MPhil

Semester-II

Paper: Eco-121

Advanced Micro Economics: Theory and Applications

Group-B

Lecture-I

NORMAL FORM GAMES AND EXTENSIVE FORM GAMES

Strategic Games

A strategic game is a model of interactive decision-making in which each decision-making in which each decision maker hoses his plan of action once and for all, and these choices are made simultaneously. The model consists of a finite set N of players and, for each player i, a set A_{i} of actions and a preference relation on the set of action profiles. We refer to an action profile $a=\left(a_{j}\right)_{j \varepsilon N}$ as an outcome, and denote the set $X_{j \in N} A_{j}$ of outcomes by A. The requirement that the preferences of each player i be defined over A, rather that A_{i} is the feature that distinguishes a strategic game from a decision problem: each player may care not only about his own action but also about the actions taken by the other players.

Definition:

A strategic game consists of:
$>$ A finite set N (the set of players)
$>$ For each player $i \varepsilon N$ a non-empty set $A_{i}($ the set of actions available to player $i)$
$>$ For each player $i \varepsilon N$ a preference relation $\geq i$ on $\mathrm{A}, A=X_{j \varepsilon N} A_{j}$ (the preference relation of player i)

If the set of A_{i} of actions of every player i is finite then the game is finite.

A finite strategic game in which there are two players can be described conveniently in a table like that in figure-1.

	\mathbf{L}	\mathbf{R}
\mathbf{T}	$\mathrm{W}_{1}, \mathrm{~W}_{2}$	$\mathrm{X}_{1}, \mathrm{X}_{2}$
	$\mathrm{Y}_{1}, \mathrm{Y}_{2}$	$\mathrm{Z}_{1}, \mathrm{Z}_{2}$

Figure-1
One player's actions are identified with the row and other player's with the columns. The two numbers in the box formed by row r and columns c are the player's payoffs when the row player chooses r and the column player chooses c , the first component being the payoff of the row player. Thus in the game in figure- 1 the set of actions of the row player is $\{T, B\}$ and that of the column player is $\{L, R\}$ and for example the row player's payoff from the outcome (T, L) is W_{1} and the column player's payoff is W_{2}. If the players' names are " 1 " and " 2 " then convention is that the row player is Player-1 and the column player is Player-2.

Ref: A Course in Game Theory: Martin J Osborne and Ariel Rubinstein

