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3.1 Introduction

A regression model that involves more than one regressor variable is called a multiple regression model.

Fitting of multiple regression equation and analysis of it are discussed in this unit. Multiple regression

gives a relationship among the multiple variables and multiple and partial correlation coefficients give the

measure of relationship in different situations.

Objectives:

Gone through this unit the students will learn the following:

• Multiple regression

• Multiple correlation

• Partial correlation

• Regression coefficients

• Linear estimation

• Gauss-Markov linear model.

3.2 Multiple Regression

In bivariate regression there is a linear relation between two variables one is taken as dependent variable and

another is taken as independent variable. In multiple regression, the linear relation may exists among more

than two variables. Here we consider p variables x1, x2, . . . , xp which are connected by a linear relation.
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Now our object is to build up a relationship between the ‘dependent variable’(called regressand), x1 and

the ‘independent variables’(called regressors), x1, x2, . . . , xp, with the idea of using this relationship for

predicting the value of the regressand from a knowledge of the values of the regressors. Thus, in estimating

the rainfall at a place in a year, it is appropriate to consider the effects of the latitude, the longitude and

the altitude of the place on rainfall. Similarly, in estimating the yield of a crop in a year, it is proper to

take into account the effects of, say, rainfall average temperature and average humidity, during the period

between the sowing and the harvesting of the crop.

Let us assume that the relationship between x1 and x2, x3, . . . , xp is, at least in an appropriate sense,

given by an equation of the form

X1 = a+ b2x2 + b3x3 + . . .+ bpxp (3.1)

Our data here will consist of p values, corresponding to the p variables, for each individuals. The values of

the variables for the αth individual may be denoted by (x1α, x2α, . . . , xpα), α = 1, 2, . . . , n.

We apply the least square method to determine the constants a, b2, b3, . . . , bp.

Let X1 be the predicted value of x1 obtained from the equation (3.1). The difference x1α −X1α is the

error of estimate corresponding to the αth individual. Thus the sum of square of all errors is
∑
α

(x1α−X1α)2

and let it be

E1 =
∑
α

(x1α − a− b2x2α − . . .− bpxpα)2 (3.2)

The values of the constants a, b2, b3, . . . , bp are to be determined such that E1 is minimum.

The normal equations are

∂E1

∂a
= 0,

∂E1

∂b2
= 0,

∂E1

∂b3
= 0, . . . ,

∂E1

∂bp
= 0.

Differentiating (3.2) partially w.r.t a we get

∂E1

∂a
= −2

∑
α

(x1α − a− b2x2α − . . .− bpxpα) = 0

or,
∑
α

(x1α − a− b2x2α − . . .− bpxpα) = 0

or,
∑
α

x1α = na+ b2
∑
α

x2α + . . .+ bp
∑
α

xpα (3.3)

Differentiating (3.2) partially w.r.t b2 we get

∂E1

∂b2
= −2

∑
α

x2α(x1α − a− b2x2α − . . .− bpxpα) = 0

or,
∑
α

x2αx1α = a
∑
α

x2α + b2
∑
α

x22α + . . .+ bp
∑
α

x2αxpα. (3.4)
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Similarly, ∑
α

x3αx1α = a
∑
α

x3α + b2
∑
α

x3αx2α + . . .+ bp
∑
α

x3αxpα

and so on.

Thus the set of normal equations are∑
α
x1α = na+ b2

∑
α
x2α + b3

∑
α
x3α + . . .+ bp

∑
α
xpα∑

α
x2αx1α = a

∑
α
x2α + b2

∑
α
x22α + b3

∑
α
x2αx3α + . . .+ bp

∑
α
x2αxpα∑

α
x3αx1α = a

∑
α
x3α + b2

∑
α
x3αx2α + b3

∑
α
x23α + . . .+ bp

∑
α
x3αxpα

. . . . . .∑
α
xpαx1α = a

∑
α
xpα + b2

∑
α
xpαx2α + b3

∑
α
xpαx3α + . . .+ bp

∑
α
x2pα


(3.5)

Dividing (3.3) by n and denoting 1
n

∑
x1α = x̄1,

1
n

∑
x2α = x̄2 and so on, we get

x̄1 = a+ b2x̄2 + b3x̄3 + . . .+ bpx̄p, (3.6)

which shows incidently that the mean point (x̄1, x̄2, . . . , x̄p) necessarily satisfies the prediction equation.

