 ≤ z ≤ 13 we have
∴ When 7 ≤ z ≤ 13 then µÃ+B̃(z) = sup{0, 1} = 1
For any z with z > 13 we have
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x µÃ(x) µB̃(z − x) g(x)

x < 3 0 0 or 1 as 4 ≤ z − x <∞ 0
3 ≤ x ≤ 5 1 0 or 1 as 2 < z − x < 10 0 or 1
x > 5 0 0 or 1 as −∞ < z − x <∞ 0

x µÃ(x) µB̃(z − x) g(x)

x < 3 0 0 as 10 < z − x <∞ 0
3 ≤ x ≤ 5 1 0 as 8 < z − x <∞ 0
x > 5 0 0 or 1 as −∞ < z − x <∞ 0

∴ When z > 13 then µÃ+B̃(z) = sup{0, 0, 0} = 0

Thus

µÃ+B̃(z) =


0 for z < 7
1 for 7 ≤ z ≤ 13
0 for z > 13

Note: In general using addition, subtraction, multiplication and division rule for fuzzy numbers we can
prove the laws of addition, subtraction, multiplication and division for intervals. This is shown below.

2.8 Arithmetic Operations on Fuzzy Numbers using α-cuts.

In Theorem 2.4, we have proved that any fuzzy number can be expressed in the form

Ã =
⋃
{αAα : α ∈ SA}

where αAα is a special fuzzy set with membership function

µαAα(x) = α ∧ χAα(x) for all x ∈ X.

Since fuzzy number is normal convex set, it follows that αAα is nothing but an interval number.

We denote it by (Ã)α .

Thus above result becomes Ã =
⋃
{(Ã)α : 0 < α ≤ 1}

To perform arithmetic operations on fuzzy numbers using this result we proceed as follows.

Let Ã and B̃ denote fuzzy numbers and * denote any of the four basic arithmetic operations

{+,−, .,÷}.
Thus for Ã =

⋃
{(Ã)α : 0 < α ≤ 1} and B̃ =

⋃
{(B̃)α : 0 < α ≤ 1}.

Using above result we get Ã ∗ B̃ =
⋃
{(Ã)α ∗ B̃)α : 0 < α ≤ 1}.

77.8.1 Example : Let us consider two triangular numbers Ã and B̃ with membership functions given
by

µÃ(x) =


0 for x ≤ −1
(x+ 1)/2 for − 1 < x ≤ 1
(3− x)/2 for 1 < x ≤ 3
0 for x > 3

µB̃(x) =


0 for x ≤ 1
(x− 1)/2 for 1 < x ≤ 3
(5− x)/2 for 3 < x ≤ 5
0 for x > 5
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To get α-cut of Ã we have from µÃ(x)
(x+ 1)/2 = α & (3− x)/2 = α
i.e. x = 2α− 1 & x = 3− 2α
∴ α-cut of Ã is (Ã)α = [2α− 1, 3− 2α].
Similarly, to get α-cut of B̃ we have from µB̃(x)
(x− 1)/2 = α & (5− x)/2 = α
i.e. x = 2α+ 1 & x = 5− 2α
∴ α-cut of B̃ is (B̃)α = [2α+ 1, 5− 2α].
Now (Ã)α + (B̃)α = [2α− 1, 3− 2α] + [2α+ 1, 5− 2α]

= [4α, 8− 4α]
(Ã)α − (B̃)α = [2α− 1, 3− 2α]− [2α+ 1, 5− 2α]

