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1.1 Introduction

The probability models are more realistic than deterministic models in many problems in different branches

of science, humanities, engineering etc. Observations taken at different time points rather than those taken

at a fixed period of time began to engage the attention of probabilities. This led to a new concept of

indeterminism in dynamic studies. This has been called dynamic indeterminism. Many situations occur in

physical and life sciences are studied now not only as a random phenomenon but also as one changing with

time or space. Similar considerations are also made in other areas, such as, social sciences, engineering

and management and so on. The scope of applications of random variables which are functions of time or

space or both has been on the increase.

Objectives:

Gone through this unit the readers will learn the following:

• Stochastic process

• Markov Chain
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• Transition probability matrix

• Random walk with absorbing and reflecting barriers

• Probability distribution

• Order of Markov chain

• Markov chain as graphs

• Champman-Kolmogorov equation

• Classification of states and chains

• Closed state

• Irreducible chain

• Persistent and transient states

• Exercise

1.2 Stochastic Process

Families of random variables {x(t), t ∈ T} where T is index set which are functions of say, time are known

as stochastic processes (or random processes or random functions).

Example 1.2.1 Consider a simple experiment like throwing a fair die. Suppose that Xn is the outcome

of the nth throw, n ≥ 1. Then {Xn, n ≥ 1} is a family of random variables such that for a distinct value of

n(= 1, 2, . . .), one gets a distinct random variable Xn; {Xn, n ≥ 1} constitutes a stochastic process, known

as Bernoulli process.

Example 1.2.2 Consider a random event occurring in time, such as, number of telephone calls received

at a switch board. Suppose that X(t) is the random variable which represents the number of incoming calls

in an interval (0, t) of duration t units. The number of calls within a fixed interval of specified duration,

say, one unit of time, ia a random variable X(t) and the family {X(t), t ∈ T} constitutes a stochastic

process T = [0,∞).

1.3 Definitions

Let St be the sample space of X(t), which may be finite or infinite. The random variables Xt, Xt+r(r > 0)

may be dependent or independent. Also, T may be finite or infinite then the stochastic process {X(t), t ∈ T}
is a discrete-parameter stochastic process. If T is any finite or infinite interval e.g. T = {t : a < t <

b}, T = {t : 0 ≤ t <∞}, the process is said to be a continuous parameter stochastic process.

The particular value of X(t) is often called state and the set of all possible values of a single random

variable X(t) of a stochastic process {X(t), t ∈ T} is known as its state space.
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The system is defined for a continuous range of time and we say that we have a family of random variable

in continuous time. A stochastic process in continuous time may have either a discrete or a continuous

state space. For example, suppose that X(t) gives the number of incoming calls at a switchboard in an

interval (0, t). Here, the state space of X(t) is discrete though X(t) is defined for a continuous range of

time.

We have a process in continuous time having a discrete state space. Suppose that X(t) represents the

maximum temperature at a particular place in (0, t), then the set of possible values of X(t) is continuous.

Here we have a system in continuous time a continuous state space.

We have assumed that the values assumed by the random variable X(t) are one-dimensional, but the

process {X(t)} may be multi-dimensional. Consider X(t) =
(
X1(t), X2(t)

)
, where X1 represents the

maximum and X2 that minimum temperature at a place in an interval of time (0, t). This is a two-

dimensional stochastic process in continuous time having continuous state space. One can similarly have

multi-dimensional process. One-dimensional processes can be classified, in general, into the following four

types of processes:

(i) Discrete time, discrete state space

(ii) Discrete time, continuous state space

(iii) Continuous time, discrete state space

(iv) Continuous time, continuous state space

1.4 Markov Chains

Let us consider a simple coin tossing experiment repeated for a number of times. The possible outcomes

at each trial are two: head with probability, say, p and tail with probability q, p + q = 1. Let us denote

head by 1 and tail by 0 and the random variable denoting the result of the nth toss by Xn. Then for

n = 1, 2, 3 . . ..

P (Xn = 1) = p, P (Xn = 0) = q.

Thus we have a sequence of random variables X1, X2 . . .. The trials are independent and the result of

the nth does not depend in any way on the previous trials numbered 1, 2, . . . , n− 1. The random variables

are independent.

Consider now the random variable given by the partial sum Sn = X1 +X2 + . . .+Xn. The sum Sn gives

the accumulated number of heads in the first n trials and its possible values are 0, 1, 2, . . . , n.

We have Sn+1 = Sn + Xn+1. Given that Sn = j, j = 0, 1, 2 . . . , n, the random variables Sn+1 can

assume only to possible values: Sn+1 = j with probability q and Sn+1 = j + 1 with probability p; these

probabilities are not at all affected by the values of the variables S1, S2, . . . , Sn−1.
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Thus

P
(
Sn+1 = j + 1/Sn = j

)
= p and P

(
Sn+1 = j/Sn = j

)
= q.

