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In previous modules, we have discussed several methods to solve a system of linear

equations. In these modules, it is assumed that the given system is well-posed, i.e. if one

(or more) coefficient of the system is slightly changed, then there is no major change in

the solution. Otherwise the system of equations is called ill-posed or ill-conditioned. In

this module, we will discussed about the solution methods of the ill-conditioned system

of equations.

Before going to discuss the ill-conditioned system, we define some basic terms from

linear algebra which are used to described the methods.

4.1 Vector and matrix norms

Let x = (x1, x2, . . . , xn) be a vector of dimension n. The norm of the vector x is

the size or length of x, and it is denoted by ‖x‖. The norm is a mapping from the set

of vectors to a real number. That is, it is a real number which satisfies the following

conditions:

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0 (4.1)

(ii) ‖αx‖ = |α|‖x‖ for any real scalar α (4.2)

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality). (4.3)

Several type of norms are defined by many authors. The most use full vector norms

are defined below.

(i) ‖x‖1 =

n∑
i=1

|xi| (4.4)

(ii) ‖x‖2 =

√√√√ n∑
i=1

|xi|2 (Euclidean norm) (4.5)

(iii) ‖x‖∞ = max
i
|xi| (maximum norm or uniform norm). (4.6)

Now, we define different type of matrix norms. Let A and B be two matrices such

that A + B and AB are defined. The norm of a matrix A is denoted by ‖A‖ and it
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satisfies the following conditions

(i) ‖A‖ ≥ 0 and ‖A‖ = 0 iff A = 0 (4.7)

(ii) ‖αA‖ = |α|‖A‖, α is a real scalar (4.8)

(iii) ‖A + B‖ ≤ ‖A‖+ ‖B‖ (4.9)

(iv) ‖AB| ≤ ‖A‖‖B‖. (4.10)

From (4.10), it follows that

‖Ak‖ ≤ ‖A‖k, (4.11)

for any positive integer k.

Like the vector norms, some common matrix norms are

(i) ‖A‖1 = max
j

∑
i

|aij | (the column norm) (4.12)

(ii) ‖A‖2 =

√∑
i

∑
j

|aij |2 (the Euclidean norm) (4.13)

(iii) ‖A‖∞ = max
i

∑
j

|aij | (the row norm). (4.14)

The Euclidean norm is also known as Erhard-Schmidt norm or Schur norm or

the Frobenius norm.

The concept of matrix norm is used to study the convergence of iterative methods to

solve the system of linear equations. It is also used to study the stability of a system

of equations.

Example 4.1 Let

A =


1 0 −4 1

4 5 7 0

1 −2 0 3

 be a matrix. Find the matrix norms ‖A‖1, ‖A‖2 and ‖A‖∞.

Solution.

‖A‖1 = max{1 + 4 + 1, 0 + 5− 2,−4 + 7 + 0, 1 + 0 + 3} = 6

‖A‖2 =
√

12 + 02 + (−4)2 + 12 + 42 + 52 + 72 + 02 + 12 + (−2)2 + 02 + 32 =
√

122 and

‖A‖∞ = max{1 + 0− 4 + 1, 4 + 5 + 7 + 0, 1− 2 + 0 + 3} = 16.
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4.2 Ill-conditioned system of linear equations

Let us consider the following system of linear equations.

x+
1

3
y = 1.33

3x+ y = 4. (4.15)

It is easy to verify that this system of equations has no solution. But, for different

approximate values of 1
3 the system has different interesting results.

First we take 1
3 ' 0.3. Then the system becomes

x+ 0.3y = 1.33

3x+ y = 4. (4.16)

The solution of these equations is x = 1.3, y = 0.1.

If we approximate 1
3 as 0.33, then the reduced system of equations is

x+ 0.33y = 1.33

3x+ y = 4 (4.17)

and its solution is x = 1, y = 1.

If the approximation is 0.333 then the system is

x+ 0.333y = 1.33

3x+ y = 4 (4.18)

and its solution is x = −2, y = 10.

When 1
3 ' 0.3333, then the system is

x+ 0.3333y = 1.33

3x+ y = 4 (4.19)

and its solution is x = 100, y = −32.

