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In this module, two other types of partial differential equations are considered. These

are hyperbolic and elliptic PDEs. Finite difference method is also used to solve these

problems. First we consider hyperbolic equation.

2.1 Hyperbolic equations

The simplest problem of this class is one dimensional wave equation. This problem

may occurs in many real life situations. For example, the transverse vibration of a

stretched string, propagation of light and sound, propagation of water wave, etc. It

arises in different fields such as acoustics, electromagnetics, fluid dynamics, etc.

The simplest form of the wave equation is given below:

Let u = u(r, t), r ∈ Rn be a scalar function which satisfies

∂2u

∂t2
= c2∇2u, (2.1)

where ∇2 is the Laplacian in Rn and c is a constant speed of the wave propagation.

This equation can also be written as

�
2u = 0, where �

2 = ∇2 −
1

c2
∂2

∂t2
. (2.2)

The operator �2 is called d’Alembertian.

In case of one dimension, the above equation is

∂2u

∂t2
= c2

∂2u

∂x2
, t > 0, 0 < x < 1. (2.3)

The initial conditions are u(x, 0) = f(x) and
(

∂u

∂t

)

(x,0)

= g(x), 0 < x < 1 (2.4)

and the boundary conditions are

u(0, t) = φ(t) and u(1, t) = ψ(t), t ≥ 0. (2.5)

In finite difference method, the partial derivatives uxx and utt are approximated by

the following central-difference schema at the mesh points (xi, tj) = (ih, jk) are

uxx =
1

h2
(ui−1,j − 2ui,j + ui+1,j) +O(h2)

and utt =
1

k2
(ui,j−1 − 2ui,j + ui,j+1) +O(k2),
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where i, j = 0, 1, 2, . . ..

Using this approximation, the equation (2.3) reduces to

1

k2
(ui,j−1 − 2ui,j + ui,j+1) =

c2

h2
(ui−1,j − 2ui,j + ui+1,j).

That is,
ui,j+1 = r2ui−1,j + 2(1− r2)ui,j + r2ui+1,j − ui,j−1, (2.6)

where r = ck/h.

Note that the value of ui,j+1 depends on the values of u at two time-levels (j − 1), j

and the value of ui,j+1 can be determined if the four values ui−1,j, ui,j , ui+1,j, ui,j−1 are

known.

The known (filled circle) and unknown (circle) values of u are shown in Figure 2.1.

-
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Figure 2.1: Known and unknown meshes for hyperbolic equations.

When j = 0, then from the equation (2.6) we get

ui,1 = r2ui−1,0 + 2(1− r2)ui,0 + r2ui+1,0 − ui,−1.

Since, u(x, 0) = f(x), ui,0 = f(xi) = fi. Using this notation, the above equation

reduces to

ui,1 = r2fi−1 + 2(1 − r2)fi + r2fi+1 − ui,−1. (2.7)

Now, by central difference approximation, the initial condition (2.4), becomes

1

2k
(ui,1 − ui,−1) = gi.
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Substituting the value of ui,−1 to the equation (2.7), we get

ui,1 =
1

2

[

r2fi−1 + 2(1 − r2)fi + r2fi+1 + 2kgi
]

. (2.8)

Thus, from equation (2.8) we obtain the values of ui,1 for all values of i.

The truncation error of this method is O(h2+k2) and the formula (2.6) is convergent

for 0 < r ≤ 1.

Example 2.1 Consider the following wave equation

∂2u

∂t2
= c2

∂2u

∂x2
.

The boundary conditions u(0, t) = 0, u(1, t) = 0, t > 0 and the initial conditions

u(x, 0) = 4x2,

(

∂u

∂t

)

(x,0)

= 0, 0 ≤ x ≤ 1. Find the value of u for x = 0, 0.2, 0.4, . . . , 1.0

and t = 0, 0.1, 0.2, . . . , 0.5, when c = 1.

Solution. Using central-difference approximation, the explicit formula for the given

equation is

ui,j+1 = r2ui−1,j + 2(1− r2)ui,j + r2ui+1,j − ui,j−1. (2.9)

Let h = 0.2 and k = 0.1, so r = ck/h = 0.5 < 1.

The boundary conditions transferred to u0,j = 0, u5,j = 0. The initial conditions

reduce to ui,0 = 4x2i , i = 1, 2, 3, 4, 5 and
ui,1 − ui,−1

2k
= 0, therefore ui,−1 = ui,1.