This is an example of Markov Chain, a case of simple dependence that the outcome of (n + 1)th trial

depends directly on that of nth trial and only on it. The conditional probability of Sn+1 given by Sn

depends on the value of Sn and the manner in which the value of Sn was reached is of no consequence.

Now we present the formal definition of Markov Chain.

Def. 1.4.1 The stochastic process {Xn, n = 0, 1, 2, . . .} is called a Markov Chain, if for j, k, i1, i2 . . . , in−1 ∈
N(the set of all natural numbers),

P
(
Xn = k/Xn−1 = j,Xn−2 = i1, . . . , X0 = in−1

)
= P

(
Xn = k/Xn−1 = j

)
= pjk (say) , (1.1)

whenever the first member is defined.

The out comes are called the states of the Markov Chain. If Xn has outcome j, i.e. (Xn = j), the

process is said to be a state j at nth trial. To a pair of states (j, k) at the two successive trials (say, nth

and (n + 1)th trials) there is an associated conditional probability pjk. It is the probability of transition

from the state j at nth trial to the state k at (n + 1)th trial. The transition probabilities pjk are basic to

the study of the structure of the Markov Chain.

The transition probability may or may not be independent of n. If the transition probability pjk is

independent of n, the Markov Chain is said to be homogeneous (or to have stationary transition proba-

bilities). If it is dependent on n, the chain is said to be non-homogeneous. The transition probability pjk

refers to the state (j,k) at two successive trials (say, nth and (n+ 1)th trials,) the transition is one step and

pjk is called one step or unit step transition probability.

In general case, if the states (j,k) at two non-successive trials, say, state j at the nth trial and state k at

the (n+m)th tril. The corresponding transition probability is then called mth step transition probability

and is denoted by p
(m)
jk , i.e.,

p
(m)
jk = P (Xn+m = k/Xn = j). (1.2)

1.4.1 Transition Probability matrix

It may be noted that the transition probabilities pjk satisfy

pjk ≥ 0,
∑
k

pjk = 1 for all j. (1.3)

These probabilities may be written in the matrix form as

P =


p11 p12 p13 · · ·
p21 p22 p23 · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

 (1.4)
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This matrix is called the transition probability matrix or matrix of transition probabilities (t.p.m)

of the Markov Chain. The matrix P is a stochastic matrix, i.e. a square matrix with non-negative elements

and unit row sums.

Example 1.4.1 Random walk with absorbing barriers (Gambler’s ruin problem)

A particle performs a random walk with absorbing barriers, say, at 0 and k. Whenever it is at any position

r(0 < r < k), it moves to r+ 1 with probability p or to (r-1) with probability q, p+ q = 1. But, as soon as

it reaches 0 or k it remains there itself. Let Xn be the position of the particle after n moves. The different

states of Xn are the different positions of the particle. {Xn} is a Markov Chain whose unit-step transition

probabilities are given by

for 0 < r < k, P
(
Xn = r + 1/Xn−1 = r

)
= p and P

(
Xn = r − 1/Xn−1 = r

)
= q.

Also P
(
Xn = 0/Xn−1 = 0

)
= 1 and P

(
Xn = k/Xn−1 = k

)
= 1

and P
(
Xn = r/Xn−1 = r

)
= 0, 0 < r < k.

The transition matrix is given by

States ofXn

0 1 2 3 · · · k − 2 k − 1 k

0

1

2

3

States of Xn−1
...

k − 1

k



1 0 0 0 . . . 0 0 0

q 0 p 0 . . . 0 0 0

0 q 0 p . . . 0 0 0

0 0 q 0 . . . 0 0 0

. . . . . . . . . ... . . .

0 0 0 0 . . . q 0 p

0 0 0 0 . . . 0 0 1


Table 1.1: Transition probability matrix of Gambler’s ruin problem.

Example 1.4.2 Random walk between reflecting barriers

Consider that a particle may be at any position r, r = 0, 1, 2, . . . , k(≥ 1) of the x-axis. From state r

it moves to state r + 1, 1 ≤ r ≤ k − 1 with probability p and to state r − 1 with probability q. As

soon as it reaches state 0 it remains there with probability a and is reflected to state 1 with probability

1 − a(0 < a < 1); if it reaches state k it remains there with probability b and is reflected to k − 1 with
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probability 1− b(0 < b < 1). Then {Xn}, where Xn is the position of the particle after n steps or moves,

is a Markov Chain with state space S = {0, 1, 2, . . . , k}. The transition probabilities are given by

for 0 < r < k,

{
P (Xn = r + 1/Xn−1 = r) = p, P (Xn = r − 1/Xn−1 = r) = q

and P (Xn = r/Xn−1 = r) = 0
.

Also P (Xn = 0/Xn−1 = 0) = a, P (Xn = 1/Xn−1 = 0) = 1− a

and P (Xn = k − 1/Xn−1 = k) = b, P (Xn = k/Xn−1 = k) = 1− b.