Note the systems of equations (4.15)-(4.19) and their solutions. These are very con-

fusing situations. What is the best approximation of 1
3 ? 0.3 or 0.3333. Observe that
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the solutions are significantly increased when the coefficient of y in first equation is

sightly increased. That is, a small change in the coefficient of y in first equation of the

system produces large change in the solution. These systems are called ill-conditioned

or ill-posed system. On the other hand, if the change in the solution is small for small

changes in the coefficients, then the system is called well-conditioned or well-posed

system.

Let us consider the following system of equations

Ax = b. (4.20)

Suppose one or more elements of the matrices A and/or b be changed and let them

be A′ and b′. Also, let y be the solution of the new system, i.e.

A′y = b′. (4.21)

Assumed that the changes in the coefficients are very small.

The system of equations (4.20) is called ill-conditioned when the change in y is too

large compared to the solution vector x of (4.20). Otherwise, the system of equations is

called well-conditioned. If a system is ill-conditioned then the corresponding coefficient

matrix is called an ill-conditioned matrix.

For the above problem, i.e. for the system of equations (4.17) coefficient matrix is[
1 0.33

3 1

]
and it is an ill-conditioned matrix.

When |A| is small then, in general, the matrix A is ill-conditioned. But, the term

small has no definite meaning. So many methods are suggested to measure the ill-

conditioned of a matrix. One of the simple methods is defined below.

Let A be a matrix and the condition number (denoted by Cond(A)) of it is define

by

Cond(A) = ‖A‖ ‖A−1‖ (4.22)

where ‖A‖ is any type of matrix norm. If Cond(A) is large then the matrix is called

ill-conditioned and corresponding system of equations is called ill-conditioned system

of equations. If Cond(A) is small then the matrix A and the corresponding system of

equations are called well-conditioned.
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Let us consider the following two matrices to illustrated the ill-conditioned and well-

conditioned cases. Let A =

[
0.33 1

1 3

]
and B =

[
4 4

3 5

]
be two matrices.

Then A−1 =

[
−300 100

100 −33

]
and B−1 = 1

11

[
0.625 −0.500

−0.375 0.500

]
.

The Euclidean norms of A and B are ‖A‖2 =
√

0.10890 + 1 + 1 + 9 = 3.3330 and

‖A−1‖2 = 333.300.

Thus, Cond(A) = ‖A‖2 ‖A−1‖2 = 3.3330 × 333.300 = 1110.8889, a very large

number. Hence A is ill-conditioned.

For the matrix B, ‖B‖2 =
√

16 + 16 + 9 + 25 = 8.1240 and ‖B−1‖2 = 1.01550

Then Cond(B) = 8.24992, a relatively small quantity.

Thus, the matrix B is well-conditioned.

The value of Cond(A) lies between 0 and∞. If it is large then we say that the matrix

is ill-conditioned. But, there is no definite meaning of large number. So, this measure

is not good.

Now, we define another parameter whose value lies between 0 and 1.

Let A = [aij ] be a matrix and ri =
( n∑

j=1
a2ij

)1/2
, i = 1, 2, . . . , n. The quantity

ν(A) =
|A|

r1r2 · · · rn
(4.23)

measures the smallness of the determinant |A|. It can be shown that −1 ≤ ν ≤ 1. If

|ν(A)| is closed to zero, then the matrix A is ill-conditioned and if it is closed to 1, then

A is well-conditioned.

For the matrix A =

[
1 4

0.22 1

]
, r1 =

√
17, r2 = 1.0239, |A| = 0.12,

ν(A) =
0.12√

17× 1.0239
= 0.0284 and for the matrix B =

[
3 5

−2 2

]
, r1 =

√
34, r2 =

√
8,

|B| = 16, ν(B) =
16√

34×
√

8
= 0.9702.

Thus the matrix A is ill-conditioned while the matrix B is well-conditioned as its

value is very closed to 1.
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4.3 Least squares method for inconsistent system

Let us consider a system of equations whose number of equations is not equal to

number of variables. Let such system be

Ax = b (4.24)

where A,x and b are of order m × n, n × 1 and m × 1 respectively. Note that the

coefficient matrix is rectangular. Thus, either the system has no solution or it has

infinite number of solutions. Assumed that the system is inconsistent. So, it does not

have any solution. But, the system may have a least squares solution. A solution x′ is

said to be least squares if Ax′ − b 6= 0, but ‖Ax′ − b‖ is minimum. The solution xm

is called the minimum norm least squares solution if

‖xm‖ ≤ ‖xl‖ (4.25)

for any xl such that

‖Axl − b‖ ≤ ‖Ax− b‖ for all x. (4.26)

Since A is rectangular matrix, so its solution can be determined by the following

equation

x = A+b, (4.27)

where A+ is the g-inverse of A.

