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2.1 Introduction

In this unit, Markov process with discrete and continuous state space are introduced. Poisson process has

many applications in real life situations where uncertainty occurs. Many real life problems can be dealt

with birth and death process. Wiener process and branching process has also many applications.

Objectives:

Gone through this unit the readers will learn the following:

• Poisson process

• Pure birth process and its p.g.f

• Birth and death process, p.g.f, mean probability size, extinction probability

• Wiener process

• Branching process.

2.2 Discrete State Space: Poisson Process

Poisson process is a stochastic process in continuous time and discrete state space. Let N(t) be the number

of occurrences of the event E in an interval (0, t). Let Pn(t) be the probability that the random variable

N(t) assumes the value n, i.e.,

pn(t) = P (N(t) = n) (2.1)
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This probability is a function of time t. Since the only possible values of n are n = 0, 1, 2, . . .

∞∑
n=0

pn(t) = 1 (2.2)

Thus
{
pn(t)

}
represents the probability distribution of the random variable N(t) for every value of t.

The family of random variables {N(t), t ≥ 0} is stochastic process. Here, the time t is continuous, the

state space of N(t) is discrete and integral valued and the process is integral valued.

Under certain conditions, the number of telephone calls, arrivals of customers for service at a counter,

number of accident at a certain place, etc., follows Poisson process.

Postulates for Poisson Process

(i) Independence: N(t) is independent of the number of occurrences of the event E is an interval prior

to the interval (0, t).

(ii) Homogeneity in time: pn(t) depends only on the length t of the interval and is independent of

where this interval is situated.

(iii) Regularity: In an interval of infinitesimal length has h, the probability of exactly one occurrence is

λh+ o(h) and that of more than one occurrence is of o(h), where o(h) means,
o(h)

λ
→ 0 as h→ 0.

In other words, if the interval (t, t+ h) is of short duration h, then

1. probability of one occurrence p1(h) = λh+ o(h),

2. probability of k(= 2, 3, . . .) occurrences is of o(h), i.e.,
∞∑
k=2

pk(h) = o(h)

3. Since
∞∑
k=0

pk(h) = 1, therefore p0(h) = 1−
∞∑
k=1

pk(h) = 1− λh+ o(h).

Theorem 2.1 Under the above postulates, N(t) follows Poisson distribution with mean λt, i.e. pn(t) is

given by the following Poisson law

pn(t) =
e−λt(λt)n

n!
, n = 0, 1, 2 . . . (2.3)

Proof. Let pn(t + h) be the probability of occurrence of n(≥ 1) events in the time interval (0, t + h).
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Therefore,

pn(t+ h) = P (n events occur in (0,t) and no event occur in (t,t+h))

+ P ((n− 1) events occur in (0,t) and 1 event occurs in (t,t+h))

+ P ((n− 2) events occur in (0,t) and 2 events occur in (t,t+h))

+ . . .

+ P ( no events occur in (0,t) and n events occur in (t,t+h))

= {pn(t)(1− λh) + o(h)}+ {pn−1(t)(λh) + o(h)}+ {o(h) + . . .+ o(h)}

= pn(t)(1− λh) + pn−1(t)(λh) + o(h), n ≥ 1

or,
pn(t+ h)− pn(t)

h
= −pn(t) + λpn−1(t) +

o(h)

h

Taking h→ 0,

p′n(t) = −λpn(t) + λpn−1(t), n ≥ 0 (2.4)

For n = 0,

p0(t+ h) = P ( no events occur in (0,t) and no events occur in (t,t+h))

= p0(t)(1− λh) + o(h)

or,
p0(t+ h)− p0(t)

h
= −λp0(t) +

O(h)

h

As h→ 0,

p′0(t) = −λp0(t) (2.5)

Initial conditions

p0(0) = 1 and pn(0) = 0, for n ≥ 1. From (2.5),
p′0(t)

p0(t)
= λ. Integrating, we get log p0(t) = −λt+ logC1 or,

p0(t) = C1e
−λt. As p0(0) = 1, C1 = 1 therefore, p0(t) = e−λt.

From (2.4), we have for n=1,

p′1(t) = −λp1(t) + λp0(t),

i.e., p′1(t) + λp1(t) = λe−λt.

This is a linear equation in p1(t) and integrating we get

p1(t)e
λt = λt+ C2.

As p1(0) = 0, C2 = 0 and hence, p1(t) =
λte−λt

1!
.

Let pm(t) =
(λt)me−λt

m!
be the solution of (2.4). Therefore, for n = m+ 1, (2.4) becomes

p′m+1(t) + λpm+1(t) = λpm(t)

=
λ(λt)me−λt

m!
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This is also a linear equation in pm+1(t) and multiplying the above equation by eλt, we get

d

dt

(
pm+1(t)e

λt
)

=
λ(λt)m

m!
.

Integrating, we get

pm+1(t)e
λt =

(λt)m+1

(m+ 1)!
+ C3

or, pm+1(t) =

(
(λt)m+1

(m+ 1)!
+ C3

)
e−λt

As pm+1(0) =0 we have C3 = 0, therefore, we get

pm+1(t) =
(λt)m+1

(m+ 1)!
e−λt.

