
The Software Product

By
Mr. Priyajit Sen

Assistant Professor
Directorate of Distance Education
Vidyasagar University, Midnapore

3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance Education, 

VU
1



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
2

� Software
Software is more than just a programcode. A programis an executable code,
which serves some computational purpose.

• Introduction 

• Characteristics of software 
1) Software is developed or engineered; it is not manufactured in the classical sense: 

a) Some similarities exist between software development and hardware
manufacturing, but few activities are fundamentally different.

b) High quality is achieved through good design, but the manufacturing phase for
hardware can introduce quality problems than software.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
3

2) Software doesn’t ―wear out:

a) Hardware components suffer fromthe growing effects of dust, vibration,
abuse, temperature extremes, and many other environmentalmaladies. Stated
simply, the hardware begins to wear out.

b) Software is not susceptible to the environmental maladies that cause
hardware to wear out.

c) When a hardware component wears out, it is replaced by a spare part. There
are no software spare parts.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
4

3) Industry demands component-based construction, most software continues to be custom built:

a)A software component should be designed and implemented so that it can be reused 
in many different programs.

b) Modern reusable components encapsulate both data and the processing that is 
applied to the data, enabling the software engineer to create new applications from 
reusable parts. 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
5

• Software myths 

31.3.1 Management myths:

Myth 1: We already have a book that’s full of standards and procedures for
building software. Won’t that provide my people with everything they need to
know?

Myth 2: If we get behind schedule, we can add more programmers and catch 
up.

Myth 3: If I decide to outsource the software project to a third party, I can 
just relax and let that firm build it.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
6

• Customer myths:

Myth 1: A general statement of objectives is sufficient to begin
writing programs—we can fill in the details later.

Myth 2: Software requirements continually change, but change can 
be easily accommodated because software is flexible. 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
7

• Practitioner’s myths :

Myth 1: Once we write the programand get it to work, our job is done.

Myth 2: Until I get the program ―runningǁ I have no way of assessing its 

quality.

Solution 1: Technical Review

Solution 2: Software reviews are a ―”quality filter” that have been found 
to be more effective than testing for finding certain classes of software 
defects. 

Myth 3: The only deliverable work product for a successful project is the 
working program.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
8

• Software Engineering 

1) A systematic collection of good programdevelopment practices
and techniques.

2) Software engineering discusses systematic and cost-effective
techniques for software development. These techniques help develop
software using an engineering approach.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
9

• A Layered Technology:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
10

• A Quality Focus:

� Every organization is rest on its commitment to quality.

� Total quality management, Six Sigma, or similar continuous
improvement culture and it is this culture ultimately leadsto
development of increasingly more effective approaches to software
engineering.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
11

• Process: 

� The software engineering process is the glue that holds the
technology layers together and enables rational and timely
development of computer software.

� The software process forms the basis for management controlof
software projects and establishes the context in which technical
methods are applied, work products are produced and the quality is
ensured.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
12

• Methods:

� Software engineering methods provide the technical aspects for building
software.

� Methods encompass a broad array of tasks that include communication,
requirements analysis, design modeling, program construction, testing, and
support.

• Tools:

� Software engineering tools provide automated or semi-automated support for
the process and the methods.

� When tools are integrated so that information created by one tool can be used by
another, a system for the support of software development, called CASE
(computer-aided software engineering), is established.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
13

• Software life cycle / Software development life cycle (SDLC) 

Phase1: Feasibility Study 

1. Technical Feasibility 

2. Economic Feasibility 

3. Operational Feasibility 

4. Legal Feasibility 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
14

• Software life cycle / Software development life cycle (SDLC) 

Phase 2: Requirement Analysis and Specification. 

1. Needs Analysis 

2. Data Gathering 

2.1 Written Documents 

2.2 Interviews 

2.2.1 Structured Interviews 

2.2.2 Unstructured Interviews 

2.3 Questionnaires 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
15

• Software life cycle / Software development life cycle (SDLC) 

Phase 2: Requirement Analysis and Specification. 

2.4 Observations 

2.5 Sampling 

3. Data Analysis 

4. Analysis Report 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
16

• Software life cycle / Software development life cycle (SDLC) 

1. High-level design 

2. Low-level design 

Phase 3: Design 

Phase 4: Coding 

Phase 5: Testing 

Phase 6: Maintenance 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
17

• Software process models 

31.6.1 Linear sequential model 

• The Linear sequential model suggests a systematic sequential
approach to software development that begins at the systemlevel and
progresses through analysis, design, coding, testing, andsupport.

• The waterfall model and its derivatives were extremely popular in
the1970s and still are heavily being used across many development
projects.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
18

• Classical Waterfall Model 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
19

• Classical Waterfall Model 

1. Feasibility study:

• The main focus of the feasibility study stage is to determinewhether it
would be financially and technically feasible to develop the software.

