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The system of linear and non-linear equations occur in many applications. To solve

a system of linear equations many direct and iterated methods are developed. The old

and trivial methods are Cramer’s rule and matrix inverse method. But, these meth-

ods depend on evaluation of determinant and computation of inverse of the coefficient

matrix. Few methods are available to evaluate a determinant, among them pivoting

method is most efficient and applicable for all type of determinants. In this module,

pivoting method is discussed to evaluate a determinant and inverse of the coefficient

matrix. Then, matrix inverse method is described to solve a system of linear equations.

Other direct and iteration methods are discussed in next modules.

A system of m linear equations with n variables is given by

a11x1 + a12x2 + · · ·+ a1nxn = b1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ai1x1 + ai2x2 + · · ·+ ainxn = bi

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm.

(1.1)

The quantities x1, x2, . . ., xn are the unknowns (variables) of the system and a11,

a12, . . ., amn are called the coefficients and generally they are known. The numbers

b1, b2, . . . , bm are constant or free terms of the system.

The above system of equations (1.1) can be written as a single equation:

n∑
j=1

aijxj = bi, i = 1, 2, . . . ,m. (1.2)

Also, the entire system of equations (1.1) can be written with the help of matrices as

AX = b, (1.3)

where

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
ai1 ai2 · · · ain

· · · · · · · · · · · ·
am1 am2 · · · amn


, b =



b1

b2
...

bi
...

bm


and X =



x1

x2
...

xi
...

xm


. (1.4)

1



. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

A system of linear equations may or may not have a solution. If the system of

linear equations (1.1) has a solution then the system is called consistent otherwise it is

called inconsistent or incompatible. Again, a consistent system of linear equations

may have unique solution or multiple solutions. Finding of unique solution is easy, but

determination of multiple solutions, if exists, is a complicated problem.

To solve a system of linear equations usually three type of the elementary transfor-

mations are applied. These are discussed below.

Interchange: The order of two equations can be changed.

Scaling: Multiplication of both sides of an equation by any non-zero number.

Replacement: Addition to (subtraction from) both sides of one equation of the cor-

responding sides of another equation multiplied by any number.

If for a system, all the constant terms b1, b2, . . . , bm are zero, then the system is called

homogeneous system otherwise it is called the non-homogeneous system.

Two type of methods are available to solve a system of linear equations, viz. direct

method and iteration method.

Again, many direct methods are used to solve a system of equations, among them

Cramer’s rule, matrix inversion, Gauss elimination, matrix factorization, etc. are well

known.

Also, the mostly used iteration methods are Jacobi’s iteration, Gauss-Seidal’s itera-

tion, etc.

In many applications, we have to determine the value of a determinant. So an efficient

method is required for this purpose. One efficient method based on pivoting is discussed

in the following section.

1.1 Evaluation of determinant

One of the best methods to evaluate determinant is known as triangularization and it

is also known as Gauss reduction method. The main idea of this method is to convert the

given determinant (D) into a lower or upper triangular form by using only elementary

row operations. If the determinant is reduced to a triangular form (say D′), then the

value of D is obtained by multiplying the diagonal elements of D′.
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Let D be a determinant of order n given by

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣
.

Using the elementary row operations, D can be reduced to the following upper tri-

angular form:

D′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

0 a
(1)
22 a

(1)
23 · · · a

(1)
2n

0 0 a
(2)
33 · · · a

(2)
3n

· · · · · · · · · · · · · · ·
0 0 0 · · · a(n−1)nn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

To convert in this form lot of elementary operations are required. To convert all

the elements of the first column, except first element, to 0 the following elementary

operations are used

a
(1)
ij = aij −

ai1
a11

a1j , for i, j = 2, 3, . . . , n.

Similarly, to convert all the elements of the second column below the second element

to 0, the following operations are used.

a
(2)
ij = a

(1)
ij −

a
(1)
i2

a
(1)
22

a
(1)
2j , for i, j = 3, 4, . . . , n.

All these elementary operations can be written as

a
(k)
ij = a

(k−1)
ij −

a
(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj ; (1.5)

i, j = k + 1, . . . , n; k = 1, 2, . . . , n− 1 and a
(0)
ij = aij , i, j = 1, 2, · · · , n.

Once D′ is available, then the value of D is given by

a11a
(1)
22 a

(2)
33 · · · a

(n−1)
nn .