Hence

pn(t) =
(λt)ne−λt

(n)!
, n = 0, 1, 2, . . .

Note 2.2.1 The mean and variance of Poisson process with parameter λt are λt. The mean number of

occurrences per unit time (t = 1), i.e., in an interval of unit length is λ. The mean rate λ per unit time is

known as the parameter of the Poisson process.

The mean and variance of N(t) are functions of t, in fact, its distribution is dependent on t.

Postulate 1 implies that Poisson process is Markovian; Postulate 2 that Poisson process is time homoge-

neous; Postulate 3 that in an infinitesimal interval of length h, the probability of exactly one occurrence is

approximately proportional to the length h of that interval and that of the simultaneous occurrence of two

or more events is extremely small.

Poisson process has independent as well as stationery increments. Again for every t, future increments

of a Poisson process are independent of the process generated.

2.2.1 Properties of Poisson Process

Property 2.2.1 (Additive Property) Some of two independent Poisson processes is a Poisson process.

Proof. Let N1(t) and N2(t) be two poisson processes with parameters λ1, λ2 respectively and let

N(t) = N1(t) +N2(t).

The probability generating function (p.g.f) of Ni(t), i = 1, 2 is

E(SNi(t)) = eλi(s−1)t.

The p.g.f of N(t) is

E
(
SN(t)

)
= E

(
SN1(t)+N2(t)

)
= E

(
SN1(t)

)
E
(
SN2(t)

)
Since N1(t) and N2(t) are independent
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Now,

E(SN(t)) = eλ1(s−1)teλ2(s−1)t = e(λ1+λ2)(s−1)t.

Thus N(t) is a Poisson process with parameter λ1 + λ2.

Property 2.2.2 If {N(t)} is a Poisson process then the correlation (auto-co-relation) coefficient between

N(t) and N(t+ s) is
{

t
t+s

} 1
2
.

Proof. Let λ be the parameter of the Poisson process, then

mean = E(N(T ) = λT, V ar(N(T )) = λT,

E(N2(T )) = λT + (λT )2 for T = t and t+ s.

Since N(t) and {N(t+ s)−N(t)} are independent, {N(t), t ≥ 0} being a Poisson process.

E{N(t)N(t+ s)} = E [N(t){N(t+ s)−N(t) +N(t)}]

= E{N2(T )}+ E{N(t)}E{N(t+ s)−N(t)}

Hence

E{N(t)N(t+ s)} = (λt+ λ2t2) + λt · λs.

Thus the autocovariance between N(t) and N(t+ s) is given by

Cov(t, t+ s) = E{N(t)N(t+ s)} − E{N(t)}E{N(t+ s)}

= (λt+ λ2t2 + λ2ts)− λt(λt+ λs) = λt.

Hence the aotocorrelation is

ρ(t, t+ s) =
Cov(t, t+ s)√

V arN(t)
√
V arN(t+ s)

=

√(
t

t+ s

)
.

2.3 Pure Birth Process

Let λ be the rate of birth in a population. Here the probability that k events occur in the interval (t, t+h)

given that n events occured in the interval (0, t) is given by

pk(h) =


λh+O(h), k = 1

O(h), k ≥ 2

1− λh+O(h), k = 0.
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pk(h) is independent of n as well as t. We generalize the process by considering that λ is not a constant

but is a function of n or t or both; the resulting process will still be Markovian in nature.

Now, we consider the λ is a function of n, the population size. We assume that

pk(h) =


λnh+O(h), k = 1

O(h), k ≥ 2

1− λnh+O(h), k = 0.

Now,

pn(t+ h) = probability of having n persons in the system in an interval (0,t+h)

= probability of having n persons in (0,t)× probability of no birth in (t,t+h)

+ probability of having (n-1) persons in (0,t)× probability of one birth in (t,t+h)

+ probability of having (n-i) persons in (0,t)× probability of one birth in (t,t+h), i ≥ 2

= pn(t)(1− λnh) + pn−1(t)λn−1h+O(h), n ≥ 1.

or,
pn(t+ h)− pn(t)

h
= −λnpn(t) + pn−1(t)λn−1 +

O(h)

h
.

As h→ 0

p
′
n(t) = −λnpn(t) + λn−1pn(t), n ≥ 1.

For n = 0,

p0(t+ h) = probability of having no persons in (0,t)× probability of no birth in (t,t+h)

= p0t(1− λ0h) +O(h)

or,
p0(t+ h)− p0(t)

h
= −λ0p0(t) +

O(h)

h
.

As h→ 0

p
′
0(t) = −λ0p0(t). (2.6)

In particular, if λn = nλ then this pure birth process is called Yule-Furry process.

In this case,

p
′
n(t) = −nλpn(t) + (n− 1)λpn(t), n ≥ 1 (2.7)

and p
′
0(t) = 0.

Let the initial conditions be p1(0) = 1, pi(0) = 0 for i 6= 1, the process started with only one member at

time t = 0.
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For n = 1,

p
′
1(t) = −λp1(t)

or,
dp1(t)

p1(t)
= −λdt

Integrating,

log p1(t) = −λt+ log c1

or, p1(t) = c1e
−λt.

