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Derivation of all roots of a polynomial equation is a very important task. In many

applications of science and engineering all roots of a polynomial equations are needed

to solve a particular problem. For example, to find the poles, singularities, etc. of a

function, the zeros of the denominator (polynomial) are needed. The available analytic

methods are useful when the degree of the polynomial is at most four. So, numerical

methods are required to find the roots of the higher degree polynomial equations.

Fortunately, many direct and iterated numerical methods are developed to find all

the roots of a polynomial equation. In this module, we discuss only Bairstow methods.

1.1 Roots of polynomial equations

Let Pn(x) be a polynomial in x of degree n. If a0, a1, . . . , an are coefficients of Pn(x),

then equation Pn(x) = 0 can be written in explicit form as

Pn(x) ≡ a0xn + a1x
n−1 + · · ·+ an−1x+ an = 0. (1.1)

Here, we assumed that the coefficients a0, a1, . . . , an are real numbers.

A number ξ (may be real or complex) is a root of the polynomial equation Pn(x) = 0

if and only if Pn(ξ) = 0. That is, Pn(x) is exactly divisible by x− ξ. If Pn(x) is exactly

divisible by (x− ξ)k (k ≥ 1), but it is not divisible by (x− ξ)k+1, then ξ is called a root

of multiplicity k. The roots of multiplicity k = 1 are called simple roots or single

roots.

From fundamental theorem of algebra, we know that every polynomial equation has a

root. More precisely, every polynomial equation Pn(x) = 0, (n ≥ 1) with any numerical

coefficients has exactly n, real or complex roots.

The roots of any polynomial equation are either real or complex. If the coefficients

of the equation are real and it has a complex root α+ iβ of multiplicity k, then α− iβ
must be another complex root of the equation with multiplicity k.

Let

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0, (1.2)

be a polynomial equation, where a0, a1, . . . , an are real coefficients. Also, let A =

max{|a1|, |a2|, . . . , |an|} and B = max{|a0|, |a1|, . . . , |an−1|}. Then the magnitude of a

root of the equation (1.2) lies between
1

1 +B/|an|
and 1 +

A

|a0|
.
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The other methods are also available to find the upper bound of the positive roots of

the polynomial equation. Two such results are stated below:

Theorem 1.1 (Lagrange’s). If the coefficients of the polynomial

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0

satisfy the conditions a0 > 0, a1, a2, . . . , am−1 ≥ 0, am < 0, for some m ≤ n, then the

upper bound of the positive roots of the equation is 1 + m
√
B/a0, where B is the greatest

of the absolute values of the negative coefficients of the polynomial.

Theorem 1.2 (Newton’s). If for x = c the polynomial

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an

and its derivatives f ′(x), f ′′(x), . . . assume positive values then c is the upper bound of

the positive roots of the equation f(x) = 0.

In the following section, Bairstow method is discussed to find all the roots of a

polynomial equation of degree n.

1.2 Bairstow method

This method is also an iterative method. In this method, a quadratic factor is ex-

tracted from the polynomial Pn(x) by iteration. As a by product the deflated polynomial

(the polynomial obtained by dividing Pn(x) by the quadratic factor) is also obtained. It

is well known that the determination of roots (real or complex) of a quadratic equation

is easy. Therefore, by extracting all quadratic factors one can determine all the roots of

a polynomial equation. This is the basic principle of Bairstow method.

Let the polynomial Pn(x) of degree n be

xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an. (1.3)

Let x2 + px+ q be a factor of the polynomial Pn(x), n > 2. When this polynomial is

divided by the factor x2 + px + q, then the quotient is a polynomial of degree (n − 2)

and remainder is a linear polynomial. Let the quotient and the remainder be denoted

by Qn−2(x) and Mx+N , where M and N are two constants.

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using this notation, Pn(x) can be written as
Pn(x) = (x2 + px+ q)Qn−2(x) +Mx+N. (1.4)

The polynomial Qn−2(x) is called deflated polynomial and let it be

Qn−2(x) = xn−2 + b1x
n−3 + · · ·+ bn−3x+ bn−2. (1.5)

It is obvious that the values of M and N depends on p and q. If x2 + px + q is an

exact factor of Pn(x), then the remainder Mx+N , i.e. M and N must be zero. Thus

the main aim of Bairstow method is to find the values of p and q such that
M(p, q) = 0 and N(p, q) = 0. (1.6)

These are two non-linear equations in p and q and these equations can be solved by

Newton-Raphson method for two variables (discussed in Module 3 of this chapter).