Since r = 0.5, the difference equation (2.9) becomes

ui,j+1 = 0.25ui−1,j + 1.5ui,j + 0.25ui+1,j − ui,j−1. (2.10)

When j = 0, then

ui,1 = 0.25ui−1,0 + 1.5ui,0 + 0.25ui+1,0 − ui,−1

i.e. ui,1 = 0.125ui−1,0 + 0.75ui,0 + 0.125ui+1,0, [using ui,−1 = ui,1]

= 0.125(ui−1,0 + ui+1,0) + 0.75ui,0.

This formula gives the values of u for j = 1. For other values of j (j = 2, 3, . . .) the

values of u are calculated from the formula (2.10).

The initial and boundary values are shown in the following table.
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j = 5, t = 0.5 0 0

j = 4, t = 0.4 0 0

j = 3, t = 0.3 0 0

j = 2, t = 0.2 0 0

j = 1, t = 0.1 0 0

j = 0, t = 0.0 0 0.16 0.64 1.44 2.56 0

x = 0 x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

The values of first row, i.e. ui,1, i = 1, 2, 3, 4 are calculated as follows:

u1,1 = 0.125(u0,0 + u2,0) + 0.75u1,0 = 0.20

u2,1 = 0.125(u1,0 + u3,0) + 0.75u2,0 = 0.68

u3,1 = 0.125(u2,0 + u4,0) + 0.75u3,0 = 1.48

u4,1 = 0.125(u3,0 + u5,0) + 0.75u4,0 = 2.10.

Other values are written in the following table.

j = 5, t = 0.5 0 0.74328 0.89226 −0.50500 −1.25125 0

j = 4, t = 0.4 0 0.62906 1.05875 0.45250 −1.10375 0

j = 3, t = 0.3 0 0.46500 0.96625 1.17250 −0.29125 0

j = 2, t = 0.2 0 0.31000 0.80000 1.47500 0.96000 0

j = 1, t = 0.1 0 0.20000 0.68000 1.48000 2.10000 0

j = 0, t = 0.0 0 0.16000 0.64000 1.44000 2.56000 0

x = 0 x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

2.1.1 Implicit difference methods

Generally, implicit methods generate a tri-diagonal system of algebraic equations.

Thus, it is suggested that the implicit methods should not be used without simplifying

assumption to solve pure BVPs, because these methods generate large number of equa-

tions for small h and k. But, these methods may be used for initial-boundary value

problems. Two such implicit methods are described below.
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Implicit Method-I

The right hand side of the equation (2.3) is divided into two parts. Now, by central-

difference approximation at the mesh point (ih, jk) the given equation reduces to

(

∂2u

∂t2

)

i,j

=
c2

2

[

(

∂2u

∂x2

)

i,j+1

+

(

∂2u

∂x2

)

i,j−1

]

.

That is,

1

k2
[ui,j+1 − 2ui,j + ui,j−1] (2.11)

=
c2

2h2
[(ui+1,j+1 − 2ui,j+1 + ui−1,j+1) + (ui+1,j−1 − 2ui,j−1 + ui−1,j−1)].

Implicit Method-II

Again, we divide the right hand side of the given equation into three parts as

(

∂2u

∂t2

)

i,j

=
c2

4

[

(

∂2u

∂x2

)

i,j+1

+ 2

(

∂2u

∂x2

)

i,j

+

(

∂2u

∂x2

)

i,j−1

]

.

By central-difference approximation the given equation reduces to

1

k2
[ui,j+1 − 2ui,j + ui,j−1]

=
c2

4h2
[(ui+1,j+1 − 2ui,j+1 + ui−1,j+1) (2.12)

+2(ui+1,j − 2ui,j + ui−1,j) + (ui+1,j−1 − 2ui,j−1 + ui−1,j−1)].

The above equation can be written as

−ui−1,j+1 + 2
(

1 +
2

r2

)

ui,j+1 − ui+1,j+1

= 2
[

ui−1,j − 2
(

1−
2

r2

)

ui,j + ui+1,j

]

+
[

ui−1,j−1 − 2
(

1 +
2

r2

)

ui,j−1 + ui+1,j−1

]

(2.13)

where r = ck/h.

This is a system of linear tri-diagonal equations and it can be solved by any method.