Putting p1(0) = 1 we have c1 = 1.

∴ p1(t) = e−λt.

For n = 2, we have

p
′
2(t) = −2λp2(t) + λp1(t)

or, p
′
2(t) + 2λp2(t) = λp1(t) = λe−λt.

This is a linear equation of p2(t) and its I.F = e2λt.

Multiplying above equation by e2λt, we get

d

dt

(
p2(t)e

2λt
)

= λeλt.

Integrating we obtain

p2(t)e
2λt =

∫
λeλtdt = eλt + c2.

Since p2(0) = 0 therefore, c2 = −1.

Thus, p2(t) = e−2λt(eλt − 1) = e−λt(1− e−λt).
Therefore, pn(t) = e−λt(1 − e−λt)n−1 holds for n = 1, 2. We assume that the above relation is true for

n = m. Then pm(t) = e−λt(1− e−λt)m−1.
From (2.7), for n = m+ 1,

p
′
m+1(t) = −(m+ 1)λpm+1(t) +mλpm(t)

or, p
′
m+1(t) + (m+ 1)λpm+1(t) = mλpm(t) = mλeλt(1− e−λt)m−1

which is also a linear equation of pm+1(t) and I.F. is e(m+1)λt, we get

d

dt
(pm+1(t)e

(m+1)λt) = mλemλt(1− e−λt)m−1.

Integrating, we have

pm+1(t)e
(m+1)λt =

∫
mλeλt(eλt − 1)m−1dt
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Putting eλt − 1 = z, we get

pm+1(t)e
(m+1)λt =

∫
mzm−1dz = zm + c3

= (eλt − 1)m + c3

Since pm+1(t) = 0, c3 = 0.

Hence, pm+1(t) = (e−λt − 1)me−(m+1)λt = e−λt(1 − e−λt)m.Therefore the process, i.e. the result holds for

n = m+ 1. Hence by mathematical induction

pn(t) = e−λt(1− e−λt)n, n ≥ 1. (2.8)

Solving, p
′
0(t) = 0, we get p0(t) = 0 [As p0(0) = 0.]

Note 2.3.1 The probability generating function (pgf) is given by

P (s, t) =
∞∑
n=1

pn(t)sn =
∞∑
n=1

{
e−λt(1− e−λt)n−1

}
sn

= e−λts

∞∑
n=1

(1− e−λt)n−1sn−1

= e−λts
1

1− s(1− e−λt)

=
se−λt

1− s(1− e−λt)
. (2.9)

2.4 Birth and Death Process

In this process the number of individuals will increase as well as decrease. The following assumptions are

made to describe the birth and death process.

Assumption:

(i) Probability of one birth during (t, t+ h), (h ≥ 0) is λnh+O(h) where n is the number of items in a

population at time t and λn is the birth rate.

(ii) Probability of more than one birth during (t, t+h) is O(h). Hence the probability of no birth during

(t, t+ h) is 1− λnh+O(h).

(iii) Probability of one death during (t, t+ h) is µnh+O(h), µn is the death rate.

(iv) Probability of more than one death during (t, t+h) is O(h). Hence the probability of no death during

(t, t+ h) is 1− µnh+O(h).
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Let pn(t) be the probability of having population size n at time t.

pn(t+ h) = probability of having population size n at time t+h

= (probability of n items in (0,t) × probability of no birth and no death during (t,t+h))

+ (probability of (n+1) items in (0,t) × probability of no birth and probability of

one death during (t,t+h))+(probability of (n-1) items in (0,t) × probability of one

birth and probability of no death during (t,t+h)+(probability of n items in (0,t)×

probability of one birth and one death during (t,t+h))+O(h)

= pn(t){1− λnh+O(h)}{1− µnh+O(h)}+ pn+1(t){1− λn+1h+O(h)}{µn+1h+O(h)}

+pn−1(t){λn−1h+O(h)}{1− µn−1h+O(h)}+ pn(t){λnh+O(h)}{µnh+O(h)}+O(h)

= pn(t){1− λnh− µnh)}+ pn+1(t){µn+1h}+ pn−1{λn−1h}+ o(h)

[neglecting the second and higher powers of h]

or, pn(t+ h) −pn(t) = −h(λn + µn)pn(t) + µn+1hpn+1(t) + λn−1hpn−1(t) +O(h).

Dividing both sides by h and taking h→ 0, we get

p
′
n(t) = −(λn + µn)pn(t) + µn+1pn+1(t) + λn−1pn−1(t), n ≥ 1. (2.10)

For n = 0, we have

p0(t+ h) = p0(t){1− λ0h+O(h)}{1− µ0h+O(h)}+ p1(t){1− λ1h+O(h)}{µ1h+O(h)}

= p0(t)− λ0hp0(t)− µ0hp0(t) + µ1hp1(t) +O(h)

or, p0(t+ h)− p0(t) = −λ0hp0(t)− µ0hp0(t) + µ1hp1(t) +O(h)

or,
p0(t+ h)− p0(t)

h
= −λ0p0(t)− µ0p0(t) + µ1p1(t) +

O(h)

h
.