2. Requirements analysis and specification:

• The aim of the requirements analysis and specification phase is to
understand the exact requirements of the customer and to document
themproperly.

• Requirements gathering and analysis, and Requirements specification.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
20

2.1 Requirements gathering and analysis:

• The goal of the requirements gathering activity is to collect all relevant
information regarding the software.

2.2 Requirements specification:

• After the requirement gathering and analysis activities are complete,
the identified requirements are documented. This is calleda software
requirements specification (SRS)document.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
21

3. Design:

The goal of the design phase is to transformthe requirements specified in the
SRS document into a structure that is suitable for implementation in some
programming language.

3.1 Procedural design approach: Data-flow oriented approach 

3.2 Object-oriented design approach: 

4. Coding and Unit Testing 

5. Integration and System Testing 

• α testing: 
• β testing: 
• Acceptance testing:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
22

6. Maintenance:

The total effort spent on maintenance of a typical software during its
operation phase is much more than that required for developing the software
itself.

• Corrective maintenance: 

• Perfective maintenance: 

• Adaptive maintenance:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
23

Verification Validation

•The verifying process includes checking documents, 
design, code, and program

•It is a dynamic mechanism of testing and validating 
the actual product

•It does not involve executing the code
•It always involves executing the code

•Verification uses methods like reviews, 
walkthroughs, inspections, and desk- checking etc.

•It uses methods like Black Box Testing, White Box 
Testing, and non-functional testing

• Whether the software conforms to specification is 
checked

•It checks whether the software meets the 
requirements and expectations of a customer

•It comes before validation •It comes after verification

• Verification vs Validation: Key Difference



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
24

• Shortcomings of the classical waterfall model:

• No feedback paths:

• Difficult to accommodate change requests:

• Inefficient error corrections:

• No overlapping of phases:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
25

• Iterative Waterfall Model:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
26

• Shortcomings of the iterative waterfall model:

The iterative waterfall model is a simple and intuitive software development model.
It was used satisfactorily during 1970s and 1980s.

• Difficult to accommodate change requests:

• Incremental delivery not supported:

• Phase overlap not supported:

• Error correction unduly expensive:

• Limited customer interactions:

• Heavy weight:

• No support for risk handling and code reuse:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
27

• Prototyping model:

Software is developed through two major activities— prototype construction and
iterative waterfall-based software development.

Prototype development:

Iterative development:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
28



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
29

Advantages:

•This model is the most appropriate for projects that suffer from technical and
requirements risks. A constructed prototype helps overcome these risks.

Disadvantages:

•The prototype model can increase the cost of development forprojects that are routine
development work and do not suffer fromany significant risks.

•The prototyping model is effective only for those projects for which the risks can be
identified upfront before the development starts.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
30

• Evolutionary model
In Evolutionary model, the software is developed over a number of increments. At each increment, a concept (feature)
is implemented and is deployed at the client site.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
31

• Advantages:

� Effective elicitation of actual customer requirements:

� Easy handling change requests:

• Disadvantages 

� Feature division into incremental parts can be non-trivial: 

� Ad hoc design: 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
32

• Spiral model 

� Quadrant 1: The objectives are investigated, elaborated, and analyzed. Based on this,the risks
involved in meeting the phase objectives are identified. In this quadrant, alternative solutions
possible for the phase under consideration are proposed.

� Quadrant 2: During the second quadrant, the alternative solutions are evaluated to select the
best possible solution. To be able to do this, the solutions are evaluated by developing an
appropriate prototype.

� Quadrant 3: Activities during the third quadrant consist of developing and verifying the next
level of the software. At the end of the third quadrant, the identified features have been
implemented and the next version of the software is available.

� Quadrant 4: Activities during the fourth quadrant concern reviewing the results of thestages
traversed so far (i.e. the developed version of the software) with the customer and planning the
next iteration of the spiral.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
33

31.6.4 Spiral model 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
34

• Advantages:

� It is much more powerful than the prototyping model. Prototyping model can
meaningfully be used when all the risks associated with a project are known
beforehand.

� All these risks are resolved by building a prototype before the actual software
development starts.

• Disadvantages:

� To the developers of a project, the spiral model usually appears as a complex
model to follow, since it is risk-driven and is more complicated phase structure
than the other models.

� It would therefore be counterproductive to use, unless there are knowledgeable
and experienced staff in the project.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
35

• RAD model:

� Rapid application development is a software development methodology that uses
minimal planning in favor of rapid prototyping.

� A prototype is a working model that is functionally equivalent to a component of the
product.

