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Proton-proton (p-p) scattering at low energy:  

 The stability of nuclei containing protons and neutrons shows that a strong and short-range 

attractive force must be present between protons at close distance, just like the neutron-proton force. 

In a nucleus of proton number 𝑧 > 1, the protons create a long-range Coulomb repulsive force due to 

their +𝑣𝑒 charges. So, the strong and short-range attractive force and the long-range repulsive force 

are always present inside this nucleus. But, the short-range attractive force is actually dominates over 

the long-range Coulombian repulsive force within the nucleus, this results the stability of the nuclei.  

 Since, no stable bound state of two protons is observed, the only means of the investigating 

the p-p force is through the experiments on p-p scattering.  

The investigations on the theory of p-p scattering of give the information about the strength 

and range of the p-p forces. The analysis on the p-p scattering shows that the nucleon potential is 

charge independent. That is same nuclear potential may be used for both p-p and n-p scattering, but 

their cross-sections are not the same because cross-section depends on energy.  

The p-p scattering is caused not only by the nuclear forces but also by the Coulomb force. For 

incident protons of energy below 10 𝑀𝑒𝑉, only the S-state interaction is of very importance in the 

scattering, since protons in higher orbital angular momentum states stay apart from each other beyond 

the range of the nuclear force (𝑏).  

 

Experimental study on the p-p scattering is capable of much higher accuracy than the n-p 

scattering, and the p-p scattering experiments are easier to perform and interpret due to the following 

reasons:  

(i) Protons are easily available over a wide range of energies.  

(ii) Protons can be produced in well collimated beam.  

(iii) Protons can be made monoenergetic by different kinds of accelerators.  

(iv) Protons can easily be detected by their ionizing properties, and their energies can be 

measured more easily.  

(v) Protons undergo both Coulomb and nuclear scattering. This increases the sensitivity in 

case one of the scattering probabilities is small, and gives the sign of the phase-shift 

resulting from the nuclear scattering.  

(vi) The protons combination obeys the Fermi-Dirac statistics. This simplifies the analysis of 

p-p scattering.  

From the theoretical stand point, the p-p scattering calculations are more complicated for the 

following reasons:  

(i) The presence of Coulomb scattering in addition to nuclear scattering introduces 

interference effect. This interference phenomena permits to determine the sign of the 

phase-shift for p-p scattering.  The Coulomb potential appreciably distorts the incident 

wave even at finite distances. The Coulomb scattering calculations require special wave 

mechanical treatment because of the slow variation of the potential with distance. So, the 

theory is more complicated than the of n-p scattering.  

(ii) Effect of indistinguishability of the scattering and scattered particles. Because, the 

scattering and scattered particles are identical and they obey the Pauli’s exclusion 
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principle. The nucleons have spin 
1

2
, and hence their wave functions must be 

antisymmetric with respect to interchange of the nucleons. Therefore, the wave describing 

the two protons must change sign on the interchange of the two particles: scattering and 

scattered particles.  

 

We are interest to obtain a theoretical expression for the differential elastic scattering cross-

section of protons by protons. Partial wave method for calculating the cross-section is applicable only 

when the potential of the interaction is of the form:  

𝑉(𝑟)  ~ 
1

𝑟𝑛
             𝑤𝑖𝑡ℎ            𝑛 > 1 

Since, the Coulomb potential 𝑉(𝑟) ∝ 1/𝑟  is not possible to apply in the method of partial waves in 

this case and hence the Coulomb scattering calculations are made using parabolic coordinates.  

 For the particles incident along the Z-axis, the asymptotic wave function in the presence of 

Coulomb interaction is  

𝜓(𝑟, 𝜃) = exp{𝑖𝑘𝑧 + 𝑖𝜂 ln 𝑘(𝑟 − 𝑧)} +
𝑓𝑐(𝜃)

𝑟
exp{𝑖(𝑘𝑟 − 𝜂 ln 2𝑘𝑟 + 2𝜂0 + 𝜋)}      … (1) 

Here, 𝜃 is the scattering angle (Fig. 1),  

𝜂 =
𝑒2

4𝜋𝜖0ℏ𝑣
 

𝑘 =
√𝑀𝐸

ℏ
=
𝑀𝑣

2ℏ
 

𝑓𝑐(𝜃) =
𝜂

2𝑘 𝑠𝑖𝑛2 (
𝜃
2
) 
exp {−𝑖𝜂 ln 𝑠𝑖𝑛2 (

𝜃

2
)} 

𝜂0 = arg Γ(1 + 𝑖𝜂) 

