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Conservation principles (laws):  

 The word ‘conservation’ applies in the sense of constantness when some 

characteristics of the motion of a system remain constant in time. In our physical world there 

exist a number of conservation principles or laws, some exact and some approximate. There 

are different conservation laws that have been established as result of extensive research on 

particle systems.  

Conservation of linear momentum:  

In a closed system the total momentum is constant. This fact, known as the law of 

conservation of momentum, is implied by Newton's laws of motion. Suppose two particles of 

masses 𝑚1 and 𝑚2 interact to each other. Because of the Newton’s third law of motion, the 

forces between them are equal and opposite. The Newton’s second law states that 𝐹1 =
𝑑𝑝1

𝑑𝑡
and 𝐹2 =

𝑑𝑝2

𝑑𝑡
. Therefore,  

𝑑𝑝1

𝑑𝑡
= −

𝑑𝑝2

𝑑𝑡
 

with the negative sign indicating that the forces oppose. Equivalently,  

𝑑

𝑑𝑡
(𝑝1 + 𝑝2) = 0 

This means the time-rate of change of total momentum is = 0, i.e., the applied force 𝐹 = 0. 

From the above expression, it is clear that  

𝑝1 + 𝑝2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

So, if the velocities of the particles are 𝑢1 and 𝑢2 before the interaction, and afterwards they 

are 𝑣1 and 𝑣2, then   

𝑚1𝑢1 + 𝑚2𝑢2 = 𝑚1𝑣1 + 𝑚2𝑣2 

That is, if the total force 𝐹 = 0, then 
𝑑𝑝

𝑑𝑡
= 0 and the linear momentum is conserved. This is 

the principle of conservation of momentum. Similarly, if there are several particles, the 

momentum exchanged between each pair of particles adds up to zero, so the total change in 

momentum is zero. The principle of conservation of momentum states that in an isolated 

system, two objects that collide have the same combined momentum before and after the 

collision.  

 

Conservation of angular momentum:  

We consider a particle of mass 𝑚 and linear momentum 𝑝 and velocity 𝒗 at a position 

𝒓 relative to origin O of an inertial reference frame (Fig. 2). The angular momentum 𝑳 of 

the particle with respect to the origin O to be  

𝑳 = 𝒓 × 𝒑                             … (1) 

and the torque 𝜏 as the moment of the force about the origin O. i.e.,  
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𝝉 = 𝒓 × 𝑭                         … (2) 

where, 𝑭 is the applied force opn the particle.  

 
Fig. 2: Linear and angular momenta 

 

Let us form the vector product of 𝝉 with both sides of equation  

𝑭 =
𝑑𝒑

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑚𝒗)                                    … (3) 

We can write, 

𝝉 = 𝒓 ×
𝑑𝒑

𝑑𝑡
          

                   =
𝑑

𝑑𝑡
(𝒓 × 𝒑) −

𝑑𝒓

𝑑𝑡
× 𝒑 

                  =
𝑑

𝑑𝑡
(𝒓 × 𝒑) − 𝒗 × 𝑚𝒗 

In the above expression, the second term is zero, as both vectors are parallel and 

therefore,  

𝝉 =
𝑑

𝑑𝑡
(𝒓 × 𝒑) =

𝑑𝑳

𝑑𝑡
                             … (4) 

Thus the time-rate of change of the vector angular momentum of a particle is equal to 

the vector torque acting on it. Equation (4) is the analogue of Newton’s second law of motion 

in the case of rotational motion.  

If 𝜏 = 0, then  

𝑑𝑳

𝑑𝑡
= 0,                𝑖. 𝑒. ,       𝐿 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

So, the principle of the conservation of angular momentum states that the angular 

momentum is conserved in the absence of external torque.  

