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Elliptic PDE is one of the widely used PDEs. In this module, the finite difference
method is described to solve the elliptic PDEs.

3.1 Elliptic equations

The elliptic PDEs occur in many practical situations. The most simple elliptic PDEs
are Laplace and Poisson equations. The Laplace equation is V"u = 0 and Poisson
equation is V"u = g(r).

One physical example of such equations is stated below.

Let the function p represent the electric charge density in some open bounded set
Q C RY. If the permittivity  is constant in Q the distribution of the electric potential

© in € is governed by the Poisson equation
—eAyp = p.

This equation does not have a unique solution, because if ¢ is a solution of this
equation, then the function ¢ + ¢, is also a solution, where c is any constant. To get a
solution, every elliptic equation should have a suitable boundary conditions.

Let us consider the two-dimensional Laplace equation

u  0%u
927 " ay?
and u = f(x,y) on the boundary C.

= 0 within the region R (3.1)

In this problem, both are space variables. Now, we approximate this PDE by the
central difference approximation. Then the finite difference approximation of the above
equation is

Wizt = 2Wij  Uit1y | Wigo1 = 2t Ui

= = = 0. (3.2)

It is assumed that the length of the subintervals along x and y directions are equal,

i.e. h = k. Then the above equation becomes,

1
Wi = gl + tiong + Ui+ ). (3.3)

From this expression, it is seen that the value of u; ; is the average of the values of u

at the four meshes — north (i,j + 1), east (i + 1, 7), south (i,7 — 1) and west (i — 1, j).
1
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Y
(i, j+1)
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Figure 3.1: Known and unknown meshes in standard five-point formula

The known values (filled circles) and unknown (circle) are shown in Figure 3.1. This
formula is known as standard five-point formula.

It can be proved that the Laplace equation remains invariant when the coordinates
axes are rotated at an angle 45°.

Under this rotation, the equation (3.3) becomes

1
Uij = Z[ui—l,j—l + Ui 1,5-1 F Wit 541 + Uio1j41)- (3.4)

This is another formula to calculate u;; and it is known as diagonal five-point

formula. The known and unknown meshes for this formula are shown in Figure 3.2.

(i+1,j+1)

(Z.'lvj'l) (Z+17]'1)
Figure 3.2: Known and unknown meshes in diagonal five-point formula
When the right hand side of the Laplace equation is nonzero, then this equation

is known as Poisson’s equation. The Poisson’s equation in two-dimension is in the

following form
Uzg + Uyy = g(2,Y), (3.5)

with the boundary condition v = f(z,y) along the boundary C.
2



Here, we also assumed that the mesh points in both z and y directions are uniform.
Using this assumption the central difference approximation of the equation (3.5) is

reduced to

1
ui; = Z[UZ‘_LJ‘ + Uig1,j F Ui -1+ U1 — h29i7j] where g; ; = g(xi, y;)- (3.6)

Let u = 0 along the boundary C' and i,j = 0,1,2,3,4. Then up; = 0,us,; = 0 for
j=0,1,2,3,4 and u;p = 0,u;4 = 0 for i = 0,1,2,3,4. The boundary values (filled

circles) are shown in Figure 3.3.

Y
u=0
j=4 l o—o o 'y

U1,3 | U2,3 | U3,3

Ui | u22 [ us2

Uyl [ u21 | U3l

Figure 3.3: The 5 x 5 meshes for elliptic equation

For a particular case, i.e. for i,j = 1,2,3 the equation (3.6) becomes a system of nine

equations with nine unknowns. These equations are written in matrix notation as

4 -1 0-1 0 0 0 0 O [u —h%g1 4

-1 4-1 0-1 0 0 0 Of|upe —h%g1 9
0-1 4 0 0-1 0 0 O uy3 —h%gy 3

-1 0 0 4-1 0-1 0 O] |u —h%g21
0-1 0-1 4-1 0-1 0 use | = | —h%gas (3.7)
0 0-1 0-1 4 0 0-1 U2 3 —h%ga 3
0 0 0-1 0 0 4-1 0 |us; —h%g31
0 0 0 0-1 0-1 4-1 U39 —h%gs 9

| 0 0 0 0 0-1 0-1 4] |usz| |—h%g3]
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This indicates that the equation (3.6) is a system of N (where N is the number of
subintervals along x and y directions) equations. Note that the coefficient matrix is
symmetric, positive definite and sparse (many elements are 0). Since, the coefficient
matrix is sparse, so it is suggested to use iterative method rather than direct method
to solve the above system of equations. Commonly used iterative methods are Jacobi’s
method, Gauss-Seidel’s method, successive overrelaxation method, alternate direction

implicit method, etc.