The transition matrix is shown below

States ofXn

0 1 2 3 · · · k − 2 k − 1 k

0

1

2

P= States of Xn−1 3
...

k − 1

k



a 1− a 0 0 . . . 0 0 0

q 0 p 0 . . . 0 0 0

0 q 0 p . . . 0 0 0

0 0 q 0 . . . 0 0 0

. . . . . . . . . ... . . .

0 0 0 0 . . . q 0 p

0 0 0 0 . . . 0 1− b b


Table 1.2: Transition matrix for random walk between reflecting barriers.

Note 1.4.1 If a = 1, then 0 is an absorbing barrier and if a = 0 then 0 is a reflecting barrier, if 0 < a < 1,

0 is an elastic barrier. Similar is the case with state k. The case when both 0 and k are absorbing barriers

corresponds to the familiar Gambler’s ruin problem (with total capital between the two gamblers is k).

Example 1.4.3 Partial sum of independent random variables:

Consider a series of coin tossing experiments, where the outcomes of nth trial are denoted by 1 (for

a head) and 0 (for a tail). Let Xn be the randon variable denoting the outcome of the nth trial and

Sn = X1 +X2 + . . .+Xn be the nth partial sum. The possible values of Sn are 0, 1, 2, . . . n, i.e. the states
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of Sn are r, r = 0, 1, 2, . . . , n, {Sn, n ≥ 0} is a Markov Chain with transition is given below

States ofXn

0 1 2 · · · r − 1 r · · ·

0

1

2

P= States of Xn−1
...

r − 1

r
...



q p 0 . . . 0 0 · · ·
0 q p . . . 0 0 · · ·
0 0 q . . . 0 0 · · ·
...

...
...

...

0 0 0 . . . q p · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...


Mathematically,

pjk = P (Sn = k/Sn−1 = j) =


p, k = j + 1

q, k = j

0, otherwise.

1.4.2 Probability Distribution

The probability distribution of the random variables Xr, Xr+1, . . . , Xr+n can be computed in terms of the

transition probabilities pjk and the initial distribution of Xr. Suppose r = 0, then

P (X0 = a,X1 = b, . . . ,Xn−2 = i,Xn−1 = j,Xn = k)

= P (Xn = k/Xn−1 = j, . . . , X0 = a)P (Xn−1 = j, . . . , X0 = a)

= P (Xn = k/Xn−1 = j)P (Xn−1 = j, . . . , X0 = a) Since {Xn} is a Markov Chain

= P (Xn = k/Xn−1 = j)P (Xn−1 = j/Xn−2 = i)P (Xn−2 = i, . . . ,X0 = a)

= P (Xn = k/Xn−1 = j)P (Xn−1 = j/Xn−2 = i) . . . P (X1 = b/X0 = a)P (X0 = a)

= P (X0 = a)pab . . . pijpjk.

Thus

P (Xr = a,Xr+1 = b, . . . ,Xr+n−2 = i,Xr+n−1 = j,Xr+n = k)

= P (Xr = a) pab . . . pij pjk.

Example 1.4.4
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Let {Xn, n ≥ 0} be a Markov Chain with three states 0,1,2 and with transition matrix
3
4

1
4 0

1
4

1
2

1
4

0 3
4

1
4


and the initial distribution P (X0 = i) = 1

3 , i = 0, 1, 2.

We have

P (X1 = 1/X0 = 2) =
3

4
, P (X2 = 2/X1 = 1) =

1

4

P (X2 = 2, X1 = 1/X0 = 2) = P (X2 = 2/X1 = 1)P (X2 = 1/X0 = 2)

=
1

4
· 3

4
=

3

16
.

P (X2 = 2, X1 = 1, X0 = 2) = P (X2 = 2, X1 = 1/X0 = 2)P (X0 = 2)

=
3

16
· 1

3
=

1

16
.

P (X3 = 1, X2 = 2, X1 = 1, X0 = 2) = P (X3 = 1/X2 = 2, X1 = 1, X0 = 2)P (X2 = 2, X1 = 1, X0 = 2)

= P (X3 = 1/X2 = 2)
1

16
=

3

4
· 1

16
=

3

64
.

Note 1.4.2 The matrix of transition probabilities together with the initial distribution completely specifies

a Markov Chain {Xn, n = 0, 1, 2, . . .}.

Theorem 1.1 (General existence theorem of Markov Chains) Given the set N and the sequence

of stochastic matrices (n)P , there exists a Markov Chain {Xn, n ≥ 0} with state space N and transition

probability matrix (n)P .

1.4.3 Strong Markov propertry

Let N be a stopping time (is also a random variable) for a Markov Chain {Xn, n > 0} and let A and B

be two events relating to Xn and happening, prior and posterior respectively to N . Then

P (B/XN = i, A) = P (B/XN = i). (1.5)

This is called the strong Markov property. It shows that if N is a stopping time for a Markov Chain

{Xn, n > 0}, then the evolution of the chain starts afresh from the state reached at time N .