It is observed that the formula for the elementary operations is simple and easy to

programmed. The time taken by this method is O(n3). But, there is a serious drawback

of this formula, which is discussed below.
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. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

To compute the value of a
(k)
ij one division is required. If a

(k−1)
kk is zero or very small

then the method fails. If a
(k−1)
kk is very small, then there is a chance of loosing significant

digits or data overflow. To avoid this situation the pivoting techniques are used.

A pivot is the largest magnitude element in a row or in a column or in the principal

diagonal or the leading or trailing sub-matrix of order i (2 ≤ i ≤ n).

Let us consider the following matrix to illustrate these terms:

A =


0 1 0 −5

1 −8 3 10

9 3 −33 18

4 −40 9 11

 .

For this matrix 9 is the pivot for the first column, −33 is the pivot for the principal

diagonal, −40 is the pivot for the entire matrix and −8 is the pivot for the trailing

sub-matrix

[
0 1

1 −8

]
.

If any one of the column pivot element (during elementary operation) is zero or very

small relative to other elements in that row, then we rearrange the remaining rows in

such a way that the pivot becomes non-zero or not a very small number. The method

is called pivoting. The pivoting methods are of two types, viz. partial pivoting and

complete pivoting, these are discussed below.

1.1.1 Partial pivoting

In partial pivoting method, the pivot is the largest magnitude element in a column.

In the first stage, find the first pivot which is the largest element in magnitude among

the elements of first column. If it is a11, then there is nothing to do. If it is ai1, then

interchange rows i and 1. Then apply the elementary row operations to make all the

elements of first column, except first element, to 0. In the next stage, the second pivot

is determined by finding the largest element in magnitude among the elements of second

column leaving first element and let it be aj2. In this case, interchange second and jth

rows and then apply elementary row operations. This process continues for (n − 1)th

times. In general, at the ith stage, the smallest index j is chosen for which

|a(k)ij | = max{|a(k)kk |, |a
(k)
k+1 k|, . . . , |a

(k)
nk |} = max{|a(k)ik |, i = k, k + 1, . . . , n}
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and the rows k and j are interchanged.

Complete pivoting or full pivoting

In partial pivoting, the pivot is chosen from column. But, in complete pivoting the pivot

element is the largest element (in magnitude) among all the elements of the determinant.

Let it be at the (l,m)th position for first time.

Thus, alm is the first pivot. Then interchange first row and the lth row and of

first column and mth column. In second stage, the largest element (in magnitude) is

determined among all elements leaving the first row and first column. This element is

the second pivot.

In this manner, at the kth stage, we choose l and m such that

|a(k)lm | = max{|a(k)ij |, i, j = k, k + 1, . . . , n}.

Then interchange the rows k, l and columns k, m. In this case, akk is the kth pivot

element.

It is obvious that the complete pivoting is more complicated than the partial pivot-

ing. Partial pivoting is easy to program. Generally, partial pivoting is used for hand

calculation.

We have mentioned earlier that the pivoting is used to find the value of all kind of

determinants. To determine the pivot and to interchange the rows and/or columns some

additional time is required. But, for some type of determinants without pivoting one

can determine its value. Such type of determinants are stated below.

Note 1.1 If the coefficient matrix A is diagonally dominant, i.e.

n∑
j=1
j 6=i

|aij | < |aii| or
n∑

j=1
j 6=i

|aji| < |aii|, for i = 1, 2, . . . , n. (1.6)

or real symmetric and positive definite then no pivoting is necessary.

Note 1.2 Every diagonally dominant matrix is non-singular.
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. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

Example 1.1 Convert the determinant

A =

∣∣∣∣∣∣∣∣
1 0 3

−2 7 1

5 −1 6

∣∣∣∣∣∣∣∣
into the upper triangular form using (i) partial pivoting, and (ii) complete pivoting and

hence determine the value of A.

Solution. (i) (Partial pivoting) The largest element in the first column is 5, present

in the third row and it is the first pivot of A. Therefore, first and third rows are

interchanged and the reduced determinant is∣∣∣∣∣∣∣∣
5 −1 6

−2 7 1

1 0 3

∣∣∣∣∣∣∣∣ .
Since two rows are interchanged then the value of the determinant is to be multiplied

by −1. To maintain it a variable sign is used and in this case it’s value is sign = −1.

Now, we apply the elementary row operations to convert all elements of first column,

except first, to 0.

Adding 2
5 times the first row to the second row, −1

5
times the first row to the third

row, i.e. R′2 = R2 +
2

5
R1 and R′3 = R3 −

1

5
R1. (R2 and R′2 represent the original second

row and modified second row respectively.)