= [4α− 6, 2− 4α]
∴ Ã+ B̃ =

⋃
{[4α, 8− 4α] : 0 < α ≤ 1}

and Ã− B̃ =
⋃
{[4α− 6, 2− 4α] : 0 < α ≤ 1}

Now 4α = x gives α = x/4
and 8− 4α = x gives α = (8− x)/4
∴

Ã+ B̃ =


0 for x ≤ 1
x/4 for 0 < x ≤ 4
(8− x)/4 for 4 < x < 8
0 for x ≥ 8

Again 4α− 6 = x gives α = (x+ 6)/4
2− 4α = x gives α = (2− x)/4
∴

Ã− B̃ =


0 for x ≤ 6
(x+ 6)/4 for − 6 < x ≤ −2
(2− x)/4 for − 2 < x < 2
0 for x ≥ 2

In terms-of triplet notation we see that
Ã = [−1, 1, 3], B̃ = [1, 3, 5]
and Ã+ B̃ = [0, 4, 8], Ã− B̃ = [−6,−2, 2]
Note: We see that Ã+ B̃ = [−1 + 1, 1 + 3, 3 + 5]

andÃ− B̃ = [−1− 5, 1− 3, 3− 1]
77.8.1 Rules for addition subtraction and scalar multiplication of triangular fuzzy numbers
Theorem: If Ã = [a1, b1, c1] and B̃ = [a2, b2, c2] then prove that
Ã+ B̃ = [a1 + a2, b1 + b2, c1 + c2], Ã− B̃ = [a1 − c2, b1 − b2, c1 − a2] and

kÃ =

{
[ka1, kb1, kc1] fork ≥ 0

[kc1, kb1, ka1] fork < 0

Proof. Here Ã = [a1, b1, c1] and B̃ = [a2, b2, c2].
The membership functions of Ã and B̃ are given respectively by

µÃ(x) =


0 for x ≤ a1
(x− a1)/(b1 − a1) for a1 < x ≤ b1
(c1 − x)/(c1 − b1) for b1 < x < c1
0 for x ≥ c1

16 Applied Mathematics, Vidyasagar University



Fuzzy Mathematics with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µB̃(x) =


0 for x ≤ a2
(x− a2)/(b2 − a2) for a2 < x ≤ b2
(c2 − x)/(c2 − b2) for b2 < x < c2
0 for x ≥ c2

To get α-cut of Ã we have from µÃ(x)
(x− a1)/(b1 − a1) = α and (c1 − x)/(c1 − b1) = α
From these x = α(b1 − a1) + a1 and x = c1 − α(c1 − b1).
∴ (Ã)α = [α(b1 − a1) + a1, c1 − α(c1 − b1)]
To get α-cut of B̃ we have from µB̃(x)
(x− a2)/(b2 − a2) = α and (c2 − x)/(c2 − b2) = α
From these x = α(b2 − a2) + a2 and x = c2 − α(c2 − b2).
∴ (B̃)α = [α(b2 − a2) + a2, c1 − α(c2 − b2)]
Using addition role for Interval numbers we get
(Ã)α + (B̃)α = [α(b1 + b2 − a1 − a2) + a1 + a2, c1 + c2 − α(c1 + c2 − b1 − b2)]
∴ Ã+ B̃ =

⋃
{[α(b1 + b2 − a1 − a2) + a1 + a2, c1 + c2 − α(c1 + c2 − b1 − b2)] : 0 < α ≤ 1}

From α(b1 + b2 − a1 − a2) + a1 + a2 = x we have
α = (x− a1 − a2)/(b1 + b2 − a1 − a2)
From x = c1 + c2 − α(c1 + c2 − b1 − b2) we have
α = (c1 + c2 − x)/(c1 + c2 − b1 − b2)
Hence we have

µÃ+B̃(x) =


0 for x ≤ a1 + a2
(x− a1 − a2)/(b1 + b2 − a1 − a2) for a1 + a2 < x ≤ b1 + b2
(c1 + c2 − x)/(c1 + c2 − b1 − b2) for b1 + b2 < x < c1 + c2
0 for x ≥ c1 + c2

i.e. Ã+ B̃ = [a1 + a2, b1 + b2, c1 + c2]
To get subtraction rule we have
(Ã)α − (B̃)α = [α(b1 − a1) + a1)− c2 + α(c2 − b2), c1 − α(c1 − b1)− α(b2 − a2)− a2]