Every discrete time Markov Chain {Xn, n ≥ 0} possesses the strong Markov property.
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1.4.4 Order of Markov Chain

A Markov Chain {Xn} is said to be of order s(s = 1, 2, 3 . . .) if for all n,

P (Xn = k/Xn−1 = j,Xn−2 = j1, . . . , Xn−s = js−1 . . .)

= P (Xn = k/Xn−1 = j, . . .Xn−s = js−1) (1.6)

whenever L.H.S is defined.

A Markov Chain {Xn} is said to be of order one (or simply a Markov Chain) if

P (Xn = k/Xn−1 = j,Xn−2 = j1, . . .)

= P (Xn = k/Xn−1 = j) = pjk

whenever P (Xn−1 = j,Xn−2 = ji, . . .) > 0.

Unless explicitly stated otherwise, we shall mean by Markov Chain, a chain of order one. A chain is said

to be of order zero if pik = pk for all j. This implies independence of Xn and Xn−1.

1.4.5 Markov Chains as graphs

The states of a Markov Chain may be represented by the vertices of a graph and one step transitions

between states by directed arcs, if i → j, then vertices i and j are joined by a directed arc with arrow

towards j, the value of pijwhich is the weight of the directed arc (i, j). If V = (1, 2, . . .m) is the set of

vertices corresponding the state space of the chain and E is the set of directed arcs between these vertices,

then the graph G = (V,E) is the directed graph or digraph or transition graph of the chain. A digraph

such that its arc weights are positive and sum of the arc weights of the arc from each node is unity is called

a stochastic graph. The digraph or transition graph of a Markov Chain is a stochastic graph.

A transition graph is a great aid in visualizing a Markov chain, it is an useful tool in studying the

properties of the chain, e.g., the graph of the Chain of the transition matrix

0 1 2

P =

0

1

2


3
4

1
4 0

1
4

1
2

1
4

0 3
4

1
4

 (1.7)

is

1.5 Higher Transition Probabilities

The m-step transition probability is denoted by

P (Xm+n = k/Xn = j) = p
(m)
jk . (1.8)
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Figure 1.1: Transition graph of the Markov Chain of transition matrix (1.13)

p
(m)
jk gives the probability that from the state j at nth trial, the state k is reached at (m + n)th trial

in m steps, i.e. the probability of transition from the state j to the state k in exactly m steps. The

number m does not occur in the R.H.S of (1.8) and the chain is called homogeneous otherwise it is called

non-homogeneous.

Chapman-Kolmogorov Equation:

Let p
(m)
jk be the m-step transition probability from state j to the state k. Then

p
(m+n)
jk =

∑
r

p
(n)
rk p

(m)
jr =

∑
r

p
(n)
jr p

(m)
rk (1.9)

i.e. Pm+n = PnPm = PmPn where Pn =
(
p
(n)
ij

)
. (1.10)

Proof. the m-step transition probability is defined as

P (Xm+n = k/Xn = j) = p
(m)
jk .

The one step transition probabilities p
(1)
jk are denoted by pjk. The 2-step transition probability p

(2)
jk is given

by

p
(2)
jk = P (Xn+2 = k/Xn = j).

The state k can be reached from the state j in two steps through some intermediate state r. Consider a

fixed value of r, we have

P (Xn+2 = k,Xn+1 = r/Xn = j)

= P (Xn+2 = k/Xn+1 = r,Xn = j)P (Xn+1 = r/Xn = j)

= p
(1)
rk p

(1)
jr = pjrprk.

Since these intermediate states r can assume the values r = 1, 2, . . ., we have

p
(2)
jk = P (Xn+2 = k/Xn = j) =

∑
r

P (Xn+2 = k,Xn+1 = r/Xn = j)

=
∑
r

pjrprk(summing over for all the intermediate states)
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By similar method,

p
(m+1)
jk = P (Xm+n+1 = k/Xn = j)

=
∑
r

P (Xm+n+1 = k/Xn+m = r)P (Xn+m = r/Xn = j)

=
∑
r

prkp
(m)
jr .

Similarly, we get

p
(m+1)
jk =

∑
r

pjrp
(m)
rk .

In general, we have

p
(m+n)
jk =

∑
r

p
(n)
rk p

(m)
jr =

∑
r

p
(n)
jr p

(m)
rk . (1.11)

Denoting by Pn = (p
(n)
ij ) the matrix of n-step transition probabilities, the equation (1.11) can be written

as

Pm+n = PnPm. (1.12)

The equations (1.11) and (1.12) are called Chapman-Kolmogorov equation and these characterize Markov

Chains.

Example 1.5.1

Suppose that probability of a dry day (state 0) following a rainy day (state 1) is 1
3 and that the probability

of a rainy day following a dry day is 1
2 and transition probability matrix is

0 1

p =
0

1

[
1
2

1
2

1
3

2
3

]

If May 10 is a dry day then what are the probabilities that May 12 and May 14 are dry days?

Solution. We have P =

[
1
2

1
2

1
3

2
3

]
.