The reduced determinant is ∣∣∣∣∣∣∣∣
5 −1 6

0 33/5 17/5

0 1/5 9/5

∣∣∣∣∣∣∣∣ .
Now, we determine the second pivot element. In this case, the pivot element is at the

(2, 2)th position, therefore no interchange is required.

Adding
−1/5

33/5
= − 1

33
times the second row to the third row, i.e. R′3 = R3 −

1

33
R2.

The reduced determinant is ∣∣∣∣∣∣∣∣
5 −1 6

0 33/5 17/5

0 0 56/33

∣∣∣∣∣∣∣∣ .
6
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Note that this is an upper triangular determinant and hence its value is sign ×
(5)(33/5)(56/33) = −56.

(ii) (Complete pivoting) The largest element in A is 7 at position (2,2). Interchanging

first and second columns and assign sign = −1; and then interchanging first and second

rows and setting sign = −sign = 1. Then the updated determinant is∣∣∣∣∣∣∣∣
7 −2 1

0 1 3

−1 5 6

∣∣∣∣∣∣∣∣ .
Adding 1

7 times the first row to the third row, i.e. using the formula R′3 = R3 + 1
7R1.

The reduced determinant is ∣∣∣∣∣∣∣∣
7 −2 1

0 1 3

0 33/7 43/7

∣∣∣∣∣∣∣∣ .
Now, we determine the second pivot element from the submatrix obtained by deleting

first row and column. That is, from the trailing sub-matrix

∣∣∣∣∣ 1 3

33/7 43/7

∣∣∣∣∣ .
The second pivot is 43/7 at (3,3) position. Interchange the second and third columns

and setting sign = −sign = −1 and then interchanging second and third rows. Then

the modified determinant is

∣∣∣∣∣∣∣∣
7 1 −2

0 43/7 33/7

0 3 1

∣∣∣∣∣∣∣∣ and sign = 1.

Now, we apply row operation as R′3 = R3 −
21

43
R2 and we obtain the required upper

triangular determinant

∣∣∣∣∣∣∣∣
7 1 −2

0 43/7 33/7

0 0 −56/43

∣∣∣∣∣∣∣∣ .
Hence, the value of the determinant is sign× (7)(43/7)(−56/43) = −56.

Observed that the values obtained by both the methods are same and it is expected.

Advantages and disadvantages of partial and complete pivoting

In pivoting method, the symmetry or regularity of the original matrix may be lost. It

is easily observed that the partial pivoting requires less time, as it needs less number

7



. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

of interchanges than complete pivoting. Again, the partial pivoting needs less number

of comparison to get pivot element. A combination of partial and complete pivoting is

expected to be very effective not only for computing a determinant but also for solving

system of linear equations. The pivoting prevent the loss of significant digits.

1.2 Inverse of a matrix

Let A be a non-singular square matrix and there exists a matrix B such that AB = I.

Then B is called the inverse of A and vice-versa. The inverse of a matrix is denoted by

A−1. Now, using some theories of matrices it can be shown that the inverse of a matrix

A is given by

A−1 =
adj A

|A|
. (1.7)

The matrix adj A is called adjoint of A and defined as

adj A =


A11 A21 · · · An1

A12 A22 · · · An2

· · · · · · · · · · · ·
A1n A2n · · · Ann

 ,

where Aij being the cofactor of aij in |A|.
This is the first definition to find the inverse of a matrix.

But, this definition is not suitable for large matrix as it needs huge amount of arith-

metic calculations. In this method, we have to calculate n2 cofactors and each cofactor

is a determinant of order (n− 1)× (n− 1). It is mentioned in previous section that to

evaluate a determinant of order n, O(n3) arithmetic calculations are required. Thus, to

compute all cofactors, total (n3×n2) = O(n5) arithmetic calculations are needed. This

is a huge amount of time for large matrices.

Fortunately, many efficient methods are available to find the inverse of a matrix,

among them Gauss-Jordan is most popular. In the following Gauss-Jordan method

is discussed to find the inverse of a square non-singular matrix.
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1.2.1 Gauss-Jordan method

In this method, the matrix A is augmented with a unit matrix of same size, and only

elementary row operations are applied to get the inverse of the matrix. Let the order

of the matrix A be n× n and it is augmented with the unit matrix I. This augmented

matrix is denoted by [A
...I]. The order of the augmented matrix [A

...I] becomes n× 2n.