Taking limit h→ 0, we get

p
′
0(t) = −(λ0 + µ0)p0(t) + µ1p1(t). (2.11)

Initial condition: Suppose, initially there are i members in the system, i.e.

pn(0) =

{
0, n 6= i

1, n = i
. (2.12)

The equations (2.10) and (2.11) are the equations of the birth and death process with initial conditions

given by (2.12).

Condition of existence of the solution of (2.10) and (2.11)

For arbitrary λn ≥ 0, µn ≥ 0, there always exists a solution pn(t)(≥ 0) such that
∑
pn(t) ≤ 1. If λn and

µn are bounded, the solution is unique and
∑
pn(t) = 1.
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Note 2.4.1 When λn = λ i.e. λn is independent of the population size n, then the increase may be thought

of as due to an external source such as immigration.

When λn = nλ, we have the case of linear birth, the rate of birth in unit interval being λ per individual.

When µn = µ, decrease may be thought of as due to a factor such as emigration.

When µn = nµ, we have the case of linear death, the rate of death in unit interval being µ per

individual.

2.4.1 Solution of linear growth process

(a) Generating function

When λn = nλ and µn = nµ(n ≥ 1) then the process is called linear growth process, where λ0 =

0, µ0 = 0. If X(t) denotes the total number of members at time t, then from (2.10) and (2.11), we have

the following differential difference equations for pn(t) = P (X(t) = n),

p
′
n(t) = −n(λ+ µ)pn(t) + λ(n− 1)pn−1(t) + µ(n+ 1)pn+1(t), n ≥ 1 (2.13)

and p
′
0(t) = µp1(t). (2.14)

If the initial population size is i, i.e. X(0) = i, then we have the initial condition pi(0) = 1 and pn(0) =

0, n 6= i.

Let P (s, t) =
∞∑
n=1

pn(t)sn be the probability generating function of {pn(t)}.

Then
∂P

∂s
=

∞∑
n=1

npn(t)sn−1 and
∂P

∂t
=

∞∑
n=1

p
′
n(t)sn.

Multiplying (2.13) by sn and adding for n = 1, 2, 3 . . . and adding (2.14) with it, we get

∂P

∂t
= −(λ+ µ)

∞∑
n=1

npn(t)sn + λ

∞∑
n=1

(n− 1)pn−1(t)s
n

+µ

{ ∞∑
n=1

(n+ 1)pn+1(t)s
n + p1(t)

}

= −(λ+ µ)s
∞∑
n=1

npn(t)sn−1 + λs2
∞∑
n=1

npn(t)sn−1 + µ
∞∑
n=1

npn(t)sn−1

= −(λ+ µ)s
∂P

∂s
+ λs2

∂P

∂s
+ µ

∂P

∂s

=
{
µ− (λ+ µ)s+ λs2

}∂P
∂s

.

This is a partial differential equation of Lagrangian type. The initial condition is X(0) = i.
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The Lagrange’s equation becomes

dt

1
=

ds

−(s− 1)(λs− µ)
=
dp

0

or, dt =
ds

−(s− 1)(λs− µ)
=

1

λ− µ

[
1

1− s
+

λ

λs− µ

]
ds.

Integrating we get

(λ− µ)t = log[(λs− µ)/(1− s)] + log c

or,
1− s
λs− µ

e(λ−µ)t = c. (2.15)

Again,
dt

1
=
dP

0
gives P = constant = g(s)

or, P (s, t) = g(s) (2.16)

That is,
∞∑
n=0

pn(t)sn = g(s) or, si = g(s) [∵ pn(0) = 0 and n 6= i, pi(0) = 1.]

Hence (2.16) becomes

P (s, t) = si. (2.17)

When t = 0 equation (2.15) becomes

1− s
λs− µ

= c, or, s =
1 + µc

1 + λc
.

Therefore, (2.17) becomes

P (s, t) =

(
1 + µc

1 + λc

)i
. (2.18)

where c =
1− s
λs− µ

e(λ−µ)t (2.19)

Therefore,

P (s, t) =

[
µ(1− s)− (µ− λs)e−(λ−µ)t

λ(1− s)− (µ− λs)e−(λ−µ)t

]i

=

[
µ{1− e−(λ−µ)t} − {µ− λe−(λ−µ)t}s
{λ− µe−(λ−µ)t} − λ{1− e−(λ−µ)t}s

]i
. (2.20)

Explicit expression for pn(t) can be obtained from the above by expanding P (s, t) as a power series in

s for i = 1 as

pn(t) = {1− α(t)}{1− β(t)}{β(t)}n−1, n = 1, 2, . . .

p0(t) = α(t),

12 Department of Applied Mathematics



Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where α(t) =
µ
{
e(λ−µ)t −

}
λe(λ−µ)t − µ

and β(t) =
λ
{
e(λ−µ)t − 1

}
λe(λ−µ)t − µ

.