Then P 2 = P · P =

[
5
12

7
12

7
18

11
18

]
and P 4 =

[
173
432

259
432

259
648

389
648

]
If May 10 is a dry day, the probability that May 12 is a dry day is p200 = 5

12 and that May 14 a dry is

p
(4)
00 = 173/432.
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Example 1.5.2 Consider a communication system which transmits the two digits 0 and 1 through several

stages. Let Xn, n ≥ 1 be the digit leaving the nth stage of system and X0 be the digit entering the first

stage (leaving the 0th stage). At each stage there is a constant probability q that the digits which enters

will be transmitted unchanged (i.e. the digit will remain unchanged when it leaves), and probability p

otherwise (i.e. the digit changes when it leaves), p + q = 1. Find the one step transition matrix P , and

n-step transition matrix Pn. Also find Pn when n→∞.

Solution. Here
{
Xn, n ≥ 0

}
is a homogeneous two-state Markov Chain with unit-step transition matrix

P =

(
q p

p q

)
.

P =

(
q p

p q

)
=

(
1
2(p+ q) + 1

2(q − p) 1
2(p+ q)− 1

2(q − p)
1
2(p+ q)− 1

2(q − p) 1
2(p+ q) + 1

2(q − p)

)

=

(
1
2 + 1

2(q − p) 1
2 −

1
2(q − p)

1
2 −

1
2(q − p) 1

2 + 1
2(q − p)

)

Now, P 2 =

(
q p

p q

)(
q p

p q

)
=

(
p2 + q2 2pq

2pq p2 + q2

)

=

(
1
2(q + p)2 + 1

2(q − p)2 1
2(q + p)2 − 1

2(q − p)2
1
2(q + p)2 − 1

2(q − p)2 1
2(q + p)2 + 1

2(q − p)2

)

=

(
1
2 + 1

2(q − p)2 1
2 −

1
2(q − p)2

1
2 −

1
2(q − p)2 1

2 + 1
2(q − p)2

)

Let Pm =

(
1
2 + 1

2(q − p)m 1
2 −

1
2(q − p)m

1
2 −

1
2(q − p)m 1

2 + 1
2(q − p)m

)

Now, Pm+1 =

(
1
2 + 1

2(q − p)m 1
2 −

1
2(q − p)m

1
2 −

1
2(q − p)m 1

2 + 1
2(q − p)m

)(
q p

p q

)

=

(
1
2 + 1

2(q − p)m+1 1
2 −

1
2(q − p)m+1

1
2 −

1
2(q − p)m+1 1

2 + 1
2(q − p)m+1

)
.

This is true for n = m+ 1. Hence by mathematical induction

Pn =

(
1
2 + 1

2(q − p)n 1
2 −

1
2(q − p)n

1
2 −

1
2(q − p)n 1

2 + 1
2(q − p)n

)

Here p
(n)
00 = p

(n)
11 = 1

2 + 1
2(q − p)n and p

(n)
10 = p

(n)
01 = 1

2 −
1
2(q − p)n.

As n→∞, p(n)00 = p
(n)
11 = 1

2 and p
(n)
10 = p

(n)
01 = 1

2 as q − p < 1.
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1.6 Classification of States and Chains

1.6.1 Communication relations

If p
(n)
ij > 0 for some n ≥ 1, then we say that j can be reached or state j is accessible from state i. This

relation is denoted by i → j. Conversely, if for all n, p
(n)
ij = 0, then j is not accessible from i and it is

denoted by i9 j.

If two states i and j are such that each is accessible from the other then we say that the two states

communicate and it is denoted by i↔ j. Then there exists integers m(≥ 1) and n(≥ 1) such that p
(n)
ij > 0

and p
(m)
ij > 0. Obviously, the relation ↔ is symmetric.

Theorem 1.2 The communicate relation ↔ is transitive.

Proof. From Chapman-Kolmogorov equation

p
(m+n)
ik =

∑
r

p
(m)
ir p

(n)
rk

or, p
(m+n)
ik > p

(m)
ij p

(n)
jk .

If i→ j and j → k then p
(m)
ij > 0 and p

(n)
jk > 0.

Then p
(m+n)
ik > 0 implies i→ k.

Again p
(m+n)
ki ≥ p(m)

kj p
(n)
ji .

If k → j and j → i then by similar way p
(m+n)
ki > 0.

Hence i↔ j and j ↔ k implies i↔ k, i.e., ↔ is transitive.

1.6.2 Class property

A class of states is a subset of the state space such that every states of the class communicates with every

other and there is no other state outside the class which communicates with all other states in the class. A

property defined for all states of a chain is a class property if its possession by one state in a class implies

its possession by all states of the same class.

The state i is a return state if p
(n)
ii > 0 for sum n ≥ 1.

The period di of a return to state i is defined as the greatest common divisor of all m such that p
(m)
ii > 0

i.e.,

di = G.C.D {m : p
(m)
ii > 0}.