Multiplying (3.6) by nx̄2 and subtracting from the second equation of (3.5) we get∑
α

x2αx1α − x̄1nx̄2 = b2
∑
α

(x22α − nx̄22) + b3
∑
α

(x2αx3α − nx̄2x̄3)

+ . . .+ bp
∑
α

((x2αxpα − nx̄2x̄p))

or, S21 = b2S22 + b3S23 + . . .+ bpS2p, (3.7)

where Sij =
∑

αxiαxjα − nx̄ix̄j =
∑
α

(xiα − x̄i)(xjα − x̄j) (3.8)

Similarly, multiplying (3.6) by nx̄3, nx̄4, . . . , nx̄p and subtracting from the third, fourth,. . . , pth equation,

respectively, of (3.5), we have (p− 2) equations determining the b′s. Thus

S21 = b2S22 + b3S23 + . . .+ bpS2p

S31 = b2S32 + b3S33 + . . .+ bpS3p

. . . . . . . . .

. . . . . . . . .

Sp1 = b2Sp2 + b3Sp3 + . . .+ bpSpp


(3.9)

We denote

1

n
× Sij =

1

n

∑
α

(xiα − x̄i)(xjα − x̄j) by sij . (3.10)
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Then

sij =

{
Cov(xi, xj) if i 6= j

V ar(xi) if i = j
(3.11)

Dividing all equations of (3.12) by n and using (3.10) we obtain

s21 = b2s22 + b3s23 + . . .+ bps2p

s31 = b2s32 + b3s33 + . . .+ bps3p

. . . . . . . . .

. . . . . . . . .

sp1 = b2sp2 + b3sp3 + . . .+ bpspp


(3.12)

This system of equations can be written as
s21

s22
...

sp1

 =


s22 s23 . . . s2p

s32 s33 . . . s3p

. . . . . . . . . . . .

sp2 sp3 . . . spp



b2

b3
...

bp

 (3.13)

We denote the matrix


s22 s23 . . . s2p

s32 s33 . . . s3p

. . . . . . . . . . . .

sp2 sp3 . . . spp

 by S. This matrix is called the variance-covariance or dis-

persion matrix of x1, x2, . . . xp.

If the matrix S is non-singular then the values of b2, b3, . . . , bp can be determined from the equation (3.13)

by Cramer’s rule. Therefore,

bj =

∣∣∣∣∣∣∣∣∣∣
s22 s23 . . . s2(j−1) s21 s2(j+1) . . . s2p

s32 s33 . . . s3(j−1) s31 s3(j+1) . . . s3p

. . . . . . . . . . . .

sp2 sp3 . . . sp(j−1) sp1 sp(j+1) . . . spp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s22 s23 . . . s2p

s32 s33 . . . s3p

. . . . . .

sp2 sp3 . . . spp

∣∣∣∣∣∣∣∣∣∣

, j = 2, 3, . . . , p. (3.14)

The correlation coefficient rij between xi and xj is rij =
sij
sisj

, where si, sj are the standard deviation of xi
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and xj . Then

bj =

∣∣∣∣∣∣∣∣∣∣
r22s2s2 r23s2s3 . . . r2(j−1)s2sj−1 r21s2s1 r2(j+1)s2sj+1 . . . r2ps2sp

r32s3s2 r33s3s3 . . . r3(j−1)s3sj−1 r31s3s1 r3(j+1)s3sj+1 . . . r3ps3sp

. . . . . . . . . . . .

rp2sps2 rp3sps3 . . . rp(j−1)spsj−1 rp1sps1 rp(j+1)spsj+1 . . . rppspsp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r22s2s2 r23s2s3 . . . r2ps2sp

r32s3s2 r33s3s3 . . . r3ps3sp

. . . . . .

rp2sps2 rp3sps3 . . . rppspsp

∣∣∣∣∣∣∣∣∣∣

=
s1
s2

∣∣∣∣∣∣∣∣∣∣
r22 r23 . . . r2(j−1) r21 r2(j+1) . . . r2p

r32 r33 . . . r3(j−1) r31 r3(j+1) . . . r3p

. . . . . . . . . . . .

rp2 rp3 . . . rp(j−1) rp1 rp(j+1) . . . rpp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r22 r23 . . . r2p

r32 r33 . . . r3p

. . . . . .

rp2 rp3 . . . rpp

∣∣∣∣∣∣∣∣∣∣

= (−1)j−2
s1
sj

∣∣∣∣∣∣∣∣∣∣
r21 r22 r23 . . . r2(j−1) r2(j+1) . . . r2p

r31 r32 r33 . . . r3(j−1) r3(j+1) . . . r3p

. . . . . . . . . . . .

rp1 rp2 rp3 . . . rp(j−1) rp(j+1) . . . rpp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r22 r23 . . . r2p

r32 r33 . . . r3p

. . . . . .

rp2 rp3 . . . rpp

∣∣∣∣∣∣∣∣∣∣

(3.15)

We write R for the matrix


r11 r12 . . . r1p

r21 r22 . . . r2p

. . . . . .

rp1 rp2 . . . rpp

 which is the correlation matrix of x1, x2, x3 . . . , xp; |R|

for the determinant of R and Rij for the cofactor of rij in R. It may be noted that R is symmetric i.e.,

rij = rji moreover rii = 1.

