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Counters

• A loop counter is set up by loading a register 
with a certain value 

• Then using the DCR (to decrement) and INR 
(to increment) the contents of the register are 
updated.

• A loop is set up with a conditional jump 
instruction that loops back or not depending 
on whether the count has reached the 
termination count.



Counters

• The operation of a loop counter can be 
described using the following flowchart.



Sample ALP for implementing a loop 
Using DCR instruction

MVI C, 15H

LOOP DCR C

JNZ LOOP



Using a Register Pair as a Loop Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register. A minor problem arises in how to
test for the final count since DCX and INX do not
modify the flags.

• However, if the loop is looking for when the count
becomes zero, we can use a small trick by Oring the
two registers in the pair and then checking the zero
flag.



Using a Register Pair as a Loop Counter

The following is an example of a loop set up with 
a register pair as the loop counter.

LXI B, 1000H

LOOP DCX B

MOV A, C

ORA B

JNZ LOOP



Delays

• Each instruction passes through different 
combinations of Fetch, Memory Read, and 
Memory Write cycles.

• Knowing the combinations of cycles, one can 
calculate how long such an instruction would 
require to complete.

• B for Number of Bytes

• M for Number of Machine Cycles

• T for Number of T-State.



Delays

• Knowing how many T-States an instruction 
requires, and keeping in mind that a T-State is 
one clock cycle long, we can calculate the time 
using the following formula:

• Delay = No. of T-States / Frequency

• For example a “MVI” instruction uses 7 T-States. 
Therefore, if the Microprocessor is running at 2 
MHz, the instruction would require 3.5 μSeconds
to complete.



Delay loops

• We can use a loop to produce a certain amount of 
time delay in a program.

• The following is an example of a delay loop:
MVI C, FFH 7 T-States

LOOP DCR C 4 T-States
JNZ LOOP 10 T-States

• The first instruction initializes the loop counter 
and is executed only once requiring only 7 T-
States.

• The following two instructions form a loop that 
requires 14 T-States to execute and is repeated 
255 times until C becomes 0.



Delay Loops (Contd.)
• We need to keep in mind though that in the last iteration of the 

loop, the JNZ instruction will fail and require only 7 T-States 
rather than the 10.

• Therefore, we must deduct 3 T-States from the total delay to get 
an accurate delay calculation.

• To calculate the delay, we use the following formula:

Tdelay= TO+ TL

Tdelay= total delay

TO= delay outside the loop

TL= delay of the loop

• TO is the sum of all delays outside the loop.



Delay Loops (Contd.)

• Using these formulas, we can calculate the 
time delay for the previous example:

• TO= 7 T-States
Delay of the MVI instruction

• TL= (14 X 255) -3 = 3567 T-States
14 T-States for the 2 instructions repeated 255 times 
(FF16= 25510) reduced by the 3 T-States for the final 
JNZ. 



Using a Register Pair as a Loop Counter

• Using a single register, one can repeat a loop for 
a maximum count of 255 times.

• It is possible to increase this count by using a 
register pair for the loop counter instead of the 
single register.
– A minor problem arises in how to test for the final 

count since DCX and INX do not modify the flags.

– However, if the loop is looking for when the count 
becomes zero, we can use a small trick by Oring the 
two registers in the pair and then checking the zero 
flag.



Using a Register Pair as a Loop Counter

• The following is an example of a delay loop set 
up with a register pair as the loop counter.

LXI B, 1000H 10 T-States

LOOP DCX B 6 T-States

MOV A, C 4 T-States

ORA B 4 T-States

JNZ LOOP 10 T-States



Using a Register Pair as a Loop Counter

• Using the same formula from before, we can 
calculate:

• TO= 10 T-States
The delay for the LXI instruction

• TL= (24 X 4096) -3 = 98301 T-States
24 T-States for the 4 instructions in the loop repeated 
4096 times (100016= 409610) reduced by the 3 T-
States for the JNZ in the last iteration. 



Nested Loops

• Nested loops can be easily 
setup in Assembly 
language by using two 
registers for the two loop 
counters and updating the 
right register in the right 
loop.

• In the figure, the body of 
loop2 can be before or 
after loop1.



Nested Loops for Delay

• Instead (or in conjunction with) Register Pairs, 
a nested loop structure can be used to 
increase the total delay produced.

MVI B, 10H 7 T-States

LOOP2 MVI C, FFH 7 T-States

LOOP1 DCR C 4 T-States

JNZ LOOP1 10 T-States

DCR B 4 T-States

JNZ LOOP2 10 T-States



Delay Calculation of Nested Loops

• The calculation remains the same except that it the 
formula must be applied recursively to each loop.
– Start with the inner loop, then plug that delay in the 

calculation of the outer loop.

• Delay of inner loop
– TO1= 7 T-States 

• MVI C, FFH instruction

– TL1= (255 X 14) -3 = 3567 T-States
• 14 T-States for the DCR C and JNZ instructions repeated 255 

times (FF16= 25510) minus 3 for the final JNZ



Delay Calculation of Nested Loops

• Delay of outer loop
– TO2= 7 T-States

• MVI B, 10H instruction

– TL1= (16 X (14 + 3574)) -3 = 57405 T-States1
• 4 T-States for the DCR B and JNZ instructions and 3574 T-States for 

loop1 repeated 16 times (1016= 1610) minus 3 for the final JNZ.

– TDelay= 7 + 57405 = 57412 T-States

• Total Delay
– TDelay= 57412 X 0.5 μSec = 28.706 mSec



Increasing the delay

• The delay can be further increased by using 
register pairs for each of the loop counters in the 
nested loops setup.

• It can also be increased by adding dummy 
instructions (like NOP) in the body of the loop.
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