Since the Moore-Penrose inverse A+ is unique, therefore the minimum norm least

squares solution is unique.

The solution can also be determined by without finding the g-inverse of A. This

method is described below.

If x is the exact solution of the system of equations Ax = b, then Ax − b = 0,

otherwise Ax− b is a non-null matrix of order m× 1. In explicit form this vector is
a11x1 + a12x2 + · · · a1nxn − b1
a21x1 + a22x2 + · · · a2nxn − b2
· · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · · amnxn − bm

 .
6
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Let square of the norm ‖Ax− b‖ be denoted by S. Therefore,

S = (a11x1 + a12x2 + · · · a1nxn − b1)2

+(a21x1 + a22x2 + · · · a2nxn − b2)2 + · · ·

+(am1x1 + am2x2 + · · · amnxn − bn)2

=
m∑
i=1

n∑
j=1

(aijxj − bi)2. (4.28)

The quantity S is called the sum of square of residuals. Now, our aim is to find the

vector x = (x1, x2, . . . , xn)t such that S is minimum. The sufficient conditions for which

S to be minimum are

∂S

∂x1
= 0,

∂S

∂x2
= 0, · · · , ∂S

∂xn
= 0 (4.29)

Note that the system of equations (4.29) is non-homogeneous and contains n equations

with n unknowns x1, x2, . . . , xn. This system of equations can be solved by any method

described in previous modules.

Let x1 = x∗1, x2 = x∗2, . . . , xn = x∗n be the solution of the equations (4.29). Therefore,

the least squares solution of the system of equations (4.24) is

x∗ = (x∗1, x
∗
2, . . . , x

∗
n)t. (4.30)

The sum of square of residuals (i.e. the sum of the squares of the absolute errors) is

given by

S∗ =
m∑
i=1

n∑
j=1

(aijx
∗
j − bi)2. (4.31)

Let us consider two examples to illustrate the least squares method which is used to

solve inconsistent system of equations.

Example 4.2 Find g-inverse of the singular matrix A =

[
4 8

1 2

]
and hence find a least

squares solution of the inconsistent system of equations 4x+ 8y = 2, x+ 2y = 1.

Solution. Let α1 =

[
4

1

]
, α2 =

[
8

2

]
, A1 =

[
4

1

]
.

A+
1 = (αt

1α1)−1αt
1 =

[
4 1
] [4

1

]−1 [
4 1
]

=
[

4
17

1
17

]
,

7
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δ2 = A+
1 α2 =

[
4
17

1
17

] [8

2

]
= 2,

γ2 = α2 −A1δ2 =

[
8

2

]
− 2

[
4

2

]
=

[
0

0

]
= 0 (a null vector),

β2 = (1 + δt2δ2)−1δt2A
+
1 = 1

5 .2.
[

4
17

1
17

]
=
[

8
85

2
85

]
δ2β2 =

[
16
85

4
85

]
.

Therefore,

A+
2 =

[
A+

1 − δ2β2
β2

]
=

[
4
85

1
85

8
85

2
85

]
.

This is the g-inverse of A.

Second Part: In matrix notation, the given system of equations is

Ax = b, where

A =

[
4 8

1 2

]
, x =

[
x

y

]
, b =

[
2

1

]
.

Note that the coefficient matrix is singular. So, it has no conventional solution. But,

the least squares solution of this system of equation is

x = A+b, i.e.

x =
1

85

[
4 1

8 2

][
2

1

]
=

[
9/85

18/85

]
.

Hence, the least squares solution is

x =
9

85
, y =

18

85
.

Example 4.3 Find the least squares solution of the following system of linear equa-

tions x + 2y = 2.0, x − y = 1.0, x + 3y = 2.3, and 2x + y = 2.9. Also, estimate the

residual.

Solution. Let x∗, y∗ be the least squares solution of the given system of equations.

Then the sum of square of residuals S is

S = (x∗ + 2y∗ − 2.0)2 + (x∗ − y∗ − 1.0)2 + (x∗ + 3y∗ − 2.3)2 + (2x∗ + y∗ − 2.9)2.

Now, the problem is to find the values of x∗ and y∗ in such a way that S is minimum.

Thus,
∂S

∂x∗
= 0 and

∂S

∂y∗
= 0.