The numerator of (3.15) is the minor of r1j in R and hence it is (−1)1+j× cofactor of r1j . Also, the

determinant in the denominator is the minor (and also the cofactor) of r11 in R.
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Hence

bj = (−1)2j−1 × s1
sj
× R1j

R11
= −s1

sj
× R1j

R11
, j = 2, 3, . . . , p (3.16)

From (3.6),

a = x̄1 +

p∑
j=2

R1j

R11

s1
sj
x̄j . (3.17)

Thus the prediction equation called the multiple regression equation of x1 on x2, x3, . . . , xp becomes

X1 = x̄1 −
R12

R11

s1
s2

(x2 − x̄1)−
R13

R11

s1
s3

(x3 − x̄3)− . . .−
R1p

R11

s1
sp

(xp − x̄p) (3.18)

The coefficient bj = −R1j

R11

s1
sj

is called the partial regression coefficient of x1 on xj for fixed x2, x3, . . . , xj−1,

xj+1, . . . , xp and is often written in the form

b1j23...(j−1)(j+1)...p (3.19)

It gives the amount by which the predicted value X1 increses when xj is creased by a unit amount, the

other independent variables being kept fixed.

3.2.1 Multiple regression for three variables

The multiple regression equation for the independent variables x2 and x3 on x1

X1 = x̄1 −
R12

R11

s1
s2

(x2 − x̄2)−
R13

R11

s1
s3

(x3 − x̄3)

= x̄1 + b12.3(x2 − x̄2) + b13.2(x3 − x̄3), (3.20)

or, X1 = a+ b12.3x2 + b13.2x3, (3.21)

where b12.3 = −R12

R11

s1
s2
, b13.2 = −R13

R11

s1
s3

Now,

R11 =

∣∣∣∣∣r22 r23r32 r33

∣∣∣∣∣ = r22r33 − r23r32

= 1− r223 as rii = 1 and rij = rji.

R12 = −

∣∣∣∣∣r21 r23r31 r33

∣∣∣∣∣ = −r21r33 + r23r31 = r23r13 − r21

and R13 =

∣∣∣∣∣r21 r22r31 r32

∣∣∣∣∣ = r21r32 − r22r31 = r21r32 − r31

Thus b12.3 =
r12 − r23r13

1− r223
s1
s2

and b13.2 =
r13 − r12r23

1− r223
s1
s3

.
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Example 3.2.1 The following table shows, for each of 18 cinchona plants, the yield of dry bark (in oz),

the height (in inches) and the girth (in inches) at a height of 6′′ from the ground.

Plant No. Yield of dry bark(oz) Height(in.) Girth at a height of 6”(in)

1 19 8 4

2 51 15 5

3 30 11 3

4 42 21 3

5 25 7 2

6 18 5 1

7 44 10 4

8 56 13 6

9 38 12 3

Plant No. Yield of dry bark(oz) Height(in.) Girth at a height of 6”(in)

10 32 13 4

11 25 5 2

12 10 6 3

13 20 4 4

14 27 8 4

15 13 7 3

16 49 12 5

17 27 6 3

18 55 16 7

Solution. We denote these variables by x1, x2 and x3 respectively. Here we find the dependence of x1 on

x2 and x3, i.e., the multiple regression equation of x1 on x2 and x3.
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x1 x2 x3 x21 x22 x23 x1x2 x1x3 x2x3

19 8 4 361 64 16 152 76 32

51 15 5 2601 225 25 765 255 75

30 11 3 900 121 9 330 90 33

42 21 3 1764 441 9 882 126 63

25 7 2 625 49 4 175 50 14

18 5 1 324 25 1 50 18 5

44 10 4 1936 100 16 440 176 40

56 13 6 3136 169 36 728 336 78

38 12 3 1444 144 9 456 114 36

32 13 4 1024 169 16 416 128 52

25 5 2 625 25 4 125 50 10

10 6 3 100 36 9 60 30 18

20 4 4 400 16 16 80 80 16

27 8 4 729 64 16 216 108 32

13 7 3 169 49 9 91 39 21

49 12 5 2401 144 25 588 245 60

27 6 3 729 36 9 162 81 18

55 16 7 3025 256 49 880 385 112

Total 581 179 66 22293 2133 278 6636 2387 715
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Now