First term in equation (1) represents the incident plane wave and second term represents spherical 

outgoing wave. These two waves are slightly distorted due to the effect of Coulomb potential. The 

term 𝑓𝑐(𝜃) is the Coulomb scattering amplitude. It is related with the differential scattering cross-

section 𝜎𝑐(𝜃) for Coulomb scattering in C-system as given by  

𝜎𝑐(𝜃) = |𝑓𝑐(𝜃)|
2                                       

 

 
Fig. 1: Detection of scattered and recoil protons by the same detector D in p-p scattering 

 

The expression for the scattering cross-section 𝜎(𝜃) when the proton scattered at angle 𝜃 is 

given by  

𝜎(𝜃) = |𝑓𝑐(𝜃)|
2                                       



3 | P a g e  

 

                             = [
𝜂

2𝑘 𝑠𝑖𝑛2 (
𝜃
2
) 
exp {−𝑖𝜂 ln 𝑠𝑖𝑛2 (

𝜃

2
)}]

2

 

This becomes  

𝜎(𝜃) = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

.
1

𝑠𝑖𝑛4(𝜃/2)
                                     … (2) 

This is the Rutherford scattering formula applied in the case of p-p scattering. Rutherford obtained it 

from classical considerations.  

If we neglecting the spin of the two protons, then the two protons are identical and hence it is 

not possible for the detector D to distinguish between the incident proton which is scattered at 𝜃 and 

the recoil proton when the incident proton scattered at (𝜋 − 𝜃), this is shown in Fig. 1.  

For the proton scattered at (𝜋 − 𝜃), we can write  

𝜎(𝜋 − 𝜃) = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

.
1

𝑠𝑖𝑛4 (
𝜋 − 𝜃
2

) 
                    

                    =  (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

.
1

𝑐𝑜𝑠4 (
𝜃
2
) 
               … (3)  

So, the total scattering cross-section in the C-system is  

𝜎𝑐(𝜃) = 𝜎(𝜃) + 𝜎(𝜋 − 𝜃)                                                    

                                 = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [
1

𝑠𝑖𝑛4 (
𝜃
2
) 
+

1

𝑐𝑜𝑠4 (
𝜃
2
) 
]            … (4) 

The equation (4) is obtained from classical considerations.  

Now from the kinematics of the collision process, we have seen that the angle of scattering 

(𝜃𝐿) in the L-system is related to that in the C-system as 𝜃𝐶  for p-p scattering by the equation  

𝜃𝐶 = 2𝜃𝐿 

Also, if the scattering cross-section in the L-system is defined by 𝜎𝐿(𝜃𝐿), then  

𝜎𝑐(𝜃) =
𝜎𝐿(𝜃𝐿)

4 cos 𝜃𝐿
                                                                      

𝑜𝑟,       𝜎𝐿(𝜃𝐿) = 4 cos 𝜃𝐿 . (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [
1

𝑠𝑖𝑛4 (
𝜃
2) 

+
1

𝑐𝑜𝑠4 (
𝜃
2) 
]   … (5) 

For wave mechanical treatment of the problem, we have to take into account the exchange 

effect which is associated with the indistinguishability of the two protons, and add up the amplitudes 

of the scattered waves at 𝜃 and (𝜋 − 𝜃) and not the modulus squared of the amplitudes as was done in 

the classical considerations. Here, exchange of the two proton coordinates means the exchanging 𝜃 

with (𝜋 − 𝜃).  

For identical particles, their waves interfere and instead of the summing square of the 

amplitudes, the amplitudes are sum up first and then we square them. Thus the eigen functions 

containing only spatial coordinates without spin will be  

𝑓(𝜃) ± 𝑓((𝜋 − 𝜃)) 

The space part of the wave function 𝑓(𝜃) + 𝑓((𝜋 − 𝜃)) is symmetric and 𝑓(𝜃) −

𝑓((𝜋 − 𝜃)) is antisymmetric with respect to the exchange of coordinates.  
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Now, for protons, the total eigen function must be antisymmetric, hence the resultant 

scattering amplitude will be 𝑓(𝜃) + 𝑓((𝜋 − 𝜃)) for singlet state (𝑠 = 0) and 𝑓(𝜃) − 𝑓((𝜋 − 𝜃)) for 

triplet state (𝑠 = 1).  