 

Conservation of energy:  

The work–energy theorem states that for a particle of constant mass m, the total work 

W done on the particle as it moves from position r1 to r2 is equal to the change in kinetic 

energy Ek of the particle: 

𝑊 =  ∆𝐸𝑘 =  𝐸𝑘,2 −  𝐸𝑘,1 =
1

2
𝑚(𝑣2

2 −  𝑣1
2) 

Conservative forces can be expressed as the gradient of a scalar function, known as 

the potential energy and denoted Ep: 

𝐹 =  −∇𝐸𝑝 
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If all the forces acting on a particle are conservative, and Ep is the total potential 

energy (which is defined as a work of involved forces to rearrange mutual positions of 

bodies), obtained by summing the potential energies corresponding to each force 

𝐹. ∆𝑟 =  −∇𝐸𝑝. ∆𝑟 =  − ∆𝐸𝑝 

The decrease in the potential energy is equal to the increase in the kinetic energy 

−∆𝐸𝑝 =  ∆𝐸𝑘  ⟹  ∆(𝐸𝑘 +  𝐸𝑝) =  0 

This result is known as conservation of energy and states that the total energy, 

∑ 𝐸 = 𝐸𝑘 +  𝐸𝑝 

is constant in time. It is often useful, because many commonly encountered forces are 

conservative. 

 

Newtonian mechanics:  

 The linear momentum of a rigid object of mass 𝑚 is  =  𝑚 
𝑑𝒙

𝑑𝑡
 , where 𝒗 =  

𝑑𝒙

𝑑𝑡
 is the 

velocity of the object moving in the direction of the unit vector 
𝒙

|𝒙|
 . Time is measured in units 

of seconds (𝑠) , and distance is measured in units of meters (𝑚) . The magnitude of 

momentum is measured in units of kilogram meters per second (𝑘𝑔. 𝑚. 𝑠−1) , and the 

magnitude of velocity (speed) is measured in units of meters per second (𝑚. 𝑠−1). Classical 

Newtonian mechanics assumes that there exists an inertial frame of reference for which the 

motion of the object is described by the differential equation  

𝑭 =
𝑑𝒑

𝑑𝑡
= 𝑚

𝑑2𝒙

𝑑𝑡2
                           … (1) 

where the vector 𝑭 is the force. The magnitude of force is measured in units of 𝑛𝑒𝑤𝑡𝑜𝑛𝑠 (𝑁). 

The force appearing in equation (1) is a vector field. What this means is that the particle can 

be subject to a force, the magnitude and direction of which are different in different parts of 

space. 

A measure of the forces experienced by a particle moving from position 𝒓1 to 𝒓2 in 

space is work. The work done moving the object from point 1 to point 2 in space along a path 

is defined as  

𝑊12 ≡ ∫ 𝑭. 𝑑𝒓
𝒓=𝒓2

𝒓=𝒓1

                               … (2) 

where 𝒓 is a spatial-position vector coordinate of the particle. Fig. 1 illustrates one possible 

trajectory for a particle moving from position 𝒓1 to 𝒓2.  

 
Fig. 1: Illustration of a classical particle trajectory from position 𝒓1 to 𝒓2 in space. 
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The definition of work is simply the integral of the force applied multiplied by the 

infinitesimal distance moved in the direction of the force for the complete path from point 1 

to point 2. For a conservative force-field, the work 𝑊12 is the same for any path between 

points 1 and 2. Hence, making use of the fact 𝑭 =
𝑑𝒑

𝑑𝑡
= 𝑚

𝑑𝒗

𝑑𝑡
, the work is 

𝑊12 = ∫ 𝑭. 𝑑𝒓
𝒓=𝒓2

𝒓=𝒓1

= 𝑚 ∫
𝑑𝒗

𝑑𝑡
. 𝒗 𝑑𝑡 =

𝑚

2
∫

𝑑

𝑑𝑡
(𝑣2) 𝑑𝑡              … (3) 

so that 𝑊12 = 𝑚 (𝑣2
2 − 𝑣1

2)/2 = 𝑇2 − 𝑇1, 𝑣2 = 𝒗. 𝒗, and the scalar 𝑇 = 𝑚𝑣2/2  is called 

the kinetic energy of the object.  