x̄1 =

∑
x1α
n

=
518

18
= 32.28 oz

x̄2 =

∑
x2α
n

=
179

18
= 9.94 in

x̄3 =

∑
x3α
n

=
66

18
= 3.67 in

s1 =
1

n

√
n
∑

x21α −
(∑

x1α

)2
=

√
63713

18
= 14.02 oz

s2 =
1

n

√
n
∑

x22α −
(∑

x2α

)2
=

√
6353

18
= 4.43 in

s3 =
1

n

√
n
∑

x23α −
(∑

x3α

)2
=

√
648

18
= 1.41 in

r12 =
n
∑
x1αx2α −

(∑
x1α
)(∑

x2α
)√

n
∑
x21α −

(∑
x1α
)2√

n
∑
x22α −

(∑
x2α
)2 =

15449√
63713

√
6353

= 0.768

r13 =
n
∑
x1αx3α −

(∑
x1α
)(∑

x3α
)√

n
∑
x21α −

(∑
x1α
)2√

n
∑
x23α −

(∑
x3α
)2 =

4620√
63713

√
648

= 0.719

r23 =
n
∑
x2αx3α −

(∑
x2α
)(∑

x3α
)√

n
∑
x22α −

(∑
x2α
)2√

n
∑
x23α −

(∑
x3α
)2 =

1056√
6353
√

648
= 0.520

If the multiple regression equation is

X1 = a+ b12.3x2 + b13.2x3

Then b12.3 =
r12 − r13r23

1− r223
s1
s2

=
0.394

0.730

14.02

4.43
= 1.71

b13.2 =
r13 − r12r23

1− r223
s1
s3

=
0.320

0.730

14.02

1.41
= 4.36

and a = x̄1 − b12.3x̄2 − b13.2x̄3 = −0.72.

Hence, the multiple regression equation of x1 on x2 and x3 is X1 = −0.72 + 1.71x2 + 4.36x3.

3.3 Multiple Correlation

In studying the dependence of x1 on a set of independent variables, we may want to know to what extent

x1 is influenced by the independent variables. In the case of two variables, x and y, we have seen that

rxy serves as a measure of the strength of the interdependence of x and y or, if y may be looked upon as

dependent on x, of the extent to which x influences y. Generalizing this approach, we may take the simple

correlation between x1 and X1, i.e., the value of x1 given by the multiple regression equation of x1 on

x2, . . . , xp, as a measure of the joint influence of x2, x3, . . . , xp on x1. It is called the multiple correlation
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coefficient of x1 on x2, x3, . . . , xp and is denoted by r1.23...,p. Then

r1.23...,p =
Cov(x1, X1)√

V ar(x1)
√
V ar(X1)

. (3.22)

Again, the mean of the predicted value X1 is

X̄1 =
1

n

∑
α

X1α

= x̄1 −
R12

R11

s1
s2

1

n

∑
α

(x2α − x̄2)−
R13

R11

s1
s3

1

n

∑
α

(x3α − x̄3)

− . . .− R1p

R11

s1
sp

1

n

∑
α

(xpα − x̄p)

= x̄1 (3.23)

[
As 1

n

∑
(x2α − x̄2) = 1

n

∑
x2α − x̄2 = x̄2 − x̄2 = 0 etc.

]
The error e1 is e1 = x1 −X1. Then ē1 = x̄1 − X̄1 = 0.

Now,

Cov(x1, X1) =
1

n

∑
α

(x1α − x̄1)(x1α − X̄1)

=
1

n

∑
α

(e1α +X1α − X̄1)(X1α − X̄1) =
1

n

∑
α

e1α(X1α − X̄1) +
1

n

∑
α

(X1α − X̄1)
2

=
1

n

∑
α

e1α(X1α − X̄1) + V ar(X1) (3.24)

Now,

1

n

∑
α

e1α(X1α − X̄1) =
1

n

∑
α

e1αX1α − X̄1
1

n

∑
α

e1α

=
1

n

∑
α

e1α

{
x̄1 + b2(x2α − x̄2) + b3(x3α − x̄3) + . . .+ bp(xpα − x̄p)

}
− 0

[∵
1

n

∑
e1α = ē1 = 0]

= 0 [ Using normal equations] .

Therefore,

Cov(x1, X1) = V ar(X1) (3.25)
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Now,

Cov(x1, X1) =
1

n

∑
α

(x1α − x̄1)(X1 − x̄1)

=
1

n

∑
α

(x1α − x̄1)
{
−R12

R11

s1
s2

(x2α − x̄2)−
R13

R11

s1
s3

(x3α − x̄3)− . . .−
R1p

R11

s1
sp

(xpα − x̄p)
}

= −R12

R11

s1
s2
s12 −

R13

R11

s1
s3
s13 − . . .−

R1p

R11

s1
sp
s1p

= − s21
R11

(
r12R12 + r13R13 + . . .+ r1pR1p

)
= − s21

R11

(
|R| − r11R11

)
=

(
1− |R|

R11

)
s21. (3.26)

Therefore, V ar(X1) = Cov(x1, X1) =
(

1− |R|
R11

)
s21.