3.1.1 Method to find first approximate value of Laplace’s equation

Let us consider the Laplace’s equation ug, + u,, = 0. Let the region R be square
and it is divided into N x N small squares each of side h. The boundary values are

Ug,j, UN,j, Ui 0, Ui, N Where 4,7 = 0,1,2,..., N, shown in Figure 3.4.

Yy
l Ul4 U224 US4 Udd
Q4 ® ° ® 'Y

Uo,3 @ @ U43
Uy,3 | U2,3 | U333

U2 @ ® U42
U | u22 | u32

uo,1 @ ® U4l
U1 [ u21 | us1

o O O O o~ I
Up,0 uUlp U220 U0 U40

Figure 3.4: Known and unknown meshes for Laplace equation. Red meshes are cal-
culated by diagonal five-point formula and blue meshes are determined by standard

five-point formula

At first the diagonal five-point formula is used to compute the values of u according

to the order ug 2, u1 3, u33, u1,1 and uz; (red meshes in the figure). That is,

1
Uz = Z(Uo,o + ug 4+ up 4 + uap)

1
up3 = Z(UO’Q +ug 4 + upa + ug2)



1
U3 3 = Z(Um + ugq + ug 4+ usg2)

1
Uyl = Z(Uo,o +ug2 + ug 2 + u2,)

1
us 1 = Z(UQ’O + g2+ uz 2 + Usp).

In the second step, the remaining values, viz., us 3, u12,u32 and us ;1 are evaluated

using standard five-point (blue meshes in the figure). Thus,

1
Ug 3 = Z(Ul,B +u3 3+ ug2 + u24)

Up2 = Z(UO’Q +uz 0 +ur +u3)

1
ug2 = Z(Um + ug9 + ug + us3)

1
U1 = Z(UM + u3,1 + u2,0 + u2,2)-

Note that these are the first approximate values of w at different meshes. These values

can be updated by using any iterative methods mentioned earlier.

Example 3.1 Let us consider the following Dirichlet’s problem
Ugz + Uyy = 0,
u(a:7 0) = 07 u(07 y) = 07
u(z,1) =5z, wu(l,y) = 5y.

Find the first approximate values at the interior meshes by dividing the square region

mto 4 X 4 squares.

Solution. For this problem, the region R is 0 < z,y < 1. Let h = k = 0.25 and
x; = ih,y; = jk, 1,5 = 0,1,2,3,4. The meshes are shown in Figure 3.5.

The values of u are calculated in two steps. In first step, the diagonal five-point
formula is used to find the values of wug2,u13,u33,u1,1, uz1 and in second step the
standard five-point formula is used to find the values of ug 3,412, u32, u2 1.

The diagonal five-point formula is

1

ujj = Z[ui,m,l F Uiy 11+ i1 1+ U141
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y=1.00,
y =0.75,
1y=0.50,
y=0.25,

y=0.00,

Y upg uga uszs usa
l 1.25 2.50 2.75 5.0
u.4=0 @ @ @ L J U4,4:5'0
u073:0 ® L J U4,3:3.75
u1,3 | U2,3| U33
up2=0 @ ® us2=25
U2 | U222 | U332
up,1=0 @ ® uy1=1.25
U1 | U2,1 | U3l
u0,0=0 @ ® ® ® o T

_ -1 .1 .3
r=0 xz=7 x=5 =3

0 0 0 0
U0 U0 U0 U40
=1

Figure 3.5: Meshes for Dirichlet’s problem

and standard five-point formula is

Therefore,

1
4

Wig = 7Wit1j + i1y + Uigyr i)

1 1
ug2 = —(up,0 + Us4 + Uo4 + Usp) = Z(O +504+0+0)=1.25

4
1

1
U3 = —(UOQ + ug 4 + ug 4 + UZQ) = Z(O +25+0+ 1.25) =0.9375

4
1

1
ug3 = Z(UZQ + ug4 + U244 + U472) = 1(1.25 +5+4+2.5+42.5) =2.8125

1

1
uy,1 = Z(UO’O + U2 2 + Up,2 + u270) = Z(O + 1.25 + 0 + O) =0.3125

1

1
ws,y = (2 +wap + unz +usg) = 7(0+2.5 +1.25 +0) = 0.9375.