The augmented matrix is of the following form:

[A
...I] =


a11 a12 · · · a1n

... 1 0 · · · 0

a21 a22 · · · a2n
... 0 1 · · · 0

· · · · · · · · · · · ·
... · · · · · · · · · · · ·

an1 an2 · · · ann
... 0 0 · · · 1

 . (1.8)

Now, the inverse of A is calculated in two phases. In the first phase, the first half of the

augmented matrix is converted into an upper triangular matrix by using only elementary

row operations. In the second phase, this upper triangular matrix is converted to an

identity matrix by using only row operations. All these operations are applied on the

augmented matrix [A
...I].

After second phase, the augmented matrix [A
...I] is transferred to [I

...A−1]. Thus, the

right half becomes the inverse of A. Symbolically, we can write as[
A

...I
] Gauss− Jordan−→

[
I
...A−1

]
.

In explicit form, the transformation is
a11 a12 · · · a1n

... 1 0 · · · 0

a21 a22 · · · a2n
... 0 1 · · · 0

· · · · · · · · · · · ·
... · · · · · · · · · · · ·

an1 an2 · · · ann
... 0 0 · · · 1


Gauss-Jordan−→


1 0 · · · 0

... a′11 a′12 · · · a′1n
0 1 · · · 0

... a′21 a′22 · · · a′2n
· · · · · · · · · · · ·

... · · · · · · · · · · · ·

0 0 · · · 1
... a′n1 a

′
n2 · · · a′nn

 .
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. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

Example 1.2 Use partial pivoting method to find the inverse of the following matrix

A =


2 0 1

−1 3 4

4 −2 0

 .

Solution. The augmented matrix [A
...I] is

[A
...I] =


2 0 1

... 1 0 0

−1 3 4
... 0 1 0

4 −2 0
... 0 0 1

 .

Phase 1. (Reduction to upper triangular form):

In the first column 4 is the largest element, so it is the first pivot. So we interchange

first and third rows to place the pivot element 4 at the (1,1) position. Then, the above

matrix becomes
4 −2 0

... 0 0 1

−1 3 4
... 0 1 0

2 0 1
... 1 0 0

 .

∼


1 −1/2 0

... 0 0 1/4

−1 3 4
... 0 1 0

2 0 1
... 1 0 0

R′1 = 1
4R1

∼


1 −1/2 0

... 0 0 1/4

0 5/2 4
... 0 1 1/4

0 1 1
... 1 0 −1/2

R′2 = R2 + R1; R′3 = R3 − 2R1

All the elements of first column, except first, become 0. Now, we convert the element

of (3,2) position to 0. For this purpose, we find the largest element (in magnitude) from

the second column leaving first element and it is 5
2 . Fortunately, it is at (2,2) position

and so there is no need to interchange any rows.

∼


1 −1/2 0

... 0 0 1/4

0 1 8/5
... 0 2/5 1/10

0 1 1
... 1 0 −1/2

R′2 = 2
5R2
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∼


1 −1/2 0

... 0 0 1/4

0 1 8/5
... 0 2/5 1/10

0 0 −3/5
... 1 −2/5 −3/5

R′3 = R3 −R2

∼


1 −1/2 0

... 0 0 1/4

0 1 8/5
... 0 2/5 1/10

0 0 1
... −5/3 2/3 1

R′3 = −5
3R2

Phase 2. (Make the left half a unit matrix):

[A
...I] ∼


1 0 4/5

... 0 1/5 3/10

0 1 8/5
... 0 2/5 1/10

0 0 1
... −5/3 2/3 1

R′1 = R1 + 1
2R2

∼


1 0 0

... 4/3 −1/3 −1/2

0 1 0
... 8/3 −2/3 −3/2

0 0 1
... −5/3 2/3 1

R′1 = R1 − 4
5R3 ; R′2 = R2 − 8

5R3

Now, the left half becomes a unit matrix, thus the second half is the inverse of the

given matrix, and it is 
4/3 −1/3 −1/2

8/3 −2/3 −3/2

−5/3 2/3 1

 .

Complexity of the algorithm

By analyzing each step of the method to find the inverse of a matrix A of order n×n, it

can be shown that the time complexity to compute the inverse of a non-singular matrix

is O(n3).

1.3 Matrix inverse method

A system of equations (1.1) can be written in the matrix form (1.3) as

Ax = b

11



. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

where A,b and x are defined in (1.4).

The solution of Ax = b is obtained from the equation

x = A−1b (1.9)

where A−1 is the inverse of the matrix A.