8
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Therefore the normal equations are,

2(x∗ + 2y∗ − 2.0) + 2(x∗ − y∗ − 1.0) + 2(x∗ + 3y∗ − 2.3) + 4(2x∗ + y∗ − 2.9) = 0

and 4(x∗ + 2y∗ − 2.0)− 2(x∗ − y∗ − 1.0) + 6(x∗ + 3y∗ − 2.3) + 2(2x∗ + y∗ − 2.9) = 0.

After simplification, these equations reduce to 7x∗+6y∗ = 11.1 and 6x∗+15y∗ = 12.8.

The solution of these equations is x∗ = 1.3 and y∗ =
1

3
= 0.3333. This is the least

squares solution of the given system of equations.

The sum of the square of residuals is S = (1.3 + 2 × 0.3333 − 2)2 + (1.3 − 0.3333 −
1)2 + (1.3 + 3× 0.3333− 2.3)2 + (2× 1.3 + 0.3333− 2.9)2 = 0.0033.

4.4 Method to solve ill-conditioned system

It is very difficult to solve a system of ill-conditioned equations. Few methods are

available to solve an ill-conditioned system of linear equations. One simple concept

to solve an ill-conditioned system is to carry out the calculations with large number

of significant digits. But, computation with more significant digits takes much time.

One better method is to improve upon the accuracy of the approximate solution by an

iterative method. Such an iterative method is consider below.

Let us consider the following ill-conditioned system of equations

n∑
j=1

aijxj = bi, i = 1, 2, . . . , n. (4.32)

Let {x̃1, x̃2, . . . , x̃n} be an approximate solution of (4.32). Since this is an approximate

solution, therefore

n∑
j=1

aij x̃j is not necessarily equal to bi. For this solution, let the right

hand vector be b̃i, i.e. bi = b̃i.

Thus, for this solution the equation (4.32) becomes

n∑
j=1

aij x̃j = b̃i, i = 1, 2, . . . , n. (4.33)

9
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Subtracting (4.33) from (4.32), we get

n∑
j=1

aij(xj − x̃j) = (bi − b̃i)

i.e.,
n∑

j=1

aijεi = di (4.34)

where εi = xi − x̃i, di = bi − b̃i, i = 1, 2, . . . , n.

Now, equation (4.34) is again a system of linear equations whose unknowns are

ε1, ε2, . . . , εn. By solving these equations we obtained the values of εi’s. Hence, the

new solution is given by xi = εi + x̃i and this solution is better approximation to x̃i’s.

This technique may be repeated to get more better solution.

4.5 The relaxation method

The relaxation method, invented by Southwell in 1946, is an iterative method used

to solved a system of linear equations.

Let

n∑
j=1

aijxj = bi, (4.35)

be the ith, i = 1, 2, . . . , n equation of a system of linear equations. Let x(k) =

(x
(k)
1 , x

(k)
2 , . . . , x

(k)
n )t be the kth iterated solution of the system of linear equations.

Then
n∑

j=1

aijx
(k)
j ' bi, i = 1, 2, . . . , n.

Now, we denote the kth iterated residual for the ith equation by r
(k)
i . Therefore, the

value of r
(k)
i is given by

r
(k)
i = bi −

n∑
j=1

aijx
(k)
j , i = 1, 2, . . . , n. (4.36)

If r
(k)
i = 0 for all i = 1, 2, . . . , n, then (x

(k)
1 , x

(k)
2 , . . . , x

(k)
n )t is the exact solution of the

given system of equations. If the residuals are not zero or not small for all equations,

then apply the same method to reduce the residuals.
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In relaxation method, the solution can be improved successively by reducing the

largest residual to zero at that iteration. To get the fast convergence, the equations are

rearranged in such a way that the largest coefficients in the equations appear on the

diagonals, i.e. the coefficient matrix becomes diagonally dominant.

The aim of this method is to reduce the largest residual to zero. Let rp be the largest

residual (in magnitude) occurs at the pth equation for a particular iteration. Then the

value of the variable xp be increased by dxp where

dxp = − rp
app

.

That is, xp is replaced by xp + dxp to relax rp, i.e. to reduce rp to zero. Then the

modified solution after this iteration is

x(k+1) =
(
x
(k)
1 , x

(k)
2 , . . . , x

(k)
p−1, xp + dxp, x

(k)
p+1, . . . , x

(k)
n

)
.