The values of ua 3, u1,2,u32 and ug 1 are obtained by using standard five-point formula.

1 1
U3 = Z(ULP) + u3,3 + u22 + UQ74) = 1(0.9375 + 2.8125 4+ 1.25 + 2.5) = 1.875

1

1
U2 = —(UOQ + U220 + up 1 + U173) = Z(O +1.25 4+ 0.3125 + 0.9375) = 0.625

4
1

1
us,2 = —(UZQ + U4.2 + u3,1 + U3,3) = 1(1.25 + 2.5+ 0.9375 + 2.8125) = 1.875

4
1

1
Ug1 = —(U171 +uz 1+ uz0 + u2,2) = 1(0.3125 +0.9375 + 0 + 1.25) = 0.625.

4



These are the first approximate values of u at the interior meshes.

3.2 lterative methods

If the first approximate values of u are known, then these values can be updated by
applying any well known iterative method. Several iterative methods are available with
different rates of convergence, some of them are discussed below.

The standard five-point finite-difference formula for the Poisson’s equation (3.5) is
L 2
Ui = o (Wim1,j + Uirrg + U1+ i1 = hogig). (3.8)

Let ug? be the rth iterative value of u; ;, r =1,2,....

Jacobi's method

The Jacobi’s iterative scheme to solve the system of equations (3.8) for the interior
meshes is

+1 1 r r r r
“ETJ )= Z[ugjl,j + uz('Jr)l,j + uz(,j)—l + uz(,j)Jrl — h?gi ). (3.9)

This formula evaluates the (r + 1)th iterated value of u;;, when the rth iterated

values of u are known at the meshes (i — 1,7), (i +1,7),(i,7 — 1), (4,5 + 1).

Gauss-Seidel’s method

In it well known (discussed in Chapter 5) that the latest updated values are used in
Gauss-Seidel’s method. The values of u along each row are computed systematically

from left to right. The iterative formula is

LD _ 1

(r+1)
0, gt

i—1,9 + “E:L)l + “(TH) + U‘Z')H - h29i,j]~ (3.10)

[u j ij—1 i

The rate of convergence of this method is twice as fast as the Jacobi’s method.

Successive Over-Relaxation (SOR) method

In this method, the iteration scheme is accelerated by introducing a scalar, called re-

laxation factor. This acceleration is made by making corrections on [ugrfl) — uZ(TJ)]

Suppose w"*Y s the value obtained from any iteration method, such as Jacobi’s or

Z?J
7
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Gauss-Seidel’s method. Then the updated value of u; ; at the (r+ 1)th iteration is given
by

(r+1) (r+1) (r)
i = WU —i—(l—w)um,

(3.11)

u

where w is called relaxation factor.
If w > 1 then the method is called over-relaxation method. If w = 1 then the method
is nothing but the Gauss-Seidal iteration method.

Thus, for the Poisson’s equation, the Jacobi’s over-relaxation scheme is

+1 1 r r r
U’EZ = i |:uz('i)1,j + “z(+)1,j + “z(,j)—l + Uz(',?;')ﬂ - h29i,j] +01- w)uz(,j) (3.12)

and the Gauss-Seidel’s over-relaxation scheme is

(r+1)

1 1 1
ij = gV [uﬁ,} + ugr)m + uZ(TJJil) + UZ(Z')H — h292‘7j:| +(1- w)u(r) (3.13)

2V

The rate of convergence of the above schema depends on the value of w and its value

lies between 1 and 2. But, the choice of suitable w is a difficult task.

Example 3.2 Solve the Laplace’s equation uz, + uy, = 0 defined within the square
region 0 < z < 1 and 0 < y < 1 shown in Figure 3.6, by (a) Jacobi’s method, (b)

Gauss-Seidel’s method, and (c¢) Gauss-Seidel’s successive over-relaxation method.