Let (pT , qT ) be the exact values of p and q and ∆p, ∆q be the (errors) corrections to

p and q. Therefore,

pT = p+ ∆p and qT = q + ∆q.

Hence,

M(pT , qT ) = M(p+ ∆p, q + ∆q) = 0 and N(pT , qT ) = N(p+ ∆p, q + ∆q) = 0.

By Taylor’s series expansion, we get

M(p+ ∆p, q + ∆q) = M(p, q) + ∆p
∂M

∂p
+ ∆q

∂M

∂q
+ · · · = 0

and N(p+ ∆p, q + ∆q) = N(p, q) + ∆p
∂N

∂p
+ ∆q

∂N

∂q
+ · · · = 0.

All the derivatives are evaluated at the approximate value (p, q) of (pT , qT ). Neglect-

ing square and higher powers of ∆p and ∆q, as they are small, the above equations

become

∆pMp + ∆qMq = −M (1.7)

∆pNp + ∆qNq = −N. (1.8)

Therefore, the values of ∆p and ∆q are obtained by the formulae

∆p = − MNq −NMq

MpNq −MqNp
, ∆q = − NMp −MNp

MpNq −MqNp
. (1.9)
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It is expected that in this stage the values of ∆p and ∆q are either 0 or very small.

Now, the coefficients of the deflated polynomial Qn−2(x) and the expressions for M

and N in terms of p and q are computed below.

From equation (1.4)

xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

= (x2 + px+ q)(xn−2 + b1x
n−3 + · · ·+ bn−3x+ bn−2) +Mx+N. (1.10)

Comparing both sides, we get

a1 = b1 + p b1 = a1 − p
a2 = b2 + pb1 + q b2 = a2 − pb1 − q

...
...

ak = bk + pbk−1 + qbk−2 bk = ak − pbk−1 − qbk−2
...

...

an−1 = M + pbn−2 + qbn−3 M = an−1 − pbn−2 − qbn−3
an = N + qbn−2 N = an − qbn−2.

(1.11)

In general,

bk = ak − pbk−1 − qbk−2, k = 1, 2, . . . , n. (1.12)

The values of b0 and b−1 are taken as 1 and 0 respectively.

With this notation, the expressions for M and N are
M = bn−1, N = bn + pbn−1. (1.13)

Note that M and N depend on b’s. Differentiating the equation (1.12) with respect

to p and q to find the partial derivatives of M and N .

∂bk
∂p

= −bk−1 − p
∂bk−1
∂p

− q∂bk−2
∂p

,
∂b0
∂p

=
∂b−1
∂p

= 0 (1.14)

∂bk
∂q

= −bk−2 − p
∂bk−1
∂q

− q∂bk−2
∂q

,
∂b0
∂q

=
∂b−1
∂q

= 0 (1.15)

For simplification, we denote

∂bk
∂p

= −ck−1, k = 1, 2, . . . , n (1.16)

and
∂bk
∂q

= −ck−2. (1.17)
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With this notation, the equation (1.14) simplifies as

ck−1 = bk−1 − pck−2 − qck−3. (1.18)

Also, the equations (1.15) becomes

ck−2 = bk−2 − pck−3 − qck−4. (1.19)

Hence, the recurrence relation for ck is

ck = bk − pck−1 − qck−2, k = 1, 2, . . . , n− 1 and c0 = 1, c−1 = 0. (1.20)

Therefore,

Mp =
∂bn−1
∂p

= −cn−2

Np =
∂bn
∂p

+ p
∂bn−1
∂p

+ bn−1 = bn−1 − cn−1 − pcn−2

Mq =
∂bn−1
∂q

= −cn−3

Nq =
∂bn
∂q

+ p
∂bn−1
∂q

= −(cn−2 + pcn−3).