For conservative forces, because the work done is the same for any path between 

points 1 and 2, the work done around any closed path, such as the one illustrated in Fig. 2, is 

always zero, or  

∮ 𝑭. 𝑑𝒓 = 0                                                      … (4) 

This fact remains true if force is the gradient of a single-valued spatial scalar field where 

𝐹 =  − 𝛻𝑉(𝒓)                                           … (5) 

since ∮ 𝑭. 𝑑𝒓 = − ∮ 𝛻𝑉. 𝑑𝒓 = − ∮ 𝑑𝑉 = 0. In equation (5), 𝑉(𝒓) is the potential energy and 

is measured in joules (𝐽)  or electron volts (𝑒𝑉) . If the forces acting on the object are 

conservative, then total energy, which is the sum of kinetic and potential energy, is a constant 

of the motion. In other words, total energy 𝑇 +  𝑉 is conserved.  

 
Fig. 2: Illustration of a closed-path classical particle trajectory. 

 

Because kinetic and potential energy can be expressed as functions of the particle’s 

position and time, it is possible to define a Hamiltonian function 𝐻 for the system, which is  

𝐻 = 𝑇 + 𝑉                                                    … (6) 

The Hamiltonian function may then be used to describe the dynamics of particles in 

the system.  

For a non-conservative force, such as a particle subject to frictional forces, the work 

done around any closed path is not zero, and ∮ 𝑭. 𝑑𝒓 ≠ 0.  

The concept of force has been introduced to help ensure that the motion of objects can 

be described as a simple process of cause and effect. A force-field in three dimensional space 

is assumed to exist and is represented mathematically as a continuous, integrable vector field, 

𝑭(𝑟) . If time is also continuous and integrable, a conservative force-field energy is 

conveniently partitioned between a kinetic and potential term and total energy is conserved. 

By simply representing the total energy as a function or Hamiltonian, 𝐻 =  𝑇 +  𝑉 , a 

differential equation that describes the dynamics of the object can be found. Integration of the 

differential equation of motion gives the trajectory of the object as it moves through space.  
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In practice, these ideas are very powerful and may be applied to many problems 

involving the motion of macroscopic objects. As an example, consider the basic problem of 

finding the motion of a particle mass, 𝑚, attached to a spring. Of course, the solution will be 

oscillatory and so characterized by a frequency and amplitude of oscillation. However, the 

power of the theory is that relationships among all the parameters that govern behavior of the 

system may be obtained.  

 

Importance of classical mechanics:  

Classical mechanics is a theory useful for the study of the motion of non-quantum 

mechanical, low-energy particles in weak gravitational fields. Also, it has been extended into 

the complex domain where complex classical mechanics exhibits behaviors very similar to 

quantum mechanics. Classical mechanics accurately describes the behavior of most "normal" 

objects.  

 

Difficulties in classical mechanics:  

Classical mechanics is unable to explain many phenomena, which often showed a 

constraint pattern. Some difficulties were discovered in the late 19th century that could only 

be resolved by more modern physics. Particularly, the difficulty arose when scienctists tried 

to probe into the mysteries of smallest constituents of matter and systems involving them, 

namely, the atoms and the molecules. The different behaviour of 

classical electromagnetism and classical mechanics under velocity transformations led to the 

special theory of relativity, often included in the term classical mechanics. A second set of 

difficulties were related to thermodynamics. When combined with thermodynamics, classical 

mechanics leads to the Gibbs paradox of classical statistical mechanics, in which entropy is 

not a well-defined quantity. Black-body radiation was not explained without the introduction 

of quanta. As experiments reached the atomic level, the classical mechanics has been failed to 

explain, even approximately, such basic things as the energy levels and sizes of atoms and the 

photo-electric effect. The effort at resolving these problems led to the development of 

quantum mechanics.  

 

Some questions and answers:  

Example 1: What is classical mechanics?  