(b) Mean population size

The mean population size can be obtained from P (s, t) by differentiating it w.r.t s and substituting s = 1,

i.e.,

E{X(t)} =
∂P

∂s

)
s=1

=

∞∑
n=1

npn(t) = α1(t), (say) .

Similarly,

E{X2(t)} =

∞∑
n=1

n2pn(t) = α2(t)

Multiplying (2.13) by n and adding for n = 1, 2, 3, . . . we have

∞∑
n=1

np
′
n(t) = −(λ+ µ)

∞∑
n=1

n2pn(t) + λ
∞∑
n=1

n(n− 1)pn−1(t) + µ
∞∑
n=1

n(n+ 1)pn+1(t). (2.21)

Now,

∞∑
n=1

n(n− 1)pn−1(t) =

∞∑
n=1

[
(n− 1)2 + (n− 1)

]
pn−1(t)

=
∞∑
n=1

(n− 1)2pn−1(t) +
∞∑
n=1

(n− 1)pn−1(t)

= α2(t) + α1(t).

Again,

∞∑
n=1

n(n+ 1)pn+1(t) =

∞∑
n=1

[
(n+ 1)2 − (n+ 1)

]
pn+1(t)

=
∞∑
n=1

(n+ 1)2pn+1(t)−
∞∑
n=1

(n+ 1)pn+1(t)

= {α2(t)− p1(t)} − {α1(t)− p1t}

= α2(t)− α1(t)

and

∞∑
n=1

np
′
n(t) = α

′
1(t).

Hence (2.21) becomes

α
′
1(t) = −(λ+ µ)α2(t) + λ{α2(t) + α1(t)}+ µ{α2(t)− α1(t)}

= (λ− µ)α1(t).
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Integrating, we get α1(t) = ce(λ−µ)t.

The initial condition gives α0(t) =
∞∑
n=1

npn(0) = i

That is c = α1(0) = i.

Thus

α1(t) = ie(λ−µ)t (2.22)

Hence the mean population size when initial population size i is ie(λ−µ)t.

Limiting case:

As t → ∞, the mean population size α1(t) → 0 for λ < µ or to ∞ for λ > µ and to the constant value

when λ = µ.

(c) Extinction probability

Since λ0 = 0, 0 is an absorbing state i.e., once the population size reaches 0, it remains at 0 thereafter.

This is the interesting case of extinction of the population.

Suppose the process starts with only one member at time 0, i.e., X(0) = 1.

Then from (2.20)

P (s, t) =
a− bs
c− ds

=
a

c

1− bs
a

1− ds
c

,

where a = µ{1− e−(λ−µ)t}

b = µ− λe−(λ−µ)t

c = λ− µe−(λ−µ)t

d = λ{1− e−(λ−µ)t}.

∴ P (s, t) =
a

c

(
1− bs

a

)(
1− ds

c

)−1
=
a

c

(
1− bs

a

){
1 +

ds

c
+
(ds
c

)2
+
(ds
c

)3
+ · · ·+

(ds
c

)n−1
+
(ds
c

)n
+ · · ·

}
.

Coefficient of sn in P (s, t) is

a

c

{(d
c

)n
− b

a

(d
c

)n−1}
= pn(t) (2.23)

and
a

c
= p0(t).

Therefore,

lim
t→∞

p0(t) = lim
t→∞

µ{1− e−(λ−µ)t}
λ− µe−(λ−µ)t

=

{
µ
λ , λ > µ

1, λ ≤ µ
(2.24)

and lim
t→∞

pn(t) = 0 for n 6= 0. (2.25)
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In other words, the probability of ultimate extinction is 1 when µ > λ and is µ
λ (< 1) when µ < λ.

If initially X(0) = i then the probability of ultimate extinction is
(
µ
λ

)i
for µ < λ.

2.5 Markov Processes with Continuous State Space: Wiener Process

Consider that a (Brownian) particle performs a random walk such that in a small interval of time of

duration ∆t, the displacement of the particle to the right or to the left is also a small magnitude ∆x, the

total displacement X(t) of the particle in time t being x. Suppose that the random variable Zi denotes

the length of the ith step taken by the particle in a small interval of time ∆t and that

P (Zi = ∆x) = p and P (Zi = −∆x) = q, p+ q = 1, 0 < p < 1

where p is independent of x and t.

Suppose that the interval of length t is divided into n equal subintervals of length ∆t and that the

displacement Zi, i = 1, 2, . . . , n in the n steps are mutually independent random variables. Then n×∆ = t

and the total displacement X(t) is the sum of n i.i.d( independent identically distributed) random variables

Zi, i.e.,

X(t) =

n(t)∑
i=1

Zi, n ≡ n(t) = t/∆t.

We have

E(Zi) = ziP (Zi = ∆x) + ziP (Zi = −∆x)

= ∆xp−∆xq = (p− q)∆x.

E(Z2
i ) = (∆x)2p+ (∆x)2q = (∆x)2.

∴ V ar(Zi) = E(Z2
i )− {E(Zi)}2 = (∆x)2 − (p− q)2(∆x)2

= 4pq(∆x)2.