[G.C.D means greatest common divisor.]

The state i is said to be aperiodic if di = 1 and periodic if di > 1. Clearly, state i is periodic if pii 6= 0.

Closed state: If C is a set of states such that no state outside C can be reached from any sate in C,

then C is said to be closed.

14 Department of Applied Mathematics



Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If C is closed and j ∈ C while k not belongs to C, then p
(n)
jk = 0 for all n, i.e. C is closed iff

∑
j∈C

pij = 1

for every i ∈ C. A closed state may contain one or more states. If a closed state contains only one state j

then state j is said to be absorbing i.e. j is absorbing iff pjj = 1, pjk = 0, k 6= j.

In Gambler’s ruin problem states 0 and k are absorbing.

Every finite Markov Chain contains at least one closed set i.e. the set of all states or the state space.

Irreducible Chain: If the chain does not contain any other proper closed subset other than the state

space, then the chain is called irreducible; the t.p.m of irreducible chain is an irreducible matrix.

In an irreducible Markov Chain every state can be reached form every other state. Chains which are

not irreducible are said to be reducible or non-reducible, the t.p.m is reducible.

Notations: Let f
(n)
jk be the probability that it reaches from the state j to the state k for the first time

at the nth step (or after n transitions) and let p
(n)
jk be the probability that it reaches state k (not necessarily

for the first time) after n transitions.

Let Fjk denotes the probability that starting with state j the system will ever reach state k.

That is, Fjk =
∞∑
n=1

f
(n)
jk . (1.13)

The mean time from state j to state k is given by

µjk =

∞∑
n=1

nf
(n)
jk . (1.14)

The mean recurrence time for the state j is

µjj =

∞∑
n=1

f
(n)
jj (1.15)

Theorem 1.3 (First Entrance Theorem)

For any state j and k

p
(n)
jk =

n∑
r=0

f
(r)
jk p

(n−r)
kk , n ≥ 1 (1.16)

with p
(0)
kk = 1, f

(0)
jk = 0, f

(1)
jk = pjk.
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Proof. We have

p
(n)
jk = probability that the system will pass from state j to state k in n steps

=

n∑
r=0

P (first return to k occurs at rth step from state j)

× P (the system is in k at nth step/it was in state k at the rth step)

=

n∑
r=0

f
(r)
jk P (Xn = k/Xr = k)

=
n∑

r=0

f
(r)
jk p

(n−r)
kk .

Therefore, p
(n)
jk =

n∑
r=0

f
(r)
jk p

(n−r)
kk .

Note 1.6.1 The above result can also be written as

p
(n)
jk =

n−1∑
r=0

f
(r)
jk p

(n−r)
kk + f

(n)
jk [∵ p

(0)
kk = 1]

or, f
(n)
jk = p

(n)
jk −

n−1∑
r=0

f
(r)
jk p

(n−r)
kk . (1.17)

1.6.3 Transient and Persistent (recurrent) states

A state j is said to be persistent (or recurrent) if return to j is certain, i.e, Fij = 1 (i.e., return to state j is

certain).

A state j is called transient (or non-recurrent) if return to j is uncertain, i.e., Fij < 1.

A persistent state j is said to be null-persistent if µjj = ∞, i.e., if the mean recurrence time is infinite,

and is said to be non-null (or positive) persistent if µjj <∞.

A persistent state j is called ergodic if it is not a null-state and is non-periodic.

Note 1.6.2 If the state j is transient then p
(n)
jj → 0 an n→∞ because the return to j is uncertain.

Example 1.6.1 Let
{
Xn, n ≥ 1

}
be a Markov chain having state space S={1,2,3,4} and transition

matrix P =


1
3

2
3 0 0

1 0 0 0
1
2 0 1

2 0

0 0 1
2

1
2

 . Identify the states as transient, persistent, ergodic.
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Solution. Here f
(1)
11 = 1

3 , f
(2)
11 = 2

3 ,

f
(1)
11 = 0, n ≥ 3 and F11 = 1

3 + 2
3 = 1. So that state 1 is persistent.

f
(1)
33 = 1

2 , f
(n)
33 = 0, n ≥ 2.

So F33 = 1
2 < 1. Therefore, the state 3 is transient.

f
(1)
44 = 1

2 , f
(n)
44 = 0, n ≥ 2 so that F44 = 1

2 < 1. Thus state 4 is also transient.

Further, µ11 = 1 · 13 + 2 · 23 = 5
3 . The state is non-null persistent. Again p11 = 1

3 > 0, so that state 1 is

aperiodic, state 1 is ergodic.

f
(1)
22 = 0, f

(2)
22 = 1 · 2

3
, f

(3)
22 = 1 · 1

3
· 2

3
, f

(4)
22 = 1 ·

(1

3

)2
· 2

3
. . . , f

(n)
22 = 1 ·

(1

3

)n−2
· 2

3
, n ≥ 2.