The above system of equations can also be written as
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





















2s −1 0 0 0 · · · 0 0

−1 2s −1 0 0 · · · 0 0

0 −1 2s −1 0 · · · 0 0

0 0 −1 2s −1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · −1 2s













































u1,j+1

u2,j+1

u3,j+1

u4,j+1

· · ·

uN−1,j+1























=























d1,j+1

d2,j+1

d3,j+1

d4,j+1

· · ·

dN−1,j+1























where s = 1 + 2/r2 and

d1,j = u0,j+1 + 2[u0,j − 2(1− 2/r2)u1,j + u2,j] + [u0,j−1 − 2(1 + 2/r2)u1,j−1 + u2,j−1]

di,j = 2[ui−1,j − 2(1− 2/r2)ui,j + ui+1,j]

+[ui−1,j−1 − 2(1 + 2/r2)ui,j−1 + ui+1,j−1]

i = 2, 3, . . . , N − 2

dN−1,j = uN,j+1 + 2[uN−2,j − 2(1− 2/r2)uN−1,j + uN,j]

+[uN−2,j−1 − 2(1 + 2/r2)uN−1,j−1 + uN,j−1]

For a particular value of j = k, k = 1, 2, . . ., one can find all values of ui,k, for

i = 1, 2, . . . , N − 1.

Both the formulae are valid for all values of r = ck/h > 0.
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Self Assessment (MCQ)

1. Suppose 1
k2
(ui,j+1 − 2ui,j + ui,j−1) =

1
h2 (ui+1,j − 2ui,j + ui−1,j), xi = ih, yj = jk

be the iteration scheme to solve the PDE
∂2u

∂t2
=
∂2u

∂x2
. This iteration scheme will

be stable, if

(a) 1 < k/h ≤ 2

(b) 0 < k/h ≤ 0.5

(c) 0 < k/h ≤ 1.5

(d) 0 < k/h ≤ 1

2. The truncation error of finite difference scheme used to solve hyperbolic equation

is

(a) (h+ k) (b) (h2 + k2)

(a) (h3 + k3) (d) (h+ k2)

3. The function u(x, 0) = eπx is discretized as

(a) ui,j = eπih (b) ui,j = eπijh

(c) ui = eπih (d) ui,0 = eπih

4. The central difference approximation of ut(x, 0) = 0 is

(a)
ui,1−ui,−1

2k = 0 (b)
ui,j−ui,j−1

2k = 0

(c)
u1,i−u

−1,i

2k = 0 (d)
ui,1−ui,−1

k
= 0

5. In explicit method to solve the wave equation utt = c2uxx, the number of values

of u required to find the value of another u is

(a) 3 (b) 2 (c) 4 (d) 5

6. The finite difference scheme to solve the wave equation ∂2u
∂t2

= c2 ∂2u
∂x2 , t > 0, 0 <

x < 1 with the initial conditions u(x, 0) = f(x) and ∂u
∂t

= g(x), t = 0, 0 < x < 1

and boundary conditions u(0, t) = φ(t) and u(1, t) = ψ(t), t ≥ 0 are · · · · · · .

7. Let utt = c2uxx be the wave equation with boundary conditions u(0, t) = 0, u(1, t) =

0, t > 0 and initial conditions u(x, 0) = 4x2, ut(x, 0) = 0, 0 ≤ x ≤ 1. Then the

value of ui,1 for i = 1, 2, 3, 4 when h = 0.2 are · · · .
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8. Let the PDE be utt = c2uxx and h = k = 0.2. If u2,3 = 0.20, u1,4 = 0.25, u2,4 =

0.80, u3,4 = 0.60 then the value of u2,5 is · · · .

9. The range of ck/h for the stable solutions of the wave equation utt = c2uxx by

implicit method is · · · .

Answer to the questions

1. (d)

2. (b)

3. (d)

4. (a)

5. (c)

6. ui,j+1 = r2ui−1,j + 2(1 − r2)ui,j + r2ui+1,j − ui,j−1, and

ui,1 = r2ui−1,0 + 2(1− r2)ui,0 + r2ui+1,0 − ui,−1

= r2fi−1 + 2(1− r2)fi + r2fi+1 − ui,−1, where r = ck/h, fi = f(xi)

7. u1,1 = 0.20, u2,1 = 0.68, u3,1 = 1.48, u4,1 = 2.10.

8. u2,5 = 0.65.

9. ck/h > 0.
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Self Assessment (Long Answer Questions)

1. The differential equation utt = uxx, 0 ≤ x ≤ 1 satisfies the boundary conditions

u = 0 at x = 0 and x = 1 for t > 0, and the initial conditions u(x, 0) = sin
πx

4
,

(

∂u

∂t

)

(x,0)

= 0. Compute the values of u for x = 0, 0.1, 0.2, . . . , 0.5 and t =

0, 0.1, 0.2, . . . , 0.5.

2. Solve the hyperbolic partial differential equation utt = uxx, 0 ≤ x ≤ 2, t ≥ 0,

subject to the boundary conditions u(0, t) = u(2, t) = 0, t ≥ 0 and the initial

conditions u(x, 0) = 5 sin
πx

2
, 0 ≤ x ≤ 2, ut(x, 0) = 0, taking h = 1/8 and k = 1/8.
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