
Counters & Time Delays

MCA 1ST YEAR 2ND SEMESTER 2020

Paper: MCA 203

Dr. Utpal Nandi

Dept. of Computer Science

VIDYASAGAR UNIVERSITY

Counters

• A loop counter is set up by loading a register
with a certain value

• Then using the DCR (to decrement) and INR
(to increment) the contents of the register are
updated.

• A loop is set up with a conditional jump
instruction that loops back or not depending
on whether the count has reached the
termination count.

Counters

• The operation of a loop counter can be
described using the following flowchart.

Sample ALP for implementing a loop
Using DCR instruction

MVI C, 15H

LOOP DCR C

JNZ LOOP

Using a Register Pair as a Loop Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register. A minor problem arises in how to
test for the final count since DCX and INX do not
modify the flags.

• However, if the loop is looking for when the count
becomes zero, we can use a small trick by Oring the
two registers in the pair and then checking the zero
flag.

Using a Register Pair as a Loop Counter

The following is an example of a loop set up with
a register pair as the loop counter.

LXI B, 1000H

LOOP DCX B

MOV A, C

ORA B

JNZ LOOP

Delays

• Each instruction passes through different
combinations of Fetch, Memory Read, and
Memory Write cycles.

• Knowing the combinations of cycles, one can
calculate how long such an instruction would
require to complete.

• B for Number of Bytes

• M for Number of Machine Cycles

• T for Number of T-State.

Delays

• Knowing how many T-States an instruction
requires, and keeping in mind that a T-State is
one clock cycle long, we can calculate the time
using the following formula:

• Delay = No. of T-States / Frequency

• For example a “MVI” instruction uses 7 T-States.
Therefore, if the Microprocessor is running at 2
MHz, the instruction would require 3.5 μSeconds
to complete.

Delay loops

• We can use a loop to produce a certain amount of
time delay in a program.

• The following is an example of a delay loop:
MVI C, FFH 7 T-States

LOOP DCR C 4 T-States
JNZ LOOP 10 T-States

• The first instruction initializes the loop counter
and is executed only once requiring only 7 T-
States.

• The following two instructions form a loop that
requires 14 T-States to execute and is repeated
255 times until C becomes 0.

Delay Loops (Contd.)
• We need to keep in mind though that in the last iteration of the

loop, the JNZ instruction will fail and require only 7 T-States
rather than the 10.

• Therefore, we must deduct 3 T-States from the total delay to get
an accurate delay calculation.

• To calculate the delay, we use the following formula:

Tdelay= TO+ TL

Tdelay= total delay

TO= delay outside the loop

TL= delay of the loop

• TO is the sum of all delays outside the loop.

Delay Loops (Contd.)

• Using these formulas, we can calculate the
time delay for the previous example:

• TO= 7 T-States
Delay of the MVI instruction

• TL= (14 X 255) -3 = 3567 T-States
14 T-States for the 2 instructions repeated 255 times
(FF16= 25510) reduced by the 3 T-States for the final
JNZ.

Using a Register Pair as a Loop Counter

• Using a single register, one can repeat a loop for
a maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.

– However, if the loop is looking for when the count
becomes zero, we can use a small trick by Oring the
two registers in the pair and then checking the zero
flag.

Using a Register Pair as a Loop Counter

• The following is an example of a delay loop set
up with a register pair as the loop counter.

LXI B, 1000H 10 T-States

LOOP DCX B 6 T-States

MOV A, C 4 T-States

ORA B 4 T-States

JNZ LOOP 10 T-States

Using a Register Pair as a Loop Counter

• Using the same formula from before, we can
calculate:

• TO= 10 T-States
The delay for the LXI instruction

• TL= (24 X 4096) -3 = 98301 T-States
24 T-States for the 4 instructions in the loop repeated
4096 times (100016= 409610) reduced by the 3 T-
States for the JNZ in the last iteration.

Nested Loops

• Nested loops can be easily
setup in Assembly
language by using two
registers for the two loop
counters and updating the
right register in the right
loop.

• In the figure, the body of
loop2 can be before or
after loop1.

Nested Loops for Delay

• Instead (or in conjunction with) Register Pairs,
a nested loop structure can be used to
increase the total delay produced.

MVI B, 10H 7 T-States

LOOP2 MVI C, FFH 7 T-States

LOOP1 DCR C 4 T-States

JNZ LOOP1 10 T-States

DCR B 4 T-States

JNZ LOOP2 10 T-States

Delay Calculation of Nested Loops

• The calculation remains the same except that it the
formula must be applied recursively to each loop.
– Start with the inner loop, then plug that delay in the

calculation of the outer loop.

• Delay of inner loop
– TO1= 7 T-States

• MVI C, FFH instruction

– TL1= (255 X 14) -3 = 3567 T-States
• 14 T-States for the DCR C and JNZ instructions repeated 255

times (FF16= 25510) minus 3 for the final JNZ

Delay Calculation of Nested Loops

• Delay of outer loop
– TO2= 7 T-States

• MVI B, 10H instruction

– TL1= (16 X (14 + 3574)) -3 = 57405 T-States1
• 4 T-States for the DCR B and JNZ instructions and 3574 T-States for

loop1 repeated 16 times (1016= 1610) minus 3 for the final JNZ.

– TDelay= 7 + 57405 = 57412 T-States

• Total Delay
– TDelay= 57412 X 0.5 μSec = 28.706 mSec

Increasing the delay

• The delay can be further increased by using
register pairs for each of the loop counters in the
nested loops setup.

• It can also be increased by adding dummy
instructions (like NOP) in the body of the loop.

Reference Book

“Microprocessor Architecture,

Programming and Applications with

8085”, 5thEdition, Prentice Hall

by

Ramesh S. Goankar

END