= [α(b1 − a1 + c2 − b2) + a1)− c2, c1 − a2 − α(c1 − b1 + b2 − a2)]
∴ Ã− B̃ =

⋃
{[α(b1 − a1 + c2 − b2) + a1)− c2, c1 − a2 − α(c1 − b1 + b2 − a2)] : 0 < α ≤ 1}

From α(b1 − a1 + c− b2) + a1)− c2 = x we get
α = (x− a1 + c2)/(b1 + c2 − a1 − b2)
From c1 − a2 − α(c1 − b1 + b2 − a2 = x we get
α = (x− c1 + a2)/(c1 − b1 + b2 − a2)

µÃ−B̃(x) =


0 for x ≤ a1 − c2
(x− a1 + c2)/(b1 + c2 − a1 − b2) for a1 − c2 < x ≤ b1 − b2
(x− c1 + a2)/(c1 − b1 + b2 − a2) for b1 − b2 < x < c1 − a2
0 for x ≥ c1 − a2

i.e. Ã− B̃ = [a1 − c2, b1 − b2, c1 − a2]
To prove the scalar multiplication rule we note that the α-cut of Ã is
(Ã)α = [α(b1 − a1) + a1, c1 − α(c1 − b1)]
From the rule of scalar multiplication of intervals we have
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k(Ã)α =

{
[kα(b1 − a1) + ka1, kc1 − kα(c1 − b1)] fork ≥ 0

[kc1 − kα(c1 − b1), kα(b1 − a1) + ka1] fork < 0

∴ For k ≥ 0 we have

kÃ =
⋃
{kα(b1 − a1) + ka1, kc1 − kα(c1 − b1)] : 0 < α ≤ 1}

Now x = kα(b1 − a1) + ka1 and x = kc1 − kα(c1 − b1) gives

α = (x− ka1)/k(b1 − a1) and α = (kc1 − x)/k(c1 − b1).
∴ For k ≥ 0 we have

µkÃ(x) =


0 for x ≤ ka1
(x− ka1)/(k(b1 − a1) for ka1 < x < kb1
(kc1 − x)/(k(c1 − b1) for kb1 < x < kc1
0 for x ≥ kc1

This gives kÃ = [ka1, kb1, kc1].

Similarly for k < 0 we have

kÃ =
⋃
{[kc1 − kα(c1 − b1), kα(b1 − a1) + ka1]}

Now x = kc1 − kα(c1 − b1) and x = kα(b1 − a1) + ka1 gives

α = (kc1 − x)/k(c1 − b1) and α = (x− ka1))/k(b1 − a1).
∴ For k < 0 we have

µkÃ(x) =


0 for x ≤ kc1
(kc1 − x)/k(c1 − b1) for kc1 < x < kb1
(x− ka1))/k(b1 − a1) for kb1 < x < ka1
0 for x ≥ ka1

This gives kÃ = [kc1, kb1, ka1].

Hence we get finally kÃ =

{
[ka1, kb1, kc1] fork ≥ 0

[kc1, kb1, ka1] fork < 0

77.8.3 Rules for addition subtraction and scalar multiplication of trapezoidal fuzzy number

Proceeding exactly in the same way as triangular fuzzy numbers we can easily prove the following rules.

Addition:If Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) then

Ã+ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

Subtraction: If Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) then

Ã− B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1)
Scalar Multiplication: If Ã = (a1, a2, a3, a4) and k is a scalar then

kÃ =

{
[ka1, ka2, ka3, ka4] fork ≥ 0

[ka4, ka3, ka2, ka1] fork < 0

77.8.4 Rules for addition and subtraction for Gaussian fuzzy numbers

Addition: If Ã = (ma, σ1a, σ2a) and B̃ = (mb, σ1b, σ2b) then

Ã+ B̃ = (ma +mb, σ1a + σ1b, σ2a + σ2b)

Subtraction: If Ã = (ma, σ1a, σ2a) and B̃ = (mb, σ1b, σ2b) then

Ã− B̃ = (ma −mb, σ1a − σ1b, σ2a − σ2b)
77.9 Illustrative Examples

77.9.1 Example. Show that for interval numbers distributive law does not hold in general.

Solution. Let X = [1, 4], Y = [2, 5] and Z = [3, 8].