Classical mechanics is the study of the motion of bodies (including the special case in 

which bodies remain at rest) in accordance with the general principles first enunciated by Sir 

Isaac Newton in his Philosophiae Naturalis Principia Mathematica (1687), commonly 

known as the Principia. Classical mechanics was the first branch of Physics to be discovered, 

and is the foundation upon which all other branches of Physics are built. Moreover, classical 

mechanics has many important applications in other areas of science, such as Astronomy 

(e.g., celestial mechanics), Chemistry (e.g., the dynamics of molecular collisions), Geology 

(e.g., the propagation of seismic waves, generated by earthquakes, through the Earth's crust), 

and Engineering (e.g., the equilibrium and stability of structures). Classical mechanics is also 

of great significance outside the realm of science. After all, the sequence of events leading to 

the discovery of classical mechanics--starting with the ground-breaking work of Copernicus, 

continuing with the researches of Galileo, Kepler, and Descartes, and culminating in the 



6 | P a g e  
 

monumental achievements of Newton--involved the complete overthrow of the Aristotelian 

picture of the Universe, which had previously prevailed for more than a millennium, and its 

replacement by a recognizably modern picture in which humankind no longer played a 

privileged role.  

In our investigation of classical mechanics we shall study many different types of motion, 

including:  

Translational motion--motion by which a body shifts from one point in space to 

another (e.g., the motion of a bullet fired from a gun).  

Rotational motion--motion by which an extended body changes orientation, with 

respect to other bodies in space, without changing position (e.g., the motion of a 

spinning top).  

Oscillatory motion--motion which continually repeats in time with a fixed period 

(e.g., the motion of a pendulum in a grandfather clock).  

Circular motion--motion by which a body executes a circular orbit about another 

fixed body [e.g., the (approximate) motion of the Earth about the Sun].  

Of course, these different types of motion can be combined: for instance, the motion of a 

properly bowled bowling ball consists of a combination of translational and rotational 

motion, whereas wave propagation is a combination of translational and oscillatory motion. 

Furthermore, the above mentioned types of motion are not entirely distinct: e.g., circular 

motion contains elements of both rotational and oscillatory motion. We shall also study 

statics: i.e., the subdivision of mechanics which is concerned with the forces that act on 

bodies at rest and in equilibrium. Statics is obviously of great importance in civil 

engineering: for instance, the principles of statics were used to design the building in which 

this lecture is taking place, so as to ensure that it does not collapse.  

 

Example 2: Mr. X achieved notoriety by allegedly jumping off a bridge, for a bet, and 

surviving. Given that the bridge rises 135𝑓𝑡 over a river, how long would Mr. X have been in 

the air, and with what speed would he have struck the water ? You may neglect air 

resistance.  

   

Answer: Mr. X's net vertical displacement was ℎ = −135 𝑓𝑡 = −135 × 0.3048 𝑚 ≈

41.15 𝑚. Assuming his initial velocity was zero. We can write   

ℎ = −
1

2
𝑔𝑡2 

where 𝑡 was his time of flight, and 𝑔 = 9.81 𝑚. 𝑠−2. Hence,  

𝑡 = √−
2ℎ

𝑔
= √

2 × 41.15

9.81
≈ 2.896 𝑠 

His final velocity was  

𝑣 = −𝑔𝑡 = −9.81 × 2.896 ≈ −28.41 𝑚. 𝑠−1 

Thus, the speed with which he plunged into the river was 28.41 𝑚. 𝑠−1.   

 

Example 3: What is the inadequacy of classical mechanics?  

Answer: The inadequacies of classical mechanics are as follows:  
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(i) It does not hold in the area of atomic dimensions. 

(i) This could not clarify the observed spectra of black body radiation. 

(ii) This could not clarify the observed variation of specific heat of metals and gases. 

(iii)It could not clarify the inception of discrete spectra of molecules, since as per 

classical mechanics; the vitality changes are constantly consistent. 

(iv) Classical mechanics could not clarify a large number of phenomena, such as 

photoelectric effect, Raman Effect, and so on. 
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