Hence

E{X(t)} = nE(Zi) = t(p− q)(∆x)2/∆t, [∵ n = t/∆t] (2.26)

and V ar(X(t)) = nV ar(Zi) = 4pqt(∆x)2/∆t.

To get a meaningful result, as ∆x→ 0,∆t→ 0. We must have

(∆x)2

∆t
→ a limit

(p− q)→ 0 a multiple of ∆x (2.27)

Vidyasagar University 15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unit 2 Markov Process

We assume that, in an interval of length t,X(t) has mean value function equal to µt and variance function

equal to tσ2, that is, we suppose that as ∆x→ 0,∆t→ 0 in such a way that (2.27) are satisfied and

E{X(t)} = µt and V ar{X(t)} = tσ2. (2.28)

Therefore from (2.26), we have

(p− q)∆x
∆t

→ µ,
4pq(∆x)2

∆t
→ σ2. (2.29)

The relation (2.27) and (2.29) will be satisfied when

∆x = σ
√

∆t (2.30)

and p =
1

2
{1 + µ

√
∆t/σ}, q =

1

2
{1− µ

√
∆t/σ} (2.31)

Now, since Zi are i.i.d random variables, the sum
n(t)∑
i=1

Zi = X(t) for large n(t)(≡ n) is asymptotically

normal with mean µt and variance tσ2(by central limit theorem for equal components).

Here t represents the length of the interval of time during which the displacement, that takes place is

equal to the increment X(t)−X(0). We thus find that for 0 < s < t, {X(t)−X(s)} is normally distributed

with mean µ(t− s) and variance σ2(t− s). Further the increments {X(t)−X(0)} and {X(t)−X(s)} are

mutually independent this implies that {X(t)} is Markov process.

We now define a Wiener process or a Brownian process as follows:

The stochastic process {X(t), t ≥ 0} is called a Wiener process (or a Wiener Einstein process ar a Brownian

motion process) with drift µ and variance parameter σ2 if

1. X(t) has independent increments, i.e., for every pair of disjoint intervals of time (s, t) and (u, v),

where s ≤ t ≤ u ≤ v, the random variables {X(t)−X(s)} and {X(v)−X(u)} are independent.

2. Every increment {X(t)−X(s)} is normally distributed with mean µ(t− s) and variance σ2(t− s).

Since X(t) − X(0) is normally distributed with mean µt and variance tσ2, the transition p.d.f. p of a

Wiener process is given by

p(x0, x, t)dx = P{x ≤ X(t) < x+ dx/X(0) = x0}

=
1

σ
√

2πt
e−(x−x0−µt)

2/(2σ2t)dx, −∞ < x <∞ (2.32)

A Wiener process {X(t), t ≥ 0} with X(0) = 0, µ = 0, σ = 1 is called a standard Wiener process.
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2.5.1 Differential equations for a Wiener process

Let {X(t), t ≥ 0} be a Wiener process. We can consider the displacement in such a process as being

caused by the motion of a particle undergone displacements of small magnitude in a small interval of time.

Suppose that (t −∆t, t) is an infinitesimal interval of length ∆t and the particle makes in this interval a

shift equal to ∆x with probability p or a shift equal to −∆x with probability q = 1 − p. Suppose that p

and q are independent of x and t. Let the transition probability that the particle has a displacement from

x to x+ ∆x in the interval (0,t), given that it started from x0 at time 0, be p(x0, x; t)∆x.

Therefore by Taylor’s series

p(x0, x±∆x; t−∆t) = p(x0, x; t)−∆t
∂p

∂t
±∆x

∂p

∂x
+

1

2
(±∆x)2

∂2p

∂2x
+O(∆t). (2.33)

For simple probability arguments we have

p(x0, x; t)∆x = p · p(x0, x−∆x; t−∆t)∆x+ q · p(x0, x+ ∆x; t−∆t)∆x

p(x0, x; t) = p · p(x0, x−∆x; t−∆t) + q · p(x0, x+ ∆x; t−∆t) (2.34)

Using (2.33) and (2.34) becomes

p(x0, x; t) = p

{
p(x0, x; t)−∆t

∂p

∂t
−∆x

∂p

∂x
+

1

2
(∆x)2

∂2p

∂2x
+O(∆t)

}
+ q

{
p(x0, x; t)−∆t

∂p

∂t
+ ∆x

∂p

∂x
+

1

2
(−∆x)2

∂2p

∂2x
+O(∆t)

}
= p(x0, x; t)−∆t

∂p

∂t
−∆x(p− q)∂p

∂x
+

1

2
(∆x)2

∂2p

∂2x
+O(∆t)

or,
∂p

∂t
+

∆x

∆t
(p− q)∂p

∂x
=

1

2

(∆x)2

∆t

∂2p

∂2x
+
O(∆t)

∆t
.

Taking limits as ∆t→ 0, ∆x→ 0 we get from (2.29), (2.30) and (2.31)

p =
1

2
, q =

1

2
.

