Introduction to Instruction Pipelining

By

Mr. Priyajit Sen
Assistant Professor in Computer Science,
DDE, Vidyasagar University

Pipelining

@ Pipelining is an implementation technique in which
multiple instructions are overlapped in execution

o Here we will consider RISC architecture
= Memory Access by Load/Store
= All other instructions use registers.

Pipelining is Natural!

e Laundry Example
e Ann, Brian, Cathy, Dave ®§5@§
each have one load of clothes

to wash, dry, and fold =
Washer takes 30 minutes

Dryer takes 40 minutes §

“Folder” takes 20 minutes qf__

x 0 O —

S~ 0O Q=0

Sequential Laundry
6PM 7 8 9 10 11 Midnight

| Time

| |20| 30| 40 |20| 30| 40 |20| 30| 40 |20|

| |
—4

tar

| (D 7

e Sequential laundry takes 6 hours for 4 loads
@ If they learned pipelining, how long would laundry take?

x 0 O —

S~ 0O Q=0

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 Midnight
| Time]

||4o|4o|4o|20|

| D B=am

@ Pipelined laundry takes 3.5 hours for 4 loads

Linear Pipelining

Types of linear pipeline models

= Asynchronous Model

= Synchronous Model

Reservation table for Linear Pipelining

Non-Linear Pipelining

e Reservation table for Non-Linear Pipelining
e Latency Analysis in Non-Linear Pipelining

e Collision Free Scheduling

Arithmetic Pipeline

=Floating point adder-subtractor

Exponents Mantissas
p q i’ 12
| Registers | | Registers |
Subtract
Stace 1: exponents for
g - comparison
l Difference
| Register |
Stage 2: | Select exponent | —F—-| Align mantissas |
|
|
L4
| Register |
Add/ Subtract
Stage 3: mantissas
| Register | | Register |

l l

Adjustment Normalize
Stage 4: of mantissas * result
| Register | ' | Register |

| !

< C

The Five Stages of Load

{ Cycle1iCycle2 i Cycle3iCycled ;CycleS5 ;

J) S [A I R R S I

Load| Ifetch IReg/DecI Exec I Mem I Wr

Ifetch: Instruction Fetch
= Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address

Mem: Read the data from the Data Memory

Wr: Write the data back to the register file

Smgle Cycle, Multlple Cycle, vs. Plpelme

Cycle 1 : Cycle 2

cEI | | | L

Singfle Cycle Implementation:

Load I Store Waste

: Cycle 1} Cycle 2} Cycle 3; Cycle 4; Cycle 5; Cycle 6} Cycle 7; Cycle 8] Cycle 9 Cyclé 10

Clk | I I I I _ | I I _ I

Multiple Cycle Implementation: : :
Load Store R-type
Ifetchl Reg I Exec I Mem I Wr I Ifetchl Reg I Exec I Mem I Ifetch

Pipel:ine Implementation:

Load Ifetchl Reg I Exec I Mem I Wr

Store Ifetchl Reg I Exec I Mem I Wr

R-type Ifetchl Reg I Exec I Mem I Wr

S ~ 0 3> ~

= O Q=0

Why Pipeline? Because the resources are there!

Time (clock cycles)

Inst 0
Inst 1

Inst 2
Inst 3

‘Inst 4

Im

Speedup and Efficiency

k-stage pipeline processes n tasks in k + (n-1) clock
cycles:

k cycles for the first task and n-7 cycles for the remaining
n-1 tasks

Total time to process ntasks T, =[k + (n-1)]t

For the non-pipelined processor T, =nk r

Speedup factor S o T, nk-x __nk
k=1, S[k+(n-1)]v k+(n-1)
] n k ~ k
If n is very large (n >> k), then S, =

n

Efficiency and Throughput

Efficiency of the k-stages pipeline:

E, = o0
k' k = k+*(n-1)

Pipeline throughput (the number of tasks per unit time):

H = n = n f
k— [k+(n-1)]t k + (n-1)

Slow Down From Stalls

* Perfect pipelining with no hazards - an instruction completes every
cycle (total cycles ~ num instructions) k + (n-1) =n

—> speedup = increase in clock speed = num pipeline stages
n k
= =k
S, n

*With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

* Total cycles = number of instructions + stall cycles

 Slowdown because of stalls = 1/ (1 + stall cycles per instr)

Pipeline Hazards

Structural Hazards: Attempt to use the same resource

(hardware unit) two different ways at the same time. E.g., two
instructions try to read the same memory at the same time

Data Hazards: Attempt to use item before it is ready
instruction depends on result of prior instruction still in the
pipeline

addrl, r2,r3

subr4, r2,rl

Control Hazards: Attempt to make a decision before
condition is evaluated branch instructions

beqrl,r2,loop

add r3, r4, r5

Types of Data Hazards

Write After Read (WAR) Hazard
Read After Write (RAW) Hazard

Write After Write (WAW) Hazard

Pipeline Performance Improvement

e Super pipelined Design
e Super scalar design

* Very long Instruction word (VLIW) Processor