Hence

r1.23...p =

(
1− |R|

R11

)
s21√

s21

(
1− |R|

R11

)
s21

=

(
1− |R|

R11

) 1
2

. (3.27)

The multiple correlation coefficient basically a simple correlation coefficient and so must lie between -1 and

1. But, Cov(x1, X1) = V ar(x1) > 0. Thus

r1.23...p =
Cov(x1, X1)√

V ar(x1)
√
V ar(X1)

> 0 and hence 0 ≤ r1.23...p ≤ 1. (3.28)

3.3.1 Some results on multiple regression and multiple correlation

(i) X̄1 = x̄1 and ē1 = 0 (3.29)

(ii) V ar(X1) =

(
1− |R|

R11

) 1
2

s21 = r21.23...ps
2
1 (3.30)

(iii) Using normal equations it can be shown that Cov(xi, e1) = 0, i = 2, 3, . . . , p (3.31)

(iv) V ar(x1) = V ar(X1) + V ar(e1) since x1 = X1 + e1 and Cov(X1, e1) = 0. (3.32)

Hence

V ar(e1) = s21 − V ar(X1) =
|R|
R11

s21. (3.33)

The term V ar(e1) being the standard error of estimate and we have

V ar(e1) =
(
1− r21.23...p

)
s21 (3.34)

Using (3.30) and (3.34) we may write

r21.23...p =
V ar(X1)

V ar(x1)
= 1− V ar(e1)

V ar(x1)
. (3.35)
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Example 3.3.1 For the data of example 12.2.1, the multiple correlation coefficient of weight of dry bark

(x1) on height (x2) and girth at a height of 6′′ (x3) may be computed. We have r12 = 0.768, r13 = 0.719

and r23 = 0.520.

The multiple correlation coefficient is

r1.23 =

√
r212 + r223 − 2r12r13r23

1− r223
(3.36)

=

√
0.5325

0.7296
= 0.854.

It indicates that x2 and x3 have considerable influence on x1. It indicates that the multiple regression

equation obtained in example 12.2.1 serves as an excellent formula for predicting x1 from given value of

x2 and x3.

3.4 Partial Correlation

Sometimes the correlation between two variables say x1 and x2, may be partly (or wholly) due to the

influence of a group of variables , say x3, x4, . . . , xp on both x1 and x2. In such a situation one may want

to know what the correlation between x1 and x2 would be if the effects of x3, x4, . . . , xp on each of them

were eliminated. This correlation is called the partial correlation or net correlation between x1 and x2,

eliminating the effects of x,x4, . . . , xp, as opposed to their simple or total correlation.

Consider the multiple regression equations of x1 on x3, x4, . . . , xp and of x2 on x3, x4, . . . , xp. Then we

write

x1 = X
′
1 + e

′
1 and x2 = X

′
2 + e

′
2,

where X
′
1 and X

′
2 are the predicted values of x1 and x2, e

′
1 and e

′
2 being the errors of estimation. Since e

′
1

and e
′
2 are uncorrelated with x3, x4, . . . , xp these may be looked upon as the parts of x1 and x2 respectively,

which are unaffected by this group of variables. Hence the simple correlation coefficient between e
′
1 and e

′
2

may be used to measure the partial correlation of x1 and x2, eliminating the effects of x3, x4, . . . , xp, in so

far as this can be done with the help of linear regression equations. This is known as a partial correlation

coefficient and is denoted by r12.34...p.

Thus assuming V ar(e
′
1) > 0 and V ar(e

′
2) > 0, so that R11 and R22 are both positive, we have

r12.34...p =
Cov(e

′
1, e

′
2)√

V ar(e
′
1)V ar(e

′
2)

(3.37)

Now,

e
′
1 = x1 −X

′
1 = (x1 − x̄1) +

R
(2)
13

R
(2)
11

s1
s3

(x3 − x̄3) +
R

(2)
14

R
(2)
11

s1
s4

(x4 − x̄4) + . . .+
R

(2)
1p

R
(2)
11

s1
sp

(xp − x̄p)
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where R
(2)
14 is the cofactor of rij in R(2), the determinant obtained from R by deleting the second row and

the second column. Now, putting

ui = xi − x̄i (3.38)

and eui = e
′
1 − ē

′
1 = e

′
1 (3.39)

Therefore,

eu1 = u1 +
R

(2)
13

R
(2)
11

s1
s3
u3 +

R
(2)
14

R
(2)
11

s1
s4
u4 + . . .+

R
(2)
1p

R
(2)
11

s1
sp
up.