The statistical weight are:   2𝑠 + 1 = 1, 𝑓𝑜𝑟 𝑠 = 0,  and 2𝑠 + 1 = 3, 𝑓𝑜𝑟 𝑠 = 1.  

 

We can write the Coulomb scattering amplitude 𝑓𝑐(𝜃) as: 

𝑓𝑐(𝜃) =
𝜂

2𝑘 𝑠𝑖𝑛2 (
𝜃
2) 

exp {−𝑖𝜂 ln 𝑠𝑖𝑛2 (
𝜃

2
)}     … (6𝑎) 

𝑓𝑐(𝜋 − 𝜃) =
𝜂

2𝑘 𝑐𝑜𝑠2 (
𝜃
2
) 
exp {−𝑖𝜂 ln 𝑐𝑜𝑠2 (

𝜃

2
)}             … (6𝑏) 

 As both the incident protons and the protons of target material have their spins randomly 

oriented, so the scattering cross-section for p-p scattering may be obtained after taking into account 

the proper statistical weights of the singlet and triplet cases, as given by  

𝜎𝑐(𝜃) =
1

4
|𝑓𝑠(𝜃)|

2 +
3

4
|𝑓𝑡(𝜋 − 𝜃)|

2                                      

              =
1

4
|𝑓𝑐(𝜃) + 𝑓𝑐(𝜋 − 𝜃)|

2 +
3

4
|𝑓𝑐(𝜃) − 𝑓𝑐(𝜋 − 𝜃)|

2 

                                  = |𝑓𝑐(𝜃)|
2 + |𝑓𝑐(𝜋 − 𝜃)|

2 − 𝑅𝑒[𝑓∗𝑐(𝜃). 𝑓𝑐(𝜋 − 𝜃)]       … (7) 

𝑠𝑜,    𝜎𝑐(𝜃) = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [
1

𝑠𝑖𝑛4 (
𝜃
2
) 
+

1

𝑐𝑜𝑠4 (
𝜃
2
) 
−
cos (𝜂 ln 𝑡𝑎𝑛2 (

𝜃
2))

𝑠𝑖𝑛2 (
𝜃
2
) . 𝑐𝑜𝑠2 (

𝜃
2
)
]        … (8) 

The equation (8) is known as the Mott scattering formula. In equation (7), the first term describes 

scattering, second term exchange scattering and third term is the interference between direct 

and exchange waves.  

  For proton’s energy (𝐸) of 1 𝑀𝑒𝑉 and higher, the term 𝜂 =
𝑒2

4𝜋𝜖0ℏ𝑣
 is so small that the cosine 

in the last term in equation (8) is ≈ 1 unless 𝜃 = 0 𝑜𝑟 𝜋. Therefore, equation (8) can be written as  

      𝜎𝑐(𝜃) = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [
1

𝑠𝑖𝑛4 (
𝜃
2) 

+
1

𝑐𝑜𝑠4 (
𝜃
2) 

−
1

𝑠𝑖𝑛2 (
𝜃
2) . 𝑐𝑜𝑠

2 (
𝜃
2)
]      … (9) 

     = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [16 + 16 − 4 × 4], 𝑓𝑜𝑟  𝜃 = 90°                     

= 16 × (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

                                                                             

Again, from classical treatment, we have the equation (4) for cross-section in the C-system is  

𝜎𝑐(𝜃) = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [
1

𝑠𝑖𝑛4 (
𝜃
2) 

+
1

𝑐𝑜𝑠4 (
𝜃
2) 
] 

                        = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [16 + 16], 𝑓𝑜𝑟  𝜃 = 90°     

= 2 × 16 × (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

                  

Therefore, the Mott formula gives a cross-section at 𝜃 = 90° in the C-system (i.e., 𝜃𝐿 =
𝜃

2
= 45° in 

the L-system), which is half of what would be obtained if the effect of quantum mechanical 
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indistinguishability is not taken into account. This is in good agreement with observations at low 

energies.  