The method is repeated until all the residuals become zero or tends to zero.

Example 4.4 Solve the following system of linear equations by relaxation method tak-

ing (0, 0, 0) as initial solution

27x+ 6y − z = 54, 6x+ 15y + 2z = 72, x+ y + 54z = 110.

Solution. The given system of equations is diagonally dominant.

The residuals r1, r2, r3 are given by the following equations

r1 = 54− 27x− 6y + z

r2 = 72− 6x− 15y − 2z

r3 = 110− x− y − 54z.

Here, the initial solution is (0, 0, 0), i.e. x = y = z = 0. Therefore, the residuals are

r1 = 54, r2 = 72, r3 = 110. The largest residual in magnitude is r3. Thus, the third

equation has more error and we have to improve x3.

Then the increment dx3 in x3 is now calculated as dx3 = − r3
a33

=
110

54
= 2.037.

Thus the first iterated solution is (0, 0, 0 + 2.037), i.e. (0, 0, 2.037).

In next iteration we determine the new residuals of large magnitudes and relax it to

zero. The process is repeated until all the residuals become zero or very small.

11
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All steps of all iterations are shown below:

residuals max increment solution

k r1 r2 r3 (r1, r2, r3) p dxp x y z

0 – – – – – – 0 0 0

1 54 72 110 110 3 2.037 0 0 2.037

2 56.037 67.926 0.003 67.926 2 4.528 0 4.528 2.037

3 28.869 0.006 –0.4526 28.869 1 1.069 1.069 4.528 2.037

4 0.006 –6.408 –5.89 –6.408 2 –0.427 1.069 4.101 2.037

5 2.568 –0.003 –5.168 –5.168 3 –0.096 1.069 4.101 1.941

6 2.472 0.189 0.016 2.472 1 0.092 1.161 4.101 1.941

7 –0.012 –0.363 –0.076 –0.363 2 –0.024 1.161 4.077 1.941

8 0.132 –0.003 –0.052 0.132 1 0.005 1.166 4.077 1.941

9 –0.003 –0.033 –0.057 –0.057 3 0.001 1.166 4.077 1.940

10 –0.004 –0.031 –0.003 –0.031 2 –0.002 1.166 4.075 1.940

11 0.008 –0.001 –0.001 0.008 1 0.000 1.166 4.075 1.940

12 –0.008 –0.001 –0.001 0.008 2 0.000 1.166 4.075 1.940

In this case, all residuals are very small. The solution of the given system of equations

is x1 = 1.166, x2 = 4.075, x3 = 1.940, correct upto three decimal places.

4.6 Successive overrelaxation (S.O.R.) method

The relaxation method can be modified to achieve fast convergence. For this purpose,

a suitable relaxation factor w is introduced. The ith equation of the system of equations

n∑
j=1

aijxj = bi, i = 1, 2, . . . , n (4.37)

is
n∑

j=1

aijxj = bi.

This equation can be written as

12
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i−1∑
j=1

aijxj +
n∑

j=i

aijxj = bi. (4.38)

Let
(
x
(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
be the initial solution and(

x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1, . . . , x

(k)
n

)
,

be the solution when ith equation being consider. Then the equation (4.38) becomes

i−1∑
j=1

aijx
(k+1)
j +

n∑
j=i

aijx
(k)
j = bi. (4.39)

Since
(
x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1, . . . , x

(k)
n

)
is an approximate solution of the

given system of equations, therefore the residual at the ith equation is determine from

the following equation:

ri = bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
(k)
j , i = 1, 2, . . . , n. (4.40)

We denote the differences of xi’s at two consecutive iterations by ε
(k)
i and it is defined

as ε
(k)
i = x

(k+1)
i − x(k)i .

In the successive overrelaxation (SOR) method, it is assumed that

aii ε
(k)
i = w ri, i = 1, 2, . . . , n, (4.41)

where w is a scalar, called the relaxation factor.

Thus, the equation (4.41) becomes

aiix
(k+1)
i = aiix

(k)
i − w

[ i−1∑
j=1

aijx
(k+1)
j +

n∑
j=i

aijx
(k)
j − bi

]
, (4.42)

i = 1, 2, . . . , n; k = 0, 1, 2, . . .

The iteration process is repeated until desired accuracy is achieved.

The above iteration method is called the overrelaxation method when 1 < w < 2,

and is called the under relaxation method when 0 < w < 1. When w = 1, the method

becomes well known Gauss-Seidal’s iteration method.