Similarly, putting

eu2 = e
′
2 − ē

′
2 = e

′
2 (3.40)

We have

eu2 = u2 +
R

(2)
23

R
(2)
22

s2
s3
u3 +

R
(2)
24

R
(2)
22

s2
s4
u4 + . . .+

R
(2)
2p

R
(2)
22

s2
sp
up.

Thus, we have,

V ar(e
′
1) =

R(2)

R
(2)
11

s21 (3.41)

and V ar(e
′
2) =

R(1)

R
(1)
22

s22 (3.42)

Also,

nCov(e
′
1, e

′
2) =

∑
α

u1αu2α +
R

(1)
23

R
(1)
22

s2
s3

∑
α

u1αu3α +
R

(1)
24

R
(1)
22

s2
s4

∑
α

u1αu4α + . . .+
R

(1)
2p

R
(1)
22

s2
sp

∑
α

u1αupα

or, Cov(e
′
1, e

′
2) = s1s2

(
r12 + r13

R
(1)
23

R
(1)
22

+ r14
R

(1)
24

R
(1)
22

+ . . .+ r1p
R

(1)
2p

R
(1)
22

)
(3.43)

[Since
∑
α
uiαujα = nCov(xi, xj) = nrijsisj ]

Now,

r12R
(1)
22 + r13R

(1)
23 + r14R

(1)
24 + . . .+ r1pR

(1)
2p

= determinant obtained from R(1) by replacing its first row (r22r23 . . . r2p) with (r12r13 . . . r1p)

=

∣∣∣∣∣∣∣∣∣∣∣

r12 r13 . . . r1p

r32 r33 . . . r3p
...

...
...

rp2 rp3 . . . rpp

∣∣∣∣∣∣∣∣∣∣∣
= minor of r21 in R =minor of r12 in R

= −R12.
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Therefore, from (3.43) we have

Cov(e
′
1, e

′
2) = −R12

R
(1)
12

s1s2. (3.44)

Thus, in terms of the simple or total correlation coefficients rij ,

r12.34...p =
− R12

R
(1)
12

s1s2[
R(2)

R
(2)
11

] 1
2
[
R(1)

R
(1)
22

] 1
2

s1s2

= − R12√
R11R22

(3.45)

since R(1) = R11, R
(2) = R22 and R

(2)
11 = R

(1)
22 .

3.4.1 Case of three variables

For the case of three variables x1, x2, x3

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33


Then −R12 =

∣∣∣∣∣r21 r23r31 r33

∣∣∣∣∣ = r12 − r13r23.

R11 =

∣∣∣∣∣r22 r23r32 r33

∣∣∣∣∣ = 1− r223. and R22 =

∣∣∣∣∣r11 r13r31 r33

∣∣∣∣∣ = 1− r213.

Thus

r12.3 =
r12 − r13r23√

1− r213
√

1− r223
. (3.46)

The value of partial correlation coefficient r12.34...p lies between −1 and 1. i.e., −1 ≤ r12.34...p ≤ 1.

Example 3.4.1 Let us consider the data of example 12.2.1. The partial correlation coefficient of x1 (yield

of dry bark) and x2 (height of plant), the effect of x3 (girth at a height of 6
′′
) being accounted for, is

r12.3 =
r12 − r13r23√

1− r213
√

1− r223
=

0.394√
0.4830

√
0.7296

= 0.663

The partial correlation coefficient of x1 and x3, eliminating the effect of x2, is

r13.2 =
r13 − r12r23√

1− r212
√

1− r223
=

0.320√
0.4102

√
0.7296

= 0.585

These values may be considered together together with the total correlation coefficients r12 = 0.768 and

r13 = 0.719.

Since r12 is quite large, one will naturally take x2 as an independent variable for predicting x1. The

partial correlation r13.2, being equal to 0.585, indicates that the inclusion of x3 as an independent variable,

in addition to x2 would be worth while as it would considerably increase the accuracy of prediction.
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3.4.2 Some results

Property 3.4.1 1− r21.23 = (1− r212)(1− r213.2).

Proof.
1− r21.23 = 1−

(
r13 − r12r23√

1− r212
√

1− r223

)2

= 1− (r13 − r12r23)2

(1− r212)(1− r223)

=
1− r212 − r223 − r213 + 2r12r23r13

(1− r212)(1− r223)

or, (1− r212)(1− r213.2) =
1− r212 − r223 − r213 + 2r12r23r13

(1− r223)

= 1− r212 + r213 − 2r12r23r13
(1− r223)

= 1− r21.23

Hence 1− r21.23 = (1− r212)(1− r213.2).

Property 3.4.2 The correlation coefficients r12, r13 and r23 must satisfy the inequality

r212 + r223 + r213 − 2r12r23r13 ≤ 1.

Proof. We know r1.23 ≤ 1 That is

r212 + r213 − 2r12r23r13
(1− r223)

≤ 1

or, r212 + r213 − 2r12r23r13 ≤ 1− r223
or, r212 + r213 + r223 − 2r12r23r13 ≤ 1.