 

Effect of nuclear force in p-p scattering:  

 It is found that when the experimental results of p-p scattering are compared with those 

calculated from the Mott formula, there is good agreement only at very low energies protons 

(𝑬 < 𝟎. 𝟏 𝑴𝒆𝑽). But, for higher energies, the experimental values of the cross-section are found to 

differ significantly from the theoretical values.  

For examples, for 𝐸 upto about 0.6 𝑀𝑒𝑉, the experimental values are lower; for 𝐸 > 0.6 𝑀𝑒𝑉, they 

are higher than the theoretical values.  

 Such disagreement indicates that nuclear potential between the two protons must be taken into 

consideration at higher energies when the protons approach very close together. So, for the short-

range nuclear force and low energies protons, only the 𝑙 = 0 or S-scattering is expected to take place 

under the action of the nuclear potential.  

 If we write the wave function 𝜓(𝑟, 𝜃) in terms of partial waves of different orders, then we 

have for pure Coulomb force  

𝜓(𝑟, 𝜃) =
1

𝑟
∑𝑣𝑙(𝑟)

∞

𝑙=0

𝑃𝑙(cos𝜃)                                                                               

                     =
𝑣0
𝑟
 + 

1

𝑟
∑𝑣𝑙(𝑟)

∞

𝑙=1

𝑃𝑙(cos 𝜃),     𝑠𝑖𝑛𝑐𝑒   𝑃0(cos𝜃) = 1            … (10) 

For Coulomb plus nuclear forces  

𝜒(𝑟, 𝜃) =
1

𝑟
∑𝑢𝑙(𝑟)

∞

𝑙=0

𝑃𝑙(cos 𝜃)                                                            

 =
𝑢0
𝑟
 + 

1

𝑟
∑𝑢𝑙(𝑟)

∞

𝑙=1

𝑃𝑙(cos 𝜃)                    … (11) 

 Now, for 𝑙 > 0, the nuclear force has no effect, because protons in higher orbital angular 

momentum states (p, d, f, … states) stay apart from each other beyond the range (𝑏) of the nuclear 

force. Thus, for higher values of  𝑙, we must put  

𝑢𝑙(𝑟) = 𝑣𝑙(𝑟) 

Hence, the expression (11) becomes  

𝜒(𝑟, 𝜃) =
𝑢0
𝑟
 + 

1

𝑟
∑𝑣𝑙(𝑟)

∞

𝑙=1

𝑃𝑙(cos 𝜃) 

    =
𝑢0
𝑟
  +  𝜓(𝑟, 𝜃)  − 

𝑣0
𝑟
  

              = 𝜓(𝑟, 𝜃)  +  
𝑢0(𝑟) − 𝑣0(𝑟)

𝑟
 

= 𝜓(𝑟, 𝜃) +  
𝛿0(𝑟)

𝑟
  

where, 𝛿0(𝑟) = 𝑢0(𝑟) − 𝑣0(𝑟), called the phase factor. That is for  𝑙 = 0, the radial function 𝑢0(𝑟) for 

the combined Coulomb plus nuclear force differs from 𝑣0(𝑟) by a phase factor of 𝛿0(𝑟), and hence it 

is possible to normalize the functions 𝑢0(𝑟) and 𝑣0(𝑟).  

 It is then found that  

𝜒(𝑟, 𝜃) = exp 𝑖{𝑘𝑧 + 𝜂 ln 𝑘(𝑟 − 𝑧)} +
𝑔(𝜃)

𝑟
exp{𝑖(𝑘𝑟 − 𝜂 ln 2𝑘𝑟 + 2𝜂0 + 𝜋)}        … (12) 

Where,  
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𝑔(𝜃) =
𝑒2

4𝜋𝜖0𝑀𝑣
2
.
exp {−𝑖𝜂 ln 𝑠𝑖𝑛2 (

𝜃
2)}

𝑠𝑖𝑛2 (
𝜃
2
)

+
𝑖

2𝑘
{exp(2𝑖𝛿0) − 1}     … (13) 

 Like in the case of pure Coulomb scattering, we have to make symmetric and antisymmetric 

combinations of the space functions 𝑔(𝜃) and 𝑔(𝜋 − 𝜃), and multiply them by the appropriate 

statistical weights for spin orientations. This is given by  

𝑔𝑠(𝜃) = 𝑔(𝜃) + 𝑔(𝜋 − 𝜃)                                                                

  = (
𝑒2

4𝜋𝜖0𝑀𝑣
2) .