Thus, the vector x can be obtained by finding inverse of A and then multiplying with

b.

Example 1.3 Solve the following system of equations by matrix inverse method

x1 + 12x2 + 3x3 − 4x4 + 6x5 = 2,

13x1 + 4x2 + 5x3 + 4x5 = 4,

5x1 + 4x2 + 3x3 + 2x4 − 2x5 = 6,

5x1 + 14x2 + 3x4 − 2x5 = 10,

−5x1 + 4x2 + 3x3 + 4x4 + 5x5 = 13.

Solution. The given equations can be written as Ax = b, where

A =



1 12 3 −4 6

13 4 5 0 4

5 4 3 2 −2

5 14 0 3 −2

−5 4 3 4 5


, x =



x1

x2

x3

x4

x5


, b =



2

4

6

10

13


.

Using partial pivoting method, the inverse of A is obtained as

A−1 =



−0.0362 0.0788 −0.0641 0.0357 −0.0309

0.0358 −0.0241 0.0068 0.0464 −0.0024

0.0798 −0.0646 0.3333 −0.1531 0.0280

−0.1186 0.0473 −0.0682 0.0768 0.1079

−0.0178 0.0990 −0.2150 0.0291 0.0679



Thus, the solution vector is x = A−1b =



−0.1872

0.4486

0.7333

1.7136

0.2430


12
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Hence, x1 = −0.1872, x2 = 0.4486, x3 = 0.7333, x4 = 1.7136, x5 = 0.2430, correct up

to four decimal places.

Note 1.3 It is mentioned earlier that the time to compute the inverse of an n×n matrix

is O(n3) and this amount of time is required to multiply two matrices of same order.

Hence, the time complexity to solve a system of linear equations containing n equations

is O(n3).

13



. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

Self Assessment (MCQ/Short answer questions)

1. The first partial pivot of the matrix


1 1 4

9 13 6

−10 3 4

 is

(a) 1 (b) 9 (c) −10 (d) 13

2. The first complete pivot of the matrix


1 1 −24

9 4 16

10 3 4

 is

(a) 1 (b) 24 (c) 20 (d) −24

3. If a pivot is 0 at any stage during the evaluation of a determinant, then the value

of the determinant is

(a) ∞ (b) 0 (c) 1 (d) no conclusion can be drawn

4. Time complexity to find the inverse of a non-singular matrix of order n× n is

(a) O(n3) (b) O(n2) (c) O(n) (d) none of these

5. To find the inverse of a non-singular matrix using Gauss-Jordan method needs less

arithmetic calculation than conventional method (i.e. using the formula A−1 =

adj A/|A|),
(a) true (b) false

6. If a matrix is diagonally dominant, then no pivoting is required.

(a) true (b) false

7. If a matrix is positive definite, then no pivoting is required.

(a) true (b) false

8. Without partial or complete pivoting method the value of a determinant cannot

be determine.

(a) true (b) false

9. Is complete pivoting method easier than partial pivoting method?

(a) yes (b) no

14
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10. Is pivoting required to find the value of a real symmetric determinant?

(a) yes (b) no

11. If the first partial pivot element a11 of a square matrix A = [aij ] is zero, then the

value of the determinant is · · · · · · .

12. Let A be a non-singular matrix of order n×n. Now, the augmented matrix [A : I]

is reduced to [I : B], I is the unit matrix, by Gauss-Jordan method, then the

inverse of A is · · · · · · .

13. The value of the determinant∣∣∣∣∣∣∣∣∣∣
10 1 −4 2

0 24 6 7

0 0 1 4

0 0 4 5

∣∣∣∣∣∣∣∣∣∣
is · · · · · · .

Answer to the questions
1. (c)

2. (d)

3. (b)

4. (a)

5. (a)

6. (a)

7. (a)

8. (b)

9. (b)

10. (b)

11. 0

12. B

13. −2640
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. . . . . . Solution of System of Linear Equations by Matrix Inverse Method

Self Assessment (Long answer questions)

1. Find the inverse of the matrix using partial pivoting
11 3 1

2 5 5

1 1 1


and hence solve the following system of equations. 11x1 + 3x2x3 = 15

2x1 + 5x2 + 5x3 = 11 x1 + x2 + x3 = 1.

2. Find the inverses of the following matrices (using partial pivoting).

(i)


0 1 2

3 5 1

6 8 9



(ii)


1 2 0

1 0 5

3 8 7
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