∴ F22 =

∞∑
n=1

f
(n)
22 =

∞∑
n=2

(1

3

)n−2
· 2

3
= 1.

Thus state 2 is persistent.

Now, µ22 =
∞∑
k=1

kf
(k)
22 =

∞∑
k=1

k
(1

3

)k−2
· 2

3
= 2

∞∑
k=2

k
(1

3

)k−1
=

5

2
.

Therefore, state 2 is non-null persistent. It is also aperiodic and hence ergodic.

Theorem 1.4 In an irreducible chain, all the states are of the same type. They are either all transient,

all persistent null or all persistent non-null. All the states are aperiodic and in the later case they all have

the same period.

Proof. Since the chain is irreducible, every state can be reached from every other state. If i, j are any two

states then i can be reached from j and j from i, i.e.,

p
(N)
ij = α > 0 for some N ≥ 1 and p

(M)
ji = β > 0 for some M ≥ 1.

We have

p
(m+n)
jk =

∑
r

p
(m)
jr p

(n)
rk ≥ p

(m)
jr p

(n)
rk for each r.

Hence

p
(n+N+M)
ii ≥ p(N)

ij p
(n)
jj p

(M)
ji = αβp

(n)
jj (1.18)

and p
(n+N+M)
jj ≥ p(M)

ji p
(n)
ii p

(N)
ij = αβp

(n)
ii . (1.19)

From above it is clear that the two series
∑
n
p
(n)
ii and

∑
n
p
(n)
jj converge or diverge together. Thus the two

states i,j are either both transient or both persistent.
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Suppose that i is persistent null, then p
(n)
ii → 0 as n→∞, then from (1.18), p

(n)
jj → 0 as n→∞, so that

j is also persistent null, i.e., they are both persistent null.

Suppose that i is persistent non-null and has period t, then p
(n)
ii > 0 whenever n is a multiple of t. Now

p
(N+M)
ii ≥ p(N)

ij p
(M)
ji = αβ > 0,

so that (N +M) is a multiple of t. From (1.19)

p
(n+N+M)
jj ≥ αβp(n)ii > 0.

Thus (n+N +M) is a multiple of t and so is the period of the state j also.

Theorem 1.5 State j is persistent iff

∞∑
n=0

p
(n)
jj =∞ (1.20)

.

Proof. Let

Pjj(s) =

∞∑
n=0

p
(n)
jj s

n = 1 +

∞∑
n=1

p
(n)
jj s

n, |s| ≤ 1

and

Fjj(s) =

∞∑
n=0

f
(n)
jj s

n =

∞∑
n=1

f
(n)
jj s

n, |s| ≤ 1

[∵ p
(0)
jj = 1 and f

(0)
jj = 0 ] be the generating functions of the sequences {p(n)jj } and {f (n)jj } respectively.

We know that

p
(n)
jj =

n∑
r=0

f
(r)
jj p

(n−r)
jj . (1.21)

Multiplying both sides by sn and adding for all n ≥ 1, we get

∞∑
n=1

p
(n)
jj s

n =

∞∑
n=1

n∑
r=0

f
(r)
jj p

(n−r)
jj sn

or, Pjj(s)− 1 = Fjj(s)Pjj(s). (1.22)

The R.H.S is immediately obtained by considering the fact that the R.H.S of (1.21) is a convolution of

{fjj} and {pjj} and that the generating function of the convolution is the product of the two generating

functions. Thus we have

Pjj(s) =
1

1− Fjj(s)
, |s| ≤ 1. (1.23)
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If the state j is persistent then Fjj = 1.

∴ lim
s→1

Fjj(s) = 1.

Thus lim
s→1

Pjj(s)→∞ or
∞∑
n=0

p
(n)
jj =∞.

Conversely, if the state is transient then

Fjj < 1, i.e., lim
s→1

Fjj(s) < 1

or, lim
s→1

Pjj(s) <∞,
∞∑
n=0

p
(n)
jj <∞.

Remarks:

(i) State j is transient if
∞∑
n=0

p
(n)
jj <∞; this implies that if j is transient then p

(n)
jj →∞ as n→∞.

(ii) The state space of a finite Markov Chain must contain at least one persistent state.

(iii) If k is transient state and j is an arbitrary state then
∞∑
n=0

p
(n)
jk converges and lim

n→∞
p
(n)
jk → 0.

(iv) If a Markov Chain having a set of transient states T , starts in a transient state, then with probability

1, it stays at the transient set of states T only a finite number of times after which it enters a recurrent

state where it remains forever.

Example 1.6.2 Consider the Markov Chain with t.p.m

0 1 2

P =

0

1

2


0 1 0
1
2 0 1

2

0 1 0

 .
Test whether the states are periodic and persistent.

Solution. The chain is irreducible as the matrix P is irreducible.

We have P 2 = P · P =


1
2 0 1

2

0 1 0
1
2 0 1

2

 , P 3 = P. In general, P 2n = P 2, P 2n+1 = P .