3.5 Linear Estimation

Here we are concerned with point estimation under a special set-up. This will be based on linear models

for the expectation and finiteness of first and second order moments of the observation in the sample. The

estimation with which we shall be concerned here are, linear functions of the observations and they are

known as linear estimators. Further, we shall consider only unbiased linear estimators of linear functions

of parameters.

We know that the sample mean Ȳ is an unbiased estimator for the population mean µ, and Ȳ = 1
n

∑
i
Yi

is a linear estimator. Also, we have seen that S2 = 1
n−1

∑
i

(Yi − Ȳ )2 is an unbiased estimator of the

population variance σ2 but it is not a linear estimator; S2 is quadratic estimator of σ2. Here we consider

only unbiased linear estimators of estimable linear functions of the parameters occurring in the expressions
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for the expectations of the random variables. We may have more than one unbiased linear estimator e.g.,

Ȳ and
∑
i
aiYi with

∑
i
ai = 1, are both unbiased linear estimators of the population mean. So we have the

problem of selection the one that may be taken to be the best in some suitable sense. One widely used

principle to make this selection is to choose that linear estimator from amongst all unbiased linear estimators

which has the smallest variance. The sampling distribution of that estimator will have the maximum

concentration around the unknown true parametric function. such an estimator is known as a minimum

variance unbiased linear estimator or best linear unbiased estimator (BLUE). These minimum variance

unbiased linear estimators have variances and covariances which, again themselves unbiased estimation.

3.5.1 Gauss-Markov linear model

Consider a set of n independent random variables Y1, Y2, . . . , Yn with a common variance σ2, whose ex-

pectations are linear functions with known coefficients (a′ijs) of p unknown parameter β1, β2, . . . , βp (with

p < n). Thus

E(Yi) = ai1β1 + ai2β2 + . . .+ aipβp

and V ar(Yi) = σ2 for i = 1, 2, . . . , n

Cov(Yi, Yj) = 0 for i 6= j

 (3.47)

The above system of equations is called the Gauss-Markov linear model. With the help of the following

column vectors of the random variables and parameters

Y =


Y1

Y2
...

Yn

, β =


β1

β2
...

βp

,

and the matrix of the known coefficients:

A =


a11 a12 . . . a1p

a21 a22 . . . a2p
...

...
...

an1 an2 . . . anp


the equation (3.47) may be written completely as

E(Y ) = Aβ, D(Y ) = σ2I, (3.48)

where D(Y ) is called dispersion matrix and I is the identity matrix of order n.

An alternative representation of (3.48), using the column vector e of independent vectors e1, e2, . . . , en

is

Y = Aβ + e

E(e) = O and D(e) = σ2I

}
(3.49)
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where O is null vector.

The unknown parameters β′js in the model are called effects. In linear estimation the effects are all fixed

quantities (parameters) and such a model where all effects are known parameters is also called a fixed effect

model or Model I. Sometimes one of the βj ’s is a constant with aij = 1 for that j and all i = 1, 2, . . . , n.

Such an effect is called a general effect or the additive constant.

In linear estimation, we find unbiased linear estimators of estimable linear parametric functions starting

from model of the form (3.47). Among unbiased linear estimators, again, we find one having the minimum

possible variance. The estimator is considered to be the best, in the sense of having the maximum con-

centration of the distribution of the estimator around the unknown true value of the parametric function.

The value of the estimator in a particular sampling situation will be the corresponding estimate. Thus we

obtain the estimate if we put the observed values y1, y2, . . . , yn for the random variables Y1, Y2, . . . , Yn in

the estimator.

3.5.2 Least-square estimators and normal equations

Let b1, b2, . . . , bp denote any set of p known quantities which may be used as estimates of β1, β2, . . . , βp.

Then for such a b
′

= (b1, b2, . . . , bp) we may form the sum of squares (Y −Ab)′(Y −Ab), which will provide

us with a measure of how well the estimate b for β fits the model (3.48). The smaller the above measure

the better the corresponding estimate. And, from this argument, we get the following set of least-square

estimators.

A set of measurable functions of Y , say β̂1 = β̂1(Y ), β̂2 = β̂1(Y ), . . . , β̂p = β̂p(Y ), such that the values

β̂1, β̂2, . . . , β̂p minimize the sum of squares of the deviations of Y1, Y2, . . . , Yn from their expectations,

i.e., S = (Y − Aβ)
′
(Y − Aβ), is called a set of least-square (LS) estimators of the unknown parameters

β̂1, β̂2, . . . , β̂p of the linear model (3.48).

We next show that minimum value of S is attained when β̂ is a solution of a set of equations which are

called the normal equations.