124 12.4
L L
0e Uia UMO 0
0e ® 0
U1 | U2

Figure 3.6: Boundary conditions of Laplace equation

Solution.
(a) Jacobi’s method

Let the initial values be U1 = U2 = U22 = ULl = Oand h =k = 1/3

The Jacobi’s iteration scheme is



) = )+l + 0+ 0] = 7] + o)
) = Fld] 0 04 0] = G 4 o)
W30 = L0+ o)+ 04 12.4] = Tl ) + 124
ug ! = i [uf) +u] +12.4+0] = i () + )+ 12.4].

The first iterated values are, uﬁ =0, ugli =0, ug =3.1, ug% =3.1.

The all other iterated values are given below.

r U1,1 u2,1 U1,2 U2,2

0 0.00000 0.00000 0.00000 0.00000
1 0.00000 0.00000 3.10000 3.10000
2 0.77500 0.77500 3.87500 3.87500
3 1.16250 1.16250 4.26250 4.26250
4 1.35625 1.35625 4.45625 4.45625
5
6
7
8
9

1.45312 1.45312 4.55312 4.55312
1.50156 1.50156 4.60156 4.60156
1.52578 1.52578 4.62578 4.62578
1.53789 1.53789 4.63789 4.63789
1.54395 1.54395 4.64395 4.64395
10 1.54697 1.54697 4.64697 4.64697
11 1.54849 1.54849 4.64849 4.64849
12 1.54924 1.54924 4.64924 4.64924
13 1.54962 1.54962 4.64962 4.64962
14 1.54981 1.54981 4.64981 4.64981
15 1.54991 1.54991 4.64991 4.64991
16 1.54995 1.54995 4.64995 4.64995

Therefore, u; 1 = 1.5500, uz;1 = 1.5500, w12 = 4.6500, ug o = 4.6500, correct up to

four decimal places.
(b) Gauss-Seidel’s method

Let ug1 = w12 = ug2 = uj 1 = 0 be the initial values. Also, h =k =1/3.
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The Gauss-Seidel’s iteration scheme is

Y = Lk + ol
uf = 20 )
g = F0TY o)+ 124
ufF ) = Sl ) 4124
When r = 0 then
i [0+0] =
ull) i[o +0] =
o _ 1
uly Z[0+0+124] =31
uly = i[31+0+124] = 3.857.

EvLLipTIC

These are the first iterated values. The results in all other iterations are shown below.

r U1,1 U2,1 u1,2 u2,2

0 0.00000 0.00000 0.00000 0.00000
1 0.00000 0.00000 3.10000 3.87500
2 0.77500 1.16250 4.26250 4.45625
3 1.35625 1.45312 4.55312 4.60156
4 1.50156 1.52578 4.62578 4.63789
5
6
7
8
9

1.53789 1.54395 4.64395 4.64697
1.54697 1.54849 4.64849 4.64924
1.54924 1.54962 4.64962 4.64981
1.54981 1.54991 4.64991 4.64995
1.54995 1.54998 4.64998 4.64999
10 1.54999 1.54999 4.64999 4.65000
11 1.55000 1.55000 4.65000 4.65000

Hence, u1,1 = 1.55000, ug1 = 1.55000, u12 = 4.65000, ug2 2 = 4.65000, correct up to

five decimal places.
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(¢c) Gauss-Seidel’s successive over-relaxation method
Let the intial value be ug1 = u12 = us2 = uy1 = 0.

The SOR scheme for interior meshes are

a5 = B ) ] (= wpul)

i.j 4 [ ig—1 T Yigt1 i.j
For j =1,2, i = 1,2, the formulae are
u = Z[ué? + 3]+ (1= wuf))
uy V= Tl + w4+ (1 wuf)
ugrl) = Z[ugg + u(rH) +124] + (1 w)
uyy = Tlulls )+ u ) + 1240+ (1 w)ugf;.

Let w = 1.1. Then the Values of u’s are hsted below.

r U1,1 u2,1 U1,2 U2,2

1 0.00000 0.00000 3.41000 4.34775
2 0.93775 1.45351 4.52251 4.61863
3 1.54963 1.55092 4.65402 4.65450
4 1.55140 1.55153 4.65122 4.65031
5
6
7

1.55062 1.55010 4.65013 4.65003
1.55000 1.55000 4.65000 4.65000
1.55000 1.55000 4.65000 4.65000
Hence, solution is u11 = 1.55000, uz1 = 1.55000, u12 = 4.65000, uz2 = 4.65000,

correct up to five decimal places.