Using these limits we get

∂p

∂t
= −µ∂p

∂x
+

1

2
σ2
∂2p

∂2x
, p = p(x0, x; t) (2.35)

The equation is known as the forward diffusion equation of the Wiener process. The backward diffusion

equation of the process in the form

∂p

∂t
= µ

∂p

∂x0
+

1

2
σ2

∂2p

∂2x0
, p = p(x0, x; t) (2.36)

The solution of (2.35) and (2.36) yield p(x0, x, t) as a normal density of the form given in (2.32).

The equation for a Wiener process with drift µ = 0 is

∂p

∂t
=

1

2
σ2
∂2p

∂2x
(2.37)

which is known as the heat equation.
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2.6 Branching Process

WE consider first the discrete time space. Suppose that we start with an initial set of objects or individuals

which form the 0th generation-these objects are called ancestors. The offsprings produced or the objects

generated by the objects of the 0th generation are the direct descendants of the ancestors, and are said to

form the first generation; the objects generated by these of the first generation or the direct descendants of

the first generation from the second generation and so on, the direct descendants of the rth generation form

the (r+1)th generation. The number of objects of the rth generation (r=0,1,2,. . . ) is a random variable.

We assume that the objects reproduce independently of other objects, i.e. there is no interference.

Let the random variables X0, X1, X2, . . . denote the sizes of (or the numbers of objects in) the 0th, 1st,

2nd, . . . generations respectively. Let the probability that an object (irrespective of the generation to which

belongs) generates k similar objects be denoted by pk, where pk ≥ 0, k = 1, 2, . . . and
∑
k

pk = 1.

The sequence {Xn, n = 0, 1, 2 . . .} constitutes a Galton-Watson branching process (or simply a G.W.

branching process) with offspring distribution {pk}. The process is also called Bienayame-Galton-Watson

process.

2.6.1 Properties of generating functions of branching processes

A Galton-Watson process is a Markov chain {Xn, n = 0, 1, 2, . . .} having state space N (set of non-negative

integers), such that

Xn+1 =

Xn∑
r=1

Zr, (2.38)

where Zr is independently identically distributed random variable with distribution {pk}. Let

P (s) =
∑
k

P (Zr = k)sk =
∑
k

pks
k (2.39)

be the p.g.f. of {Zr} and let

Pn(s) =
∑
k

P (Xn = k)sk, n = 0, 1, 2, . . . (2.40)

be the p.g.f of {Xn}.
We assume that X0 = 1; clearly P0(s) = s and P1(s) = P (s). The random variables X1 and Zr(for any r)

both give the same offspring distribution.

Theorem 2.2 The generating function Pn(s) satisfy the following relations:

Pn(s) = Pn−1(p(s)) (2.41)

and Pn(s) = P (Pn−1(s)). (2.42)
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Proof. We have, for n=1,2,. . .

P (Xn = k) =
∞∑
j=0

P (Xn = k/Xn−1 = j)P (Xn−1 = j)

=

∞∑
j=0

P

(
j∑
r=1

Zr = k

)
P (Xn−1 = j)

∴ Pn(s) =
∞∑
k=0

P (Xn = k)sk

=

∞∑
k=0

sk

 ∞∑
j=0

P

(
j∑
r=1

Zr = k

)
P (Xn−1 = j)


=
∞∑
k=0

P (Xn−1 = j)

[ ∞∑
k=0

P

(
j∑
r=1

Z1 + Z2 + · · ·+ Zj = k

)
sk

]
. (2.43)

The expression within the square bracket being the p.g.f of the sum Z1 + Z2 + · · · + Zj of j i.i.d random

variables each with p.g.f. P(s), equals [P (s)]j . Thus

Pn(s) =

∞∑
j=0

P (Xn−1 = j)[P (s)]j

or, Pn(s) = Pn−1(P (s)).

Putting n = 2, 3, 4 . . . we get (when X0 = 1, P1 = P )

P2(s) = P1(P (s)) = P (P (s)), P3(s) = P2(P (s)), P4(s) = P3(P (s)), and so on.

Therefore, Pn(s) = Pn−1(P (s)) = Pn−1(P (P (s))) = Pn−2(P2(s)). (2.44)

For n=3, P3(s) = P1(P2(s)) = P (P2(s)).

Again, Pn(s) = Pn−3(P (P2(s))) = Pn−3(P3(s)) and for n=4,

P4(s) = P1(P3(s)) = P (P3(s)).

Thus Pn(s) = Pn−k(Pk(s)), k = 0, 1, 2, . . . , n and for k = n− 1

Pn(s) = P1(Pn−1(s)) = P (Pn−1(s)).

Note 2.6.1 When X0 = i 6= 1 then (2.42) holds but (2.42) does not hold.

p′(1) = E(Zr) = E(X1) = m.

Theorem 2.3 If m = E(X1) =
∞∑
k=0

kpk and σ2 = V ar(X1) then

E(Xn) = mn and V ar(Xn) =

{
mn−1(mn−1)

m−1 σ2, if m 6= 1

nσ2, if m = 1.
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Proof. We have from (2.41),

Pn(s) = Pn−1(P (s)). (2.45)

Therefore, P
′
n(s) = P

′
n−1(P (s))P

′
(s)

Hence P
′
n(1) = P

′
n−1(1)P

′
(1) [∵ P (s) = 1]

= mP
′
n−1(1).