{
 

 exp {−𝑖𝜂 ln 𝑠𝑖𝑛2 (
𝜃
2)}

𝑠𝑖𝑛2 (
𝜃
2
)

+
exp {−𝑖𝜂 ln 𝑐𝑜𝑠2 (

𝜃
2)}

𝑐𝑜𝑠2 (
𝜃
2
)

+
𝑖

𝑘
{exp(2𝑖𝛿0) − 1}

}
 

 
 

and  

𝑔𝑎(𝜃) = 𝑔(𝜃) − 𝑔(𝜋 − 𝜃)                                                                

                              = (
𝑒2

4𝜋𝜖0𝑀𝑣
2) . {

exp {−𝑖𝜂 ln 𝑠𝑖𝑛2 (
𝜃
2
)}

𝑠𝑖𝑛2 (
𝜃
2
)

+
exp {−𝑖𝜂 ln 𝑐𝑜𝑠2 (

𝜃
2
)}

𝑐𝑜𝑠2 (
𝜃
2
)

} 

 It may be noted that the nuclear force does not contribute to the antisymmetric function for 

which the minimum  𝑙 is 1. We get finally,  

𝜎(𝜃) =
1

4
|𝑔𝑠(𝜃)|

2 +
3

4
|𝑔𝑎(𝜃)|

2                                      

              =
1

4
|𝑔(𝜃) + 𝑔(𝜋 − 𝜃)|2 +

3

4
|𝑔(𝜃) − 𝑔(𝜋 − 𝜃)|2 

𝑠𝑜,    𝜎𝑐(𝜃) = (
𝑒2

4𝜋𝜖0𝑀𝑣
2)

2

. [
1

𝑠𝑖𝑛4 (
𝜃
2) 

+
1

𝑐𝑜𝑠4 (
𝜃
2) 

−
1

𝑠𝑖𝑛2 (
𝜃
2) . 𝑐𝑜𝑠

2 (
𝜃
2)
]             

                                +
𝑠𝑖𝑛2𝛿0
𝑘2

−
𝑒2

4𝜋𝜖0𝑀𝑣
2
.

sin 𝛿0 . cos 𝛿0

𝑘. 𝑠𝑖𝑛2 (
𝜃
2) . 𝑐𝑜𝑠

2 (
𝜃
2)
                             … (14) 

The first term in equation (14) is Mott scattering formula for Coulomb force only, the second term 

is the nuclear scattering and last represents the interference between the Coulomb and nuclear 

scattering.  

The equation (4) reduces to equation (9) for a Coulomb force when the nuclear phase-shift 

𝛿0 = 0, i.e., there is no nuclear scattering effect. The second term will stand only, if the protons are 

unchanged. The sign of the last term depends on the sign of 𝛿0 and hence on the Fermi scattering 

length.  

So, it is possible to determine the sign of 𝛿0 from the observed variation of the p-p scattering 

cross-section 𝜎𝑝𝑝(𝜃) with 𝜃 and to decide whether there is a bound state of the p-p system or not. The 

results show that the p-p scattering length is −𝑣𝑒 so that there cannot be any bound state of the p-p 

system. Further, the +𝑣𝑒 sign of 𝛿0 also shows that the p-p nuclear potential is attractive.  

If a rectangular potential well is assumed for the nuclear part of the p-p potential, we found 

the depth (𝑉𝑜)𝑝𝑝 = 13.3 𝑀𝑒𝑉 and range 𝑏𝑝𝑝 = 2.58 𝑓𝑚. These values are fair agreement with the 

corresponding values of the singlet n-p potential of depth 𝑉𝑜𝑠 = 14.3 𝑀𝑒𝑉 and range 𝑏𝑠 = 2.50 𝑓𝑚.  

It may be noted that the spins of the protons must be antiparallel in the S-state to satisfy 

Pauli’s principle which results in  state for the p-p system.  

 As in the case of n-p scattering, low energy p-p scattering upto about 10 𝑀𝑒𝑉 can be 

accounted for an S-wave (𝑙 = 0) interaction between the protons. Except in the forward and backward 

directions, the scattering is almost spherically symmetric.  