Therefore, p
(2n)
ii > 0, p

(2n+1)
ii = 0 for all i.

The states are periodic with period 2.

Also, f
(1)
11 = 0, f

(2)
11 = 1, F11 =

∞∑
n=1

f
(n)
11 = 1, i.e., state 1 is persistent and hence the other states 0 and 2

are also persistent.

Now, µ11 =
∞∑
n=1

nf
(n)
11 = 2,

i.e., state 1 is non-null. Thus the states of the chain are periodic and persistent non-null.
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1.7 Markov Chains with Continuous State Space

We have discussed Markov Chains {Xn , = 0, 1, 2, . . .} with discrete state space, i.e., with 0,±1,±2, . . .

as possible values of Xn. Here we consider chains {Xn} with continuous state space, i.e., with (−∞,∞)

as possible range of values of Xn. We shall have to use either probability distribution(d.f.) or probability

density function (p.d.f), when this exists, in place of probability mass functions.

Def. 1.7.1 If for all m and for all possible values of Xm in (−∞,∞)

P (Xm+1 ≤ x/Xm = y,Xm−1 = y1, . . . , X0 = ym)

= P (Xm+1 ≤ x/Xm = y) (1.24)

then {Xn,m > 0} is said to constitute a Markov Chain with continuous state space. If the conditional d.f.

as given by (1.24) is independent of m, then the chain is homogeneous and equation (1.24) gives one-step

transition probability d.f. More generally, the n-step transition probability d.f. is defined by

P (Xm+1 ≤ x/Xm = y,Xm−1 = y1, . . . , X0 = ym)

= P (Xm+1 ≤ x/Xm = y)

= Pn(y;x). (1.25)

Denote P (y;x) = P1(y;x) = P (Xm+1 ≤ x/Xm = y) = P (Xn+1 ≤ x/Xn = y).

Let Pn(x) = P (Xn ≤ x). The transition d.f. Pn(y;x) and the initial distribution P (X0 ≤ x) = P0(x)

can uniquely determine Pn(x). The Chapman-Kolmogorov equation takes the form

Pn+m(y;x) =

∞∫
−∞

Pn(y; z)Pm(z;x)dz, m, n ≥ 0 (1.26)

which corresponds to p
(n+m)
jk =

∑
s
p
(n)
js p

(m)
sk for Markov Chains with discrete state space.

For n = 1, equation (1.26) becomes

Pn+1(y;x) =

∫
Pn(y; z)P1(z;x)dz =

∫
Pn(y; z)P (z;x)dz (1.27)

Suppose that as n→∞, Pn(y;x) tends to a limit P (x) independent of the initial value.

Then the limiting distribution P(x) satisfies the integral equation

P (x) =

∫
P (z)P (z;x)dz =

∫
P (z;x)dP (z) (1.28)

In the above relations, distribution functions can be replaced by p.d.f’s when these exist.

20 Department of Applied Mathematics



Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.8 Unit Summary

The stochastic process is introduced in this unit. The notion of Markov Chain and the transition probability

matrix is defined. Several properties Markov Chain are also discussed here. It has been shown that the

Markov Chain can be represented by digraph. Different types of states and Chains are defined with

examples. Communication relation between two states is defined here. Few illustrative examples are

carried out in this chapter. List of exercises are appended alon with this chapter.

1.9 Self Assessment Questions

1. Define stochastic process with example. Classify it with respect to state space and time.

2. Define Markov Chain with example. What do you mean by state and transition probability? What

do you mean by transition matrix?

3. State Gambler’s ruin problem and write transition matrix for it.

4. Write transition matrix for the problem of random walk between reflecting barriers.

5. Define order of a Markov Chain. Discuss how a Markov Chain can be represented as a graph.

6. State and prove Chapman-Kolmogorov equation.

7. Suppose that probability of a dry day following a rainy day is 2
3 and that the probability of a rainy

day following a dry day is 1
2 and t.p.m. P =

(
1
3

2
3

1
2

1
2

)
. If June 2 is a dry day then find the probability

that June 4 and June 6 are dry day.

8. Define the following:

(a) accessible state

(b) return state

(c) periodic state

(d) aperiodic state

(e) closed state

(f) irreducible chain

(g) persistent state

(h) transient state and

(i) ergodic
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9. State and prove first entrance theorem.

10. Prove that the state j is persistent iff
∞∑
n=0

p
(n)
jj =∞.

1.10 References

1. Roy, Y., Probability and Stochastic Processes, Willey.

2. Richard, M. F., Ciriaco, V. F., Applied Probability and Stochastic Processes, Springer.

3. Stark, H., Woods, J. W., Probability, Statistic and Random Processes for Engineers, Pearson.

4. Medhi, J. Stochastic Processes(2e), New Age International Publishers.

5. Mukhopadhyay, P., Mathematical Statistics, New Central Book agency.

6. Klimov, G., Probability Theory and Mathematical Statistics, Mir Publishers, Moscow.

22 Department of Applied Mathematics


