Stack and Subroutines

MCA 1°T YEAR 2NP SEMESTER 2020
Paper: MCA 203

Dr. Utpal Nandi
Dept. of Computer Science
VIDYASAGAR UNIVERSITY

The Stack

The stack is an area of memory identified by the
programmer for temporary storage of information.

The stack is a LIFO structure.
— Last In First Out.

The stack normally grows backwards into
memory.

— In other words, the programmer
defines the bottom of the stack
and the stack grows up into
reducing address range. e Stack

STOW S
backwards 4
into memory

Memory

Bottom
+— of the
Stack

The Stack

Given that the stack grows backwards into
memory, it is customary to place the bottom of
the stack at the end of memory to keep it as far
away from user programs as possible.

In the 8085, the stack is defined by setting the
SP (Stack Pointer) register.
* LXI SP, FFFFH

This sets the Stack Pointer to location FFFFH
(end of memory for the 8085).

The Size of the stack is limited only by the
available memory

Saving Information on the Stack

* Information is saved on the stack by PUSHIing it
on.

— It is retrieved from the stack by POPIng it off.

* The 8085 provides two instructions: PUSH and
POP for storing information on the stack and
retrieving it back.

— Both PUSH and POP work with register pairs
ONLY.

The PUSH Instruction

* PUSH B (1 Byte Instruction)
— Decrement SP

— Copy the contents of register B to the memory
location pointed to by SP

— Decrement SP

— Copy the contents of register C to the memory
location pointed to by SP

B C
| 12 | F |

FFFB
FFFC
FFFD F3 *—I

- FFFE 12

FFFF 5P

The POP Instruction

* POP D (1 Byte Instruction)

— Copy the contents of the memory location pointed
to by the SP to register E

— Increment SP

— Copy the contents of the memory location pointed
to by the SP to register D

— [Increment SP

D E
| 12 | F |

FFFR

FFFC

FFFD} F3 SP
FFFE 12

FFFF “« |

Operation of the Stack

* During pushing, the stack operates in a
“‘decrement then store” style.

— The stack pointer is decremented first, then the
iInformation is placed on the stack.

* During poping, the stack operates in a “use then
iIncrement” style.
— The information is retrieved from the top of the the
stack and then the pointer is incremented.
* The SP pointer always points to “the top of the
stack”.

LIFO

* The order of PUSHs and POPs must be opposite of each
other in order to retrieve information back into its original
location.

PUSH B
PUSH D
POP D
POP B

* Reversing the order of the POP instructions will result in
the exchange of the contents of BC and DE.

The PSW Register Pair

* The 8085 recognizes one additional register pair
called the PSW (Program Status Word).

— This register pair is made up of the Accumulator
and the Flags registers.

* |t is possible to push the PSW onto the stack, do
whatever operations are needed, then POP it off
of the stack.

— The result is that the contents of the Accumulator
and the status of the Flags are returned to what
they were before the operations were executed.

PUSH PSW Register Pair

* PUSH PSW (1 Byte Instruction)
— Decrement SP

— Copy the contents of register A to the memory
location pointed to by SP

— Decrement SP

— Copy the contents of Flag register to the memory
location pointed to by SP

A Flag
L 12 | &0 |

FFFB
FFFC
FFFI} il *—l

- FFFE 12

FFFF SP

Pop PSW Register Pair

* POP PSW (1 Byte Instruction)

— Copy the contents of the memory location pointed
to by the SP to Flag register

— Increment SP

— Copy the contents of the memory location pointed
to by the SP to register A

— Increment SP

Modify Flag Content using PUSH/POP

* Let, We want to Reset the Zero Flag
765 4 3210

° 8085 Flag : ISIZIXIACKIPIXICY]

* Program:
— LXI SP FFFF
— PUSH PSW
— POP H
— MOV AL
— ANI BFH (BFH=1011 1111) * Masking
— MOV L A
— PUSH H
— POP PSW

Subroutines

* A subroutine is a group of instructions that will be
used repeatedly in different locations of the
program.

— Rather than repeat the same instructions several
times, they can be grouped into a subroutine that
is called from the different locations.

* In Assembly language, a subroutine can exist
anywhere in the code.

— However, it is customary to place subroutines
separately from the main program.