From the equation (1.9), the explicit expressions for ∆p and ∆q, are obtained as

follows:

∆p = − bncn−3 − bn−1cn−2
c2n−2 − cn−3(cn−1 − bn−1)

∆q = −bn−1(cn−1 − bn−1)− bncn−2
c2n−2 − cn−3(cn−1 − bn−1)

. (1.21)

Therefore, the improved values of p and q are p + ∆p and q + ∆q. Thus if p0, q0 be

the initial guesses of p and q, then the first approximate values of p and q are

p1 = p0 + ∆p and q1 = q0 + ∆q. (1.22)

Table 1.1 is helpful to calculate the values of bk’s and ck’s, where p0 and q0 are taken

as initial values of p and q.

The second approximate values p2, q2 of p and q are determined from the equations:

p2 = p1 + ∆p, q2 = q1 + ∆q.

In general,

pk+1 = pk + ∆p, qk+1 = qk + ∆q, (1.23)
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1 a1 a2 · · · ak · · · an−1 an

−p0 −p0 −p0b1 · · · −p0bk−1 · · · −p0bn−2 −p0bn−1
−q0 −q0 · · · −q0bk−2 · · · −q0bn−3 −q0bn−2

1 b1 b2 · · · bk · · · bn−1 bn

−p0 −p0 −p0c1 · · · −p0ck−1 · · · −p0cn−2
−q0 −q0 · · · −q0ck−2 · · · −q0cn−3

1 c1 c2 · · · ck · · · cn−1
Table 1.1: Tabular form of b’s and c’s.

the values of ∆p and ∆q are calculated at p = pk and q = qk.

The iteration process to find the values of p and q will be terminated when both |∆p|
and |∆q| are very small.

The next quadratic factor can be obtained by similar process from the deflated poly-

nomial Qn−2(x).

The values of ∆p and ∆q are obtained by applying Newton-Raphson method for two

variables case. Also, the rate of convergence of Newton-Raphson method is quadratic.

Hence, the rate of convergence of this method is quadratic.

Example 1.1 Extract all the quadratic factors from the equation x4+2x3+3x2+4x+

1 = 0 by using Bairstow method and hence solve this equation.

Solution. Let the initial guess of p and q be p0 = 0.5 and q0 = 0.5.

First iteration

1 2.000000 3.000000 4.000000 1.000000

−0.500000 −0.500000 −0.750000 −0.875000 −1.187500

−0.500000 −0.500000 −0.750000 −0.875000

1 1.500000 1.750000 2.375000 −1.062500

−0.500000 −0.500000 −0.500000 −0.375000

−0.500000 −0.500000 −0.500000

1 1.000000 0.750000 1.500000

= c1 = c2 = c3

∆p = − b4c1 − b3c2
c22 − c1(c3 − b3)

= 1.978261, ∆q = −b3(c3 − b3)− b4c2
c22 − c1(c3 − b3)

= 0.891304
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Therefore, p1 = p0 + ∆p = 2.478261, q1 = q0 + ∆q = 1.391304.

Second iteration

1.00000 4.00000 −7.00000 −22.00000 24.00000

−1.38095 −1.38095 −3.61678 11.11025 5.73794

2.57143 2.57143 6.73469 −20.68805

1.00000 2.61905 −8.04535 −4.15506 9.04989

−1.38095 −1.38095 −1.70975 9.92031

2.57143 2.57143 3.18367

1.00000 1.23810 −7.18367 8.94893

∆p = 0.52695, ∆q = −0.29857.

p2 = p1 + ∆p = 1.90790, q2 = q1 + ∆q = −2.86999.

Third iteration

1 2.000000 3.000000 4.000000 1.000000

−2.478261 −2.478261 1.185256 −6.924140 5.597732

−1.391304 −1.391304 0.665407 −3.887237

1 −0.478261 2.793951 −2.258734 2.710495

−2.478261 −2.478261 7.327033 −21.634426

−1.391304 −1.391304 4.113422

1 −2.956522 8.729680 −19.779737

∆p = −0.479568, ∆q = −0.652031.

p3 = p2 + ∆p = 1.998693, q3 = q2 + ∆q = 0.739273.