Therefore, P
′
n(1) = m2P

′
n−2(1) = m3P

′
n−3(1) = . . . = mn−1P

′
(1) = mn.

Thus E(Xn) = P
′
n(1) = mn.

Again differentiating (2.45) we get P
′′
n (s) = P

′′
n−1(P (s)){P ′(s)}2 + P

′
n−1(P (s))P

′′
(s).

At s = 1,

P
′′
n (1) = P

′′
n−1(P (1)){P ′(1)}2 + P

′
n−1(P (1))P

′′
(1)

= P
′′
n−1(1)m2 + P

′
n−1(1)A, where A = P

′′
(1)

[∵ P
′
(1) = m and P (1) = 1]

= P
′′
n−1(1)m2 +mn−1A

= (P
′′
n−2(1)m2 +mn−2A)m2 +mn−1A

= P
′′
n−2(1)m4 +mnA+mn−1A

= (P
′′
n−3(1)m2 +mn−3A)m4 +mnA+mn−1A

= P
′′
n−3(1)m6 +mn+1A+mnA+mn−1A

= . . . . . .

= P
′′
0 (1)m2n + (m2n−2 +m2n−1 + . . .+mn +mn−1)A

= 0 +Amn−1(1 +m+m2 + . . .+mn−1)

[∵ P0(s) = s, P
′′
0 (s) = 0]

= Amn−1m
n − 1

m− 1
for m 6= 1.

Now, P (s) =
∑
k

pks
k. Therefore, P

′
(s) =

∑
k

kpks
k−1 and P

′′
(s) =

∑
k

k(k − 1)pks
k−2.

P
′′
(1) =

∑
k

k(k − 1)pk =
∑
k

k2pk −
∑
k

kpk

= E(Z2
r )− E(Zr)

∴ A = P
′′
(1) = E(Z2

r )− {E(Zr)}2 + {E(Zr)}2 − E(Zr)

= V ar(Zr) +m2 −m

= σ2 +m(m− 1).
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Similarly,

P
′′
n (1) = E(X2

n)− {E(Xn)}2 + {E(Xn)}2 − E(Xn)

= V ar(Xn) + (mn)2 −mn

Hence

V ar(Xn) +mn(mn − 1) = {σ2 +m(m− 1)}mn−1m
n − 1

m− 1

= σ2mn−1m
n − 1

m− 1
+m.mn−1(mn − 1)

or, V ar(Xn) = mn−1m
n − 1

m− 1
σ2 for m 6= 1

When m = 1, then the expression of P
′′
n (1) becomes

P
′′
n (1) = A(1 + 1 + 1 + . . .+ n times ) = A.n.

In this case, A = σ2 and P
′′
n (1) = V ar(Xn) + (1n)2 − 1n = V ar(Xn).

Therefore, V ar(Xn) = nσ2

Thus, V ar(Xn) =


mn−1(mn − 1)

m− 1
σ2, if m 6= 1

nσ2, if m = 1.

2.7 Unit Summary

In this unit, Poisson process is introduced. Pure birth process and birth and death process are also studied.

The probability generating function for birth and death process is determined, where birth and death rates

are linear. Mean population size and extinction probability are calculated. An example of continuous time

continuous state space Markov process, viz., Wiener process is presented. The differential equation of this

process is also established. The Galton-Watson branching process is introduced and studied some of its

properties. A list of exercises is supplied with this unit.

2.8 Self Assessment Questions

1. Prove that under certain conditions stated by you the number of telephone calls in a trunk line follows

Poisson process. Find the mean and standard deviation of this process.

2. If N1(t), N2(t) are two independent Poisson processes with parameters λ1, λ2 respectively, then show

that P (N1(t) = k/N1(t) +N2(t) = n) =
( n
k

)
pkqn−k, where p = λ1

λ1+λ2
, q = λ2

λ1+λ2
.
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3. The number of accidents in a town follows a Poisson process with a mean of 2 per day and the

number Xi of people involved in the ith accident has the distribution P (Xi = k) = 1
2k
, k ≥ 1. Find

the mean and variance of the number of people involved in accidents per week.

4. Deduce the probability mass function for pure birth process. Hence deduce the probability generating

function for this process.

5. State birth and death process. Find the differential difference equation for birth and death process.

6. Find the probability generating function for birth and death process when rate of birth and death

are respectively nλ and nµ, where n is the population size at any time t. Assume that the initial

population size is i.

7. Find the probability of ultimate extinction in the case of the linear growth process(birth and death)

starting with i individuals at time 0.

8. Find the differential equation for Wiener process.

9. Show that the generating function Pn(s) for branching process satisfy the following relations:

(i) Pn(s) = Pn−1(P (s)) and

(ii) Pn(s) = P (Pn−1(s)), where P1(s) = P (s).

10. Let {Xn, n ≥ 0} be a branching process. Show that if m = E(X1) =
∞∑
k=0

kpk and σ2 = V ar(X1) then

E(Xn) = mn and V ar(Xn) =


mn−1(mn − 1)

m− 1
σ2 if m 6= 1

nσ2 if m = 1.
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