Subroutines

* The 8085 has two instructions for dealing with
subroutines.

— The CALL instruction is used to redirect program
execution to the subroutine.

— The RET insutruction is used to return the
execution to the calling routine.

The CALL Instruction

* CALL 4000H (3 byte instruction)
— When CALL instruction is fetched, the MP

2000
2003

knows that the next two Memory location
contains 16bit subroutine address in the
memory.

cAL1[4000]]
| sojoo[] [W] [Z]Register

PC | 20403 |
FFFB
FFFC
FFFD} 03 "—|
20

® FFFE
FFFF SP

The CALL Instruction

— MP Reads the subroutine address from the next
two memory location and stores the higher order
8bit of the address in the W register and stores the
lower order 8bit of the address in the Z register

— Pushe the address of the instruction immediately
following the CALL onto the stack [Return
address]

— Loads the program counter with the 16-bit address
supplied with the CALL instruction from WZ
register.

The RET Instruction

* RET (1 byte instruction)

— Retrieve the return address from the top of the
stack

— Load the program counter with the return
address.

‘ FFFB

4014 e FFEC

4015 RET FFFD| (13 SP
FFFE 20 |

Things to be considered in Subroutine

* The CALL instruction places the return address
at the two memory locations immediately before
where the Stack Pointer is pointing.

— You must set the SP correctly BEFORE using the
CALL instruction.

* The RET instruction takes the contents of the two
memory locations at the top of the stack and
uses these as the return address.

— Do not modify the stack pointer in a subroutine.
You will loose the return address.

Things to be considered in Subroutine

* Number of PUSH and POP instruction used in
the subroutine must be same, otherwise, RET

iInstruction will pick wrong value of the return
address from the stack and program will fail.

Passing Data to a Subroutine

* Data is passed to a subroutine through registers.

— Call by Reference:

- The data is stored in one of the registers by the calling
program and the subroutine uses the value from the
register. The register values get modified within the
subroutine. Then these modifications will be transferred

back to the calling program upon returning from a
subroutine

— Call by Value:

« The data is stored in one of the registers, but the
subroutine first PUSHES register values in the stack and
after using the registers, it POPS the previous values of
the registers from the stack while exiting the subroutine.
l.e. the original values are restored before execution
returns to the calling program.

Passing Data to a Subroutine

* The other possibility is to use agreed upon
memory locations.

— The calling program stores the data in the memory
location and the subroutine retrieves the data from
the location and uses it.

Cautions with PUSH and POP

* PUSH and POP should be used in opposite
order.

* There has to be as many POP’s as there are
PUSH’s.

— If not, the RET statement will pick up the wrong
iInformation from the top of the stack and the

program will fail.

* [tis not advisable to place PUSH or POP inside a
loop.

Conditional CALL and RET Instructions

* The 8085 supports conditional CALL and
conditional RTE instructions.

— The same conditions used with conditional JUMP
Instructions can be used.

— CC, call subroutine if Carry flag is set.

— CNC, call subroutine if Carry flag is not set

— RC, return from subroutine if Carry flag is set

— RNC, return from subroutine if Carry flag is not set
— Etc.

A Proper Subroutine

* According to Software Engineering practices, a
proper subroutine:

— |s only entered with a CALL and exited with an
RTE

— Has a single entry point

+ Do not use a CALL statement to jump into different points
of the same subroutine.

— Has a single exit point

« There should be one return statement from any
subroutine.

Writing Subroutines

* Write a Program that will display FF and 11 repeatedly on

the seven segment display. Write a ‘delay’ subroutine and
Call it as necessary.

Program Transfer
C000: LXISP FFFF '

C003: MVIA FF
C005: OUT 00
CO07: CALL 14 20
CO0A: MVIA 11
CO0C: OUT 00
COOE: CALL 14 20
CO11:JMP 03 CO
DELAY: CO14: MVIB FF
CO016: MVIC FF
C018: DCR C
CO019: JNZ 18 CO
CO01C: DCR B
CO1D: JNZ 16 CO
C020: RET

Reference Book
“Microprocessor Architecture,
Programming and Applications with
8085, 5SthEdition, Prentice Hall

by
Ramesh S. Goankar

END