Fourth iteration

1 2.000000 3.000000 4.000000 1.000000

−1.998693 −1.998693 −0.002613 −4.513276 1.027812

−0.739273 −0.739273 −0.000967 −1.669363

1 0.001307 2.258114 −0.514242 0.358449

−1.998693 −1.998693 3.992159 −11.014794

−0.739273 −0.739273 1.476613

1 −1.997385 5.511000 −10.052423
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∆p = −0.187110, ∆q = −0.258799.

p4 = p3 + ∆p = 1.811583, q4 = q3 + ∆q = 0.480474.

Fifth iteration

1 2.000000 3.000000 4.000000 1.000000

−1.811583 −1.811583 −0.341334 −3.945975 0.066131

−0.480474 −0.480474 −0.090530 −1.046566

1 0.188417 2.178192 −0.036504 0.019565

−1.811583 −1.811583 2.940498 −8.402511

−0.480474 −0.480474 0.779889

1 −1.623165 4.638216 −7.659126

∆p = −0.015050, ∆q = −0.020515.

p5 = p4 + ∆p = 1.796533, q5 = q4 + ∆q = 0.459960.

Sixth iteration

1 2.000000 3.000000 4.000000 1.000000

−1.796533 −1.796533 −0.365535 −3.906570 0.000282

−0.459960 −0.459960 −0.093587 −1.000184

1 0.203467 2.174505 −0.000157 0.000098

−1.796533 −1.796533 2.861996 −8.221908

−0.459960 −0.459960 0.732746

1 −1.593066 4.576541 −7.489319

∆p = −0.000062, ∆q = −0.000081.

p6 = p5 + ∆p = 1.796471, q6 = q5 + ∆q = 0.459879.

Note that, ∆p and ∆q are correct up to four decimal places. Thus p = 1.7965, q =

0.4599 correct up to four decimal places.

Therefore, a quadratic factor is x2 + 1.7965x+ 0.4599 and the deflated polynomial is

Q2(x) = P4(x)/(x2 + 1.7965x+ 0.4599) = x2 + 0.2035x+ 2.1745.

Thus, P4(x) = (x2 + 1.7965x+ 0.4599)(x2 + 0.2035x+ 2.1745).

Hence, the roots of the given equation are

−0.309212, −1.487258, (−0.1018, 1.4711), (−0.1018,−1.4711).

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Self Assessment (MCQ/Short answer questions)

1. The rate of convergence of Bairstow method is

(a) 1 (b) 2 (c) 3 (d) none of these

2. Bairstow method is used to find

(a) all roots of a polynomial equation

(b) only real roots of a polynomial equation

(c) only complex roots of a polynomial equation

(d) only one real root of a polynomial equation

3. Let a0x
n +a1x

n−1 + · · ·+an−1x+an = 0, where a0, a1, . . . , an are real coefficients,

be a polynomial equation. Also, let r = 1
1+B/|an| and R = 1 + A

|a0| , where A =

max{|a1|, |a2|, . . . , |an|} and B = max{|a0|, |a1|, . . . , |an−1|}. Then

(a) all roots lie in the interval (0, r)

(b) positive roots lie in the interval (0, R)

(c) positive roots lie in the interval (r,R) and negative roots lie in the interval

(−R,−r)
(d) all roots lie in the interval (r,R)

4. Every polynomial equation of degree at least one has a root.

(a) true (b) false

5. If for x = c the polynomial f(x) = a0x
n + a1x

n−1 + · · · + an−1x + an and its

derivatives f ′(x), f ′′(x), . . . are positive. Then the upper bound of the positive

roots of the equation f(x) = 0 is · · · · · · .

6. Let a0x
n + a1x

n−1 + · · · + an−1x + an = 0 be a polynomial equation, where

a0 > 0, a1, a2, . . . , am−1 ≥ 0, am < 0, for some m ≤ n, and B is the greatest of the

absolute values of the negative coefficients. Then the upper bound of the positive

roots of the equation is · · · · · · .
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Answer to the questions
1. (b)

2. (a)

3. (c)

4. (a)

5. c

6. 1 + m
√
B/a0

Self Assessment (Long answer questions)

1. Find all quadratic factors of the following polynomial equations using Bairstows

method.

(i) x48x3 + 39x262x+ 50 = 0

(ii) x32x2 + x2 = 0.

2. Solve the following polynomial equations using Bairstows method.

(i) x46x3 + 18x224x+ 16 = 0

(ii) x32x+ 1 = 0.
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