We have β̂A
′
Y = Y

′
AB =

∑
α,j
aαjβjYα where j = 1, 2, . . . , p and α = 1, 2, . . . , n.

Hence
d

dβj
(β

′
B

′
A

′
Y ) =

d

dβj
(Y

′
Aβ) =

∑
α

aαjYα = d
′
jY

where d1, d2, . . . , dp are the column vectors of A.

Let A
′
A = C = (Cij).

Clearly, C is a symmetric matrix of order p.

Now, β
′
A

′
Aβ = β

′
Cβ =

∑
ij
Cijβiβj , with i, j = 1, 2 . . . , p.

Hence
d

dβj
(β

′
A

′
Aβ) =

d

dβj
(β

′
Cβ) = 2

∑
i

Cijβi = 2C
′
jβ,
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where C
′
j = (C1j , C2j , . . . , Cpj).

Differentiating S = (Y − Aβ)
′
(Y − Aβ) w.r.t. β1, β2, . . . , βp and equating the derivatives to zero, we

have then

1

2

d

dβj
S = −d′

jY + C
′
jβ = 0 for j = 1, 2, . . . , p. (3.50)

The equation (3.50) are called the normal equations and equivalent to

A
′
Aβ = A

′
Y

or, Cβ = A
′
Y

}
(3.51)

where C = A
′
A.

The normal equations always admit a solution since A
′
Y lies in the vector space generated by the column

of C. Let β̂ be a solution of these equations.

Every solutions of the normal equations is a set of LS estimators and every set of LS estimators satisfies

the normal equations.

The solution of the normal equations β = β̂ gives an extreme value of S. To show that this extreme

values is the minimum value os S, we produce as follows:

(Y −Aβ)
′
(Y −Aβ) =

[
Y −Aβ̂ +A(β̂ − β)

]′ [
Y −Aβ̂ +A(β̂ − β)

]
= (Y −Aβ̂)

′
(Y −Aβ̂) + (β̂ − β)

′
A

′
A(β̂ − β)

≥ (Y −Aβ̂)
′
(Y −Aβ̂) (3.52)

since the quadratic form
[
A(β̂ − β)

]′ [
A(β̂ − β)

]
cannot be negative. The equality holds only when β = β̂.

Thus β = β̂ minimizes S.

Further, if β̂ and
ˆ̂
β are any two solutions of (3.51), then

(Y −Aβ̂)
′
(Y −Aβ̂) = (Y −A ˆ̂

β)
′
(Y −A ˆ̂

β).

This along with (3.52) shows that every solution of the normal equations is a set of LS estimators.

3.6 Unit Summary

In this unit, the concept of multiple regression and multiple correlation along with partial correlation are

introduced. The multiple regression equation for (p − 1) independent variables is deduced. An example

is also given. The expression for multiple and partial correlation coefficients are deduced. Some relations

among simple correlation coefficients, multiple correlation coefficients and partial correlation coefficients

are presented. An exercise is also given at the end of this unit.

Vidyasagar University 19



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unit 3 Multiple Correlation and Regression

3.7 Self Assessment Questions

1. Let (xi, yi, zi), i = 1, 2, . . . , n be a sample of size n drawn from a papulation. Find the regression

equation of z on x and y.

2. Let (2, 5, 3), (8, 3, 9), (5, 3, 6), (5, 0, 1), (3,−1, 2) be a sample of the variables x1, x2, x3 drawn from a

random papulation. Find the regression line of x2 on xi and x3.

3. Obtain the multiple regression equation of xi on x2, x3, . . . , xp in terms of the means, the standard

deviations and the inter correlations of the variables.

4. Define multiple correlation and partial correlation, and indicate how they differ from simple cor-

relation. Deduce the formulae for a multiple and partial correlation coefficient in terms of total

correlation coefficients.

5. Prove that 1 − r21.23 = (1 − r212)(1 − r213.2). Use this relation to show that the multiple correlation

coefficient is numerically greater than nay of the total or partial correlation coefficients of x1 with

the other variables.

6. Show that r12, r13 and r23 must satisfy the inequality r212 + r213 + r223 − 2r12r13r23 ≤ 1.

7. The following constants are obtained from measurements on length in mm (x1), volume in c.c(x2)

and weight in gm. (x3) of 300 eggs.

x̄1 = 55.95 s1 = 2.26 r12 = 0.578

x̄2 = 51.48 s2 = 4.39 r13 = 0.581

x̄3 = 56.03 s3 = 4.41 r23 = 0.974

(a) Obtain the liner regression equation of egg-weight on egg-length and egg-volume. Hence estimate

the weight of an egg whose length is 58.0 mm and volume is 52.5 cc.

(b) Compute the partial correlation coefficient of weight and volume, estimating the effect of length.
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