The SOR iteration scheme gives the result in 6th iterations for w = 1.1. While
Gauss-Seidal and Jacob’s iteration schema take 11 and 16 iterations respectively.

For SOR method the number of iterations depends on the value of w.

Example 3.3 Solve the Poisson’s equation Ugz + Uy, = 5x2y for the square region
0<z<1,0<y<1with h=1/3 and the values of u on the boundary are every where
zero. Use (a) Gauss-Seidel’s method, and (b) Gauss-Seidel’s SOR method.

Solution. In this problem, g(z,y) = 522y, h = k = 1/3 and the boundary conditions
are ug,0 = u1,0 = u2,0 = ugo = 0, up,1 = up2 = up,3 =0,

u1,3 = ug3 = uz3 = 0,u31 =ug2 =0.

11
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(a) The Gauss-Seidel’s iteration scheme is

r—+1 1 r—+1 r+1 r . .
z(,j+ = - 4 [UE —’1—]) + ung)lj + u2(]+ 1) + ul(])Jrl - h‘29(2h"jk)] :
Now, g(ih,jk) = 5h3i%j = 2—71 j. Thus
17 15
r—+1 r—+1 r
uil ):Z_U( )—|—ug%—|—ugo )+u§7%—§.§.12.1_
L o) e, o 5
—4_0+u 1+0+uy, 513 4u2,1+u1,2 513
r+1 1] r+1 r 15
ugl ) — 1 ug b +u§% +ug0 ) +ug% — 5.2—7.22.1
1 [ r+1 r 20
=1 _U§,1 e Ué% - m}
r+1 1 [ r+1 r r+1 r 1
A0 = e Y ) - L2070
1] r r+1 10
T ug% i 243}
1 15
r—+1 r—+1 r r—+1 r
ugz ) = 1 _ugz ) + ué% + ugl ) + ué% 5.5.22.2
1 [ r—+1 r—+1 40
) _Ug,z : Ué,l ) - ﬁ]
Let uf] = uf’) = uf’) = 0.
All the values are shown in the following table.
r U1,1 U2,1 U1,2 U2,2
1 —-0.00514 —-0.02186 —0.01157 —0.04951
2 —0.01350 —0.03633 —0.02604 —0.05675
3 —0.02074 —0.03995 —0.02966 —0.05855
4 —0.02255 —0.04085 —0.03056 —0.05901
5 —0.02300 —0.04108 —0.03079 —0.05912
6 —0.02311 —0.04113 —0.03085 —0.05915
7 —0.02314 —0.04115 —0.03086 —0.05915

Hence, the solution correct up to five decimal places is
uy = —0.02314, ug; = —0.04115, u; 2 = —0.03086, uz » = —0.05915.

12
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(b) The SOR scheme is

r+1 w r+1 r r+1 r . r
uz(',jJr ) = Z [uz(':;,j) + ul('Jr)l,j + uz(',]tl) + ul(',j)Jrl - h2g(1h7]h)] + (1 - w)uz(,j)
w r+1 r r+1 r 5 4. r
= e Pl e - S| ()

Let the initial values be ug)% = ugo% = ugo% =0.

Let the relaxation factor be w = 1.1. Then, the values of u; 1,u21,u1 2 and ug o are

computed below.

Uu1,1 U2,1 u1,2 u2,2
—0.00566 —0.02419 —0.01287 —0.05546
—0.01528 —0.03967 —0.02948 —0.05874
—0.02315 —0.04119 —0.03089 —0.05921
—0.02316 —0.04117 —0.03088 —0.05916
—0.02316 —0.04115 —0.03087 —0.05916
—0.02315 —0.04115 —0.03086 —0.05916

S Ot e W N S

The solution obtained by SOR method is uq,; = —0.02315, us1 = —0.04115, uy o =
—0.03086, u22 = —0.05916, correct up to five decimal places.
Note that the Gauss-Seidel’s iteration method needs 7 iterations whereas SOR method

takes only 6 iteration for w = 1.1.