� In the RAD model, the functional modules are developed in parallel as prototypes
and are integrated to make the complete product for faster product delivery.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
36

• Phases of the RAD Model:

� Business Modeling 

� Data Modeling 

� Process Modeling 

� Application Generation 

� Testing and Turnover 



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
37

• Phases of the RAD Model:



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
38

• Advantages:

� Reduced development time.

� Increases reusability of components

� Quick initial reviews occur

� Encourages customer feedback

� Integration fromvery beginning solves a lot of integration issues.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
39

• Disadvantages:

� For large but scalable projects RAD requires sufficient human resources.

� Projects fail if developers and customers are not committedin a much
shortened time-frame.

� Problematic if systemcannot be modularized.

� Not appropriate when technical risks are high (heavy use of new
technology).



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
40

When to use RAD model?

• RAD should be used when there is a need to create a systemthat can be
modularized in 2-3 months of time.

• It should be used if there’s high availability of designers for modeling and the
budget is high enough to afford their cost along with the costof automated
code generating tools.

• RAD SDLC model should be chosen only if resources with high business
knowledge are available and there is a need to produce the system in a short
span of time (2-3 months).



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
41

• Component based development:

� Commercial off-the-shelf (COTS) software components,
developed by vendors who offer themas products, provide
targeted functionality with well-defined interfaces thatenable the
component to be integrated into the software that is to be built.

� The component-based development model incorporates many of
the characteristics of the spiral model. It is evolutionaryin nature,
demanding an iterative approach to the creation of software.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
42

The component-based development model incorporates the following steps:

• Available component-based products are researched and evaluated for the
application domain in question.

• Component integration issues.

• A software architecture is designed to accommodate the components.

• Components are integrated into the architecture.

• Comprehensive testing is conducted to ensure proper functionality.

• The component-based development model leads to software reuse.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
43

• Fourth generation technique:

1. The use of 4GT is a viable approach for many different application
areas. Coupled with computer-aided software engineering tools and code
generators, it offers a credible solution to many software problems.

2. Data collected fromcompanies that use 4GT indicate that the time
required to produce software is greatly reduced for small and intermediate
applications and that the amount of design and analysis for small
applications is also reduced.



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
44

• Software process and project metrics: Software measurement:

• Terminologies:

� Measure: Quantitative indication of the extent, amount, dimension, or size of some attribute of a
product or process.

� Metrics: The degree to which a system, component, or process possesses a given attribute. Relates
several measures (e.g. average number of errors found per person hour).

� Indicators: A combination of metrics that provides insight into the software process, project orproduct.

� Direct Metrics: Immediately measurable attributes (e.g. line of code, execution speed, defects
reported).

� Indirect Metrics: Aspects that are not immediately quantifiable (e.g. functionality, quantity,reliability)

� Faults:
Errors: Faults found by the practitioners during software development
Defects:Faults found by the customers after release



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
45

• Metric classification:

� Processes:

• Activities related to production of software

� Products:

• Explicit results of software development activities.
• Deliverables, documentation, by products

� Project:

• Inputs into the software development activities
• Hardware, knowledge, people



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
46

• Process metrics:

Process metrics are collected across all projects and over long periods of time to
provide a set of process indicators that lead to long-termsoftware process improvement.

Error Categorization and Analysis:

• All errors and defects are categorized by origin.

• The cost to correct each error and defect is recorded.

• The number of errors and defects in each category is computed.

• Data is analyzed to find categories that result in the highest cost to the
organization.

• Plans are developed to modify the process



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
47

• Project metrics:

Project metrics enable a software project manager to assessthe status of an ongoing
project, track potential risks, uncover problemareas to control quality of software work
products.

• Product metrics:

Product metrics focuses on the quality of deliverables. They are combined across several 
projects to produce process metrics. 

• Measures of the Analysis Model
• Complexity of the Design Model
• Internal algorithmic complexity
• Architectural complexity
• Data flow complexity
• Code metrics



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
48

• Software measurement:

� Size Oriented metrics

� Function-Oriented metrics

� Object-Oriented Metrics

� Use-Case–Oriented



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
49

Function point metrics, measure functionality fromthe user’s point of view, that is, on
the basis of what the user requests and receives in return.

Information domain values are :

� Number of user inputs – Distinct input fromuser
� Number of user outputs – Reports, screens, error messages, etc.
� Number of user inquiries – On line input that generates some result
� Number of files – Logical file (database)
� Number of external interfaces – Data files/connections as interface to other

systems.

• Function Point Metrics



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
50

Formula to count FP is FP = Total Count * [0.65 + 0.01*Σ(Fi)]

Where,Total Count is all the counts times a weighting factor that is determinedfor each
organization. Fi (i=1 to 14) are complexity adjustment values.

• Function Point Metrics



3/3/2020
Priyajit Sen, Assistant Professor, Directorate of Distance 

Education, VU
51

Thank You