18 Applied Mathematics, Vidyasagar University



Fuzzy Mathematics with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∴ X + Y = [1 + 2, 4 + 5] = [3, 9]

Now (X + Y )Z

= [3, 9] [3, 8]

= [9, 72]

and XZ + Y Z

= [3, 32] + [6, 40]

= [9, 72]

∴ (X + Y )Z = XZ + Y Z

Again let X = [−1, 3], Y = (2, 4], Z = [−3,−1]

∴ (X + Y )Z

= [1, 7] [−3,−1]

= [min{−3,−1,−21,−7},max{−3,−1,−21,−7}]
= [−21,−1]

XZ + Y Z

= [min{3, 1,−9,−3},max{3, 1,−9,−3}] + [min{−6,−2,−12,−4},max{−6,−2,−12,−4}]
= [−9, 3] + [−12,−2]

= [−21, 1]

∴ (X + Y )Z ⊂ XZ + Y Z

Hence distributive law does not hold in general.

77.9.2 Example. Show that the fuzzy set with following membership function is neither normal nor
convex.

µÃ(x) =



0 for x ≤ 1

3(x− 1)/8 for 1 < x ≤ 3

(6− x)/4 for 3 < x ≤ 4

(3x− 2)/20 for 4 < x ≤ 6

3(7− x)/5 for 6 < x < 7

0 for x ≥ 7

Solution. We first draw the graph of this fuzzy set.

Figure 2.6: Non convex and normal fuzzy set.
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From the figure we see that the height of this fuzzy set is 4/5 which is less than one. Hence the fuzzy
set is not normal.

To show that the fuzzy set is non-convex we consider two points x1 = 3 and x2 = 6 .
Now µÃ(x1) = 3/4 and µÃ(x2) = 4/5

∴ min{µÃ(x1), µÃ(x2)} = {3/4, 4/5} = 3/4
Again for λ = 2/3
λx1 + (1− λ)x2 = 2

3 × 3 + 1
3 × 6 = 4

∴ µÃ{λx1 + (1− λ)x2} = µÃ(4) = 1/2
But 1

2 <
3
4 ∴ µÃ{λx1 + (1− λ)x2} < min{µÃ(x1), µÃ(x2)}

This shows that Ã is not convex set.
77.9.3 Example. Evaluate the following
2(5, 6, 8, 12) + 3(−1, 3, 4)− 5[−3, 2] + 8.
Solution. 2(5, 6, 8, 12) + 3(−1, 3, 4)− 5[−3, 2] + 8.

=2(5, 6, 8, 12) + 3(−1, 3, 3, 4)− 5(−3,−3, 2, 2) + 8(1, 1, 1, 1)
=(10, 12, 16, 24) + (−3, 9, 9, 12)− (−15,−15, 10, 10) + (8, 8, 8, 8)
=(15, 29, 33, 44)− (−15,−15, 10, 10)
=(15− 10, 29− 10, 33 + 15, 44 + 15)
=(5, 19, 48, 59).

77.10 Summary In this module the notion of interval numbers is introduced first. Then operations on
fuzzy sets are introduced. Fuzzy numbers are defined and arithmetic operations on them are discussed. The
famous extension principle of Zadeh is taken into account for this purpose. The arithmetic operations on
fuzzy numbers are considered as an extension of arithmetic operations on interval numbers by representing
fuzzy numbers as union of α-cuts. All these are illustrated with the help of examples.
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