13
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The proper choice of w can speed up the convergence of the iteration scheme and it

depends on the given system of equations.

Example 4.5 Solve the following system of linear equations

4x1 + 2x2 + x3 = 5,

x1 + 5x2 + 2x3 = 6,

−x1 + x2 + 7x3 = 2

by SOR method taken relaxation factor w = 1.02.

Solution. The SOR iteration scheme for the given system of equations is

4x
(k+1)
1 = 4x

(k)
1 − 1.02

[
4x

(k)
1 + 2x

(k)
2 + x

(k)
3 − 5

]
5x

(k+1)
2 = 5x

(k)
2 − 1.02

[
x
(k+1)
1 + 5x

(k)
2 + 2x

(k)
3 − 6

]
7x

(k+1)
3 = 7x

(k)
3 − 1.02

[
− x(k+1)

1 + x
(k+1)
2 + 7x

(k)
3 − 2

]
.

Let x
(0)
1 = x

(0)
2 = x

(0)
3 = 0.

The calculations of all iterations are shown below:

k x1 x2 x3

0 0 0 0

1 1.275 0.9639 0.33676

2 0.67204 0.93023 0.24707

3 0.72414 0.95686 0.25257

4 0.70811 0.95736 0.25006

5 0.70882 0.95823 0.25008

6 0.70835 0.95829 0.25001

7 0.70835 0.95832 0.25000

8 0.70833 0.95833 0.25000

9 0.70833 0.95833 0.25000

The solutions at iterations 8th and 9th are same. Hence, the required solution is

x1 = 0.7083, x2 = 0.9583, x3 = 0.2500

correct up to four decimal places.

14
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Self Assessment (MCQ/Short answer questions)

1. Let w be the relaxation factor. The method is called overrelaxation, if

(a) 0 < w < 1 (b) w = 1 (c) 1 < w < 2 (d) w > 2

2. Let w be the relaxation factor. The method is called underrelaxation, if

(a) 0 < w < 1 (b) w = 1 (c) 1 < w < 2 (d) w > 2

3. Let w be the relaxation factor. Then the relaxation method becomes Gauss-Seidal

iteration method, if

(a) 0 < w < 1 (b) w = 1 (c) 1 < w < 2 (d) w > 2

4. A system of equations is called ill-conditioned, if

(a) all the coefficients are very small

(b) all the coefficients are very large

(c) for minor changes of the coefficient(s), change of solution is high

(d) none of these

5. The matrix A =

[
1 3

0.33 1

]
is

(a) well-conditioned (b) ill-conditioned

6. The matrix B =

[
4 3

3 5

]
is

(a) well-conditioned (b) ill-conditioned

7. For consistent system of linear equations, the least squares solution is same as

actual solution.

(a) true (b) false

8. Least squares method is also applicable, if the number of variables is not equal to

the number of equations.

(a) true (b) false

9. Least squares solution for inconsistent system satisfies all the equations.

(a) true (b) false

15
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10. The rate of convergence of Gauss-Seidal iteration method is more than the over-

relaxation method.

(a) true (b) false

11. The matrix norms ‖A‖1, ‖A‖2 and ‖A‖∞ for the matrix A =


2 3 4

0 −1 5

3 2 6

 are · · · · · · .

Answer to the questions
1. (c)

2. (a)

3. (b)

4. (c)

5. (b)

6. (a)

7. (a)

8. (a)

9. (b)

10. (b)

11. 15,
√

104, 11
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Self Assessment (Long answer questions)

1. Test the following system for ill-condition

10x+ 7y + 8z + 7w = 32

7x+ 5y + 6z + 5w = 23

8x+ 6y + 10z + 9w = 33

7x+ 5y + 9z + 10w = 31.

2. Solve the following system of equations

3x1 + x2 + 2x3 = 6

−x1 + 4x2 + 2x3 = 5

2x1 + x2 + 4x3 = 7

by SOR method taken w = 1.01.

3. Solve the following system of equations

8x1 +x2−x3 = 8, 2x1 +x2 + 9x3 = 12, x1− 7x2 + 2x3 = −4 by relaxation method

taking (0, 0, 0) as initial solution.

4. Find the least squares solution of the following equations x + y = 3.0, 2x − y =

0.03, x+ 3y = 7.03, and 3x+ y = 4.97. Also, estimate the residue.
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