13
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Self Assessment (MCQ)

14

1. The boundary conditions of the PDE V?u = 0 are u(x,0) = 0,u(0,y) = 0,u(z,1) =

2,u(l,y) = 2, where 0 < z < land 0 <y < 1, ugg = O,ups = 0. Let
h =k = 0.25. Then the values of u22,u33 and uy; are

(a) ug2 = 0.50,ug 3 = 1.625,u1 1 = 0.125

b) gy = 0.25,uz.3 = 0.625,u1,1 = 0.125

(
(C) U2 = 0.75,’&3,3 = 1.625,?“71 =1.125
(d) U292 = 0.50,’[1,373 = 1.505,U171 =1.25

)

. For the elliptic PDE vz, + uy, = 0, the boundary conditions are u;o = 60,7 =

0,1,2,3, upq = 40,up2 = 20,up3 = 0,u31 = 50,u32 = 40,u3z3 = 30,u13 =
10,u23 = 20. Then the values of uq,1,u1,2,u2,1,u22 are
(a) w1 = 13.31,u1 2 = 23.60, ug 1 = 26.65, uz 2 = 33.32
(b) u1,1 = 23.31,u1 2 = 22.60,u2 1 = 44.65, u2 2 = 21.02
(c) w11 =43.31,u1 2 = 26.65, ug1 = 46.65,uz 2 = 33.32
(d) w11 =23.21,u1 20 = 22.35,up;1 = 45.65,up 2 = 32.22

. Successive over-relaxation method accelerates the convergence for all values of

relaxation factor

(a) true (b) false

. Is diagonal five-point formula implicit?

(a) yes (b) no

. The iteration scheme u; ; = %[UH_L]' + w15+ Ui 1+ ug 1] for ug, +uyy =0 is

known as standard five-point formula.
(a) true (b) false

. The iteration scheme wu; ; = i[ui,Lj,]L + Wit1 -1 F Uit1,j+1 + Wi1,j+1) Tor Uz +

Uyy = 0 is known as diagonal five-point formula.
(a) true (b) false

. The finite difference iteration scheme w; ; = i(UZ‘_17j+uz‘+17j+uz"j_1+uz‘7j+1—h29i7j)



is nothing but a system of linear equations for different values of ¢ and j. Then

the Gauss-Seidal’s iteration scheme is -« - - - - .

8. Finite-difference scheme for the Poisson’s equation ug,+uy, = g(z,y) is discretized

as standard five-point formula is --- - - - .

9. Let the Laplace equation be uz; + uy, = 0, defined by 0 <2 <l and 0 <y < 1.
Let h = k = 1/3. The boundary values are ui o = ugo = ug1 = up2 = 0,
u1,3 = 5,uz3 = 6. The Jacobi’s iteration scheme to find the values of uy 1, u2 1, u1 2

and ug o are - -

10. For the above problem the Gauss-Seidal’s iteration scheme is - - - .

Answer to the questions

(a)

+1) _ 1y, (r+1) (r) (r+1) (r)
j - 4[“1 1,5 + “z+1 7 + u” 1 + U, g+l T h2g"ﬁj]

Gt N o Otk W
—
- =8
N~ N~ ~— ~—

1
wij = 7(Uim1j + Wir1 + Uijo1 + Uil — h? Gij)-

r+1 r r r+1
9. TV = 3] +ully], usy ™ = Ful) + i),
r+1 r r r+1
ufy ) = ]+ ufy + 5], ugy ) = w%+ ug) +6

10. U(H_l) %[ g%_’_ ()] évio—l) _% (7+1) +u

a7y = 1l + ) 5] é”—%w’”+éf)+m

15
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Self Assessment (Long Answer Questions)
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1. Solve the Poisson’s equation g, +tyy = —222 + 12 over the region 0 < z < 2,0 <

y < 2 taking the boundary condition u = 0 on all the boundary sides with h = 0.5.

Use Gauss-Seidel’s method to improve the solution.

. Solve the Laplace equation gz, + uy, = 0 taking h = 1, with boundary values as

shown below.
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. Solve the elliptic differential equation uz; + u,, = 0 and for the region bounded

by 0 <z <5, 0 <y <5, the boundary conditions being
u=0atr=0and u=2+y at x =5,

u=2%at y=0and u=2x at y = 5.

Take h =k =1. Use

(a) Jacobi’s method, (b) Gauss-Seidel’s method, and (c¢) Gauss-Seidel’s S.O